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The radiation emitted by high energy electrons traversing a matter-vacuum interface is investigated. It is 
shown that in the high-energy limit the theories that neglect the variation of the multiple-scattering 
constants and take it into account are identical. It is shown that in the limit of high electron energies the 
angular and spectral distributions are the same as those obtained in the coherent-length representation. 

The bremsstrahlung of ultrarelativistic electrons in 
a medium has been widely discussed in the literature 
(see, e.g., [1, 2J and the bibliograPhr; cited therein). In 
particular, Galitskil and Gurevich 3J, using the concept 
of the coherent length (see also [1,2 J), obtained the spec
tral and angular distributions of the bremsstrahlung, 
with account taken of the absorption of virtual quanta in 
the medium. According to [3J at suffiCiently high electron 
energies, such that the coherent length without allowance 
for the absorption of the quanta becomes larger than the 
quantum-absorption length Lc' the radiation intensity can 
be represented in the form 

l=const·q.ro, (1) 

where qo = (1/4)(82) = 41fn(Ze2)2E~2LR' (8 2) is the mean
squared angle of the multiple scattering per unit time, 
n is the number of nuclei per unit volume of the mater
ial, Eo is the electron energy, LR is the radiation logar
ithm, Lc = l/WE", E" is the imaginary part of the dielec
tric constant, and w is the photon frequency. The quan
tum emission angle under the same conditions is 

(2) 

Thus, at sufficiently high electron energies the radia
tion intensity proportional to the frequency of the emitted 
photons, and the radiation angle does not depend on the 
energy of the radiating particle. The analysis carried 
out by Galitskil and Gurevich [3J was subsequently con
firmed by Galitskil and Yakimets [4J with the aid of an 
investigation of the formulas for the energy lost by an 
ultrarelativistic electron in a medium. 

Varfolomeev et al. [5 J, on the basis of the analysis of 
the formulas for the energy losses, have recently called 
attention to the fact that owing to the energy loss by the 
electron it is necessary to take into account the change 
that takes place, over the coherent length, in the con
stants that characterize the multiple scattering of the 
radiating particle, in an emitted-quantum frequency 
region that expands rapidly with increasing electron 
energy. It is shown in the same paper that the subdivi
sion of the energy losses in the absorbing medium into 
bremsstrahlung loss and into loss to pair production is 
to a certain degree arbitrary. It is of interest in this 
connection to analyze the form of the photon spectrum 
from a different point of view, namely, to investigate the 
spectrum of the photons radiated in vacuum by an ultra
relativistic electron passing through the boundary be
tween an absorbing medium and the vacuum, for in this 
case the arbitrariness indicated above does not take 
place. 

An analysis of the emission spectrum of a particle 
emitted from a medium into vacuum, which will be 
presented below, shows that in the limit of high electron 
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energies, the energy losses over the coherent length do 
not influence the spectrum and the effective emission 
angle. 

1. The most general method of finding the angular 
and spectral distributions of the radiation of an arbi
trarily moving particle in an absorbing medium in the 
presence of an interface was formulated by Pafomov [6J 

with the aid of the method of images. He also derived the 
general formulas (4.14)-(4.21) which made it possible to 
determine the radiation intensity W w in a unit solid 
angle and a unit frequency interval Por a particle moving 
along an arbitrary trajectory through the interface be
tween a medium and vacuum. According to formula 
(4.21) of [6J , we have (c = 1) 

W.oo=ro'R'1 [nII.11', (3)* 

where nw is the Hertz vector and n = R/R is a unit vec
tor in the observation direction. 

In the case of interest to us, of high y-quantum ener
gies, the dielectric constant E is close to unity. This 
enables us to neglect the difference between E and unity 
in the coefficients preceding the exponentials (but not in 
the phases of the exponentials!) in formulas (4.14)-(4.16) 
of [6J , which define the Hertz vector. This neglect is 
equivalent to discarding the specularly reflected waves, 
and is permissible in our frequency region (Re(E - 1) 
« 1, 1m E « 1). As a result, the Hertz vector n 1 pro
duced in vacuum by a particle moving in the medl:'6.m can 
be written in the form 

ie eieR 

IT., =-- Sv(t)e"·'-"'U» dt. 
2Jt roR 

(4) 

where v(t) is the velocity of the particle at the instant of 
time t, k is the wave vector of the photon in a medium 
with components k 1 = wn 1 and kz = w../Enz ' while the 
z axis of the coordinate system is directed from the 
medium to the vacuum, the origin is on the interface be
tween the medium and vacuum, and the medium is located 
in the region z < O. 

The Hertz vector produced in the vacuum by a particle 
that moves on the section of the path in the vacuum is 
given by 

ie eiwR 

II =--Sv(t)ei, •• -k""" dt 
0)2 2nwR ' (5) 

where ko = wn. Substituting (4) and (5) in (3) and averag
ing Wnw over the possible trajectories, we obtain the 
following expression for the intensity of the radiation of 
the particle moving through the interface between the 
medium and vacuum: 

2. 2. 12 
e ro SS [' ,-). . W •• =-- [nv] nV]¢k. (r)e'·'· 
4,.' 

" 
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where 

'1jJt) (r') e-'·" w(r, v, t; r', v', t')dr ... dt', 

(_) {exP(ik,r) 
'¢ko '5:1 • 

exp(,k'r) 

if z>O 
if z<O 

(6) 

(7) 

and w(r, v, t; r', v', t') = wl(r, v, t)w2(r, v, tlr/, v', t'l 
is the joint probability of observing particle coordinates 
r and v at the instant t, and r' and v' at the instant t'; 
wl(r, v, t) is the probability of observing the coordinates 
r and v at the instant t; w2(r, v, t Ir/, v', 1') is the condi
tional probability of observing the coordinates r' and v' 
at the instant l' if their values at the instant t were r 
and v, 

2, It is of interest to note that formula (6) for Wnw 
can be obtained with the aid of the following simple 
reasoning, which also explains the physical meaning of 
the functions ifi~~(r) introduced above. In fact, the vector 

potential A(r, w) produced by the particle satisfies the 
equation 

1A+w'e(w, r)A=-4nj(r, 00) 
------ -- (8) 

with the corresponding boundary conditions; E(W, r) 
= E(W) in the medium and E(W, r) = 1 outside the medium. 

The solution of (8) can be obtained with the aid of the 
exact retarded Green's function, which is a tensor quan
tity because A is a vector field. If, however, we can 
neglect the specularly reflected waves (as is the situa
tion in our case), then the solution of (8) can be written 
in the form 

A(r,w)=-4n jG(r,r',w)j(w,r')d3r', (9) 
where G(r, r/, w) is the scalar retarded Green's function 
and satisfies the equation 

6.G+w'S (00, r) G=6 (r-r'). (10) 

We now use the fact that as r ~ 00 the Green's func-
tion G(r, r/, w) can be represented in the form 

. , 1 etli<Jr (_). 

limG(r,r ,w)=----1jJt, (r'), (11) 
r_CIO 4rt r 

where ifik) (r') is the eigenfunction of the homogeneous 
equation 0 

6.1jJ~~) +W'e'(w,r)1jJ~) =0, (12) 

and contains converging waves at infinity. Relation (11) 
in the particular case of a spherically symmetrical real 
potential (in our case, E) is given in r7J. Analysis shows 
that it is valid in the general case of complex potentials, 
which need not necessarily have spherical symmetry. 

Substituting (11) in (9) and applying the curl operation 
to the obtained expression, we have for the magnetic 
field of the radiated wave 

H(r, w)=rotA =i [k,rl J 1jJt)· (r')j(w,r')d3r']. (13) 

Recognizing that for a point-like particle the current 
is 

j(w,r')= J ev(t)6(r'-r(t»e'·'dt, 

we can rewrite H(r, w) in the form 

H(r, 00)= i-7 J dt[k,v(t) j1jJt)· (r(t) )el.'. 

Using (15) and the equation 

W •• =r'IH(w, r) 1'/4n', 

we obtain (7). 

(14) 

(15) 

It must be emphasized that a relation of the type (11), 
which expresses the asymptotic form of the Green's 
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function in terms of the eigenfunctions of the homogene
ous Maxwell equations of the type Ak~ , holds also in the 
general case. This means that the intensity Wnw can 
likewise be expressed in the general case in terms of 
the eigenfunctions of the homogeneous Maxwell equations 
containing converging waves at infinity. The foregoing 
becomes obvious if we turn to the quantum-mechanical 
formula for W o.w' In this case the radiation intensity 
Wnw is determmed by the square pf the modulus of a 
matrix element in the form (ye 'IjAle). It is well known 
that the exact wave functions of all the particles pro
duced in the reaction must be chosen such that their 
asymptotic form has converging waves at infinity [8J 

(compare also with the analogous requirement imposed 
on the wave function of an electron in the final state in 
the exact bremsstrahlung theory [8 J ). On the other hand, 
the exact matrix element (y 1..\1 0) satisfies the homo
geneous Maxwell equations, thus proving the statement 
made above. 

Expressing Wnw in terms of the solution Ak-) (in the 
classical and quantum-mechanical cases) may offer 
advantages, since the solutions of the homogeneous 
Maxwell equations are frequently well known. 

3. To obtain concrete expressions describing the 
distribution of the emitted photons, we must find the 
form of the functions Wl and W2. If we disregard the 
change of the multiple-scattering constants, then these 
functions satisfy the usual Fokker- Planck equation. In 
this case we follow Pafomov's procedure [6J , namely, we 
solve the problem of the radiation of a particle emitted 
from an absorbing medium. We then obtain for Wnw an 
expression that coincides with that obtained by Pafomov 
(see formulas (27.44)- (27.46) in [6J), provided we make 
in this expression the substitutions {3 ~ -{3 and 10 ~ 10* in 
all the functions except 171 = [4w{3q Im(E - sin2 J)1/2]1/2. 

In the general case, the expression for the intensity 
Wnw contains contributions that are connected with the 
transition and bremsstrahlung mechanisms of the radia
tion' and also with their mutual interference, and the 
analysis of the photon spectrum must be carried out with 
allowance for all the processes r1, 6J • It turns out, how
ever (see [6J), that as q ~ 0 the radiation of the photons 
polarized perpendicular to the plane of their emission 
takes place only in the presence of multiple scattering of 
the electrons, and does not contain a contribution that 
comes from the transition radiation. It is natural to 
classify such photons as bremsstrahlung photons [6J. 
Their intensity Wb1 is determined by formula (27.49) 

nw 
of i6J and in the high-energy case of interest to us 
(q ~ E-2 ~ 0) it takes the form 

b e'q r ( 1, 1 ')" (1 1/') '] _1 W.L··=;=~n,L, .1-~-2(e-1)+2~ +llT s , (16) 

where 10 ' = Re Eo In the region of electron energies so 
high that 1 - {3 « 10", and at y-ray frequencies such that 
10 ' -1 « 10", we obtain from (16) the eff,ective radiation 
angle 

of}-fe"=(wL,)-'h. (17) 

This angle coincides with the quantum radiation angle 
obtained by Galitskil and Gurevich [3J from an analysis 
of the interference conditions. 

Integrating (16) over the angles, we obtain the follow
ing expression for the spectral distribution of the 
bremsstrahlung 

s W .L~. dQ=e'qLo'w. (18) 
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We see that the radiation intensity is proportional to the 
frequency of the emitted photons w in accordance with the 
conclusion drawn in [3J with the aid of the coherent-length 
concept. 

4. For the analysis that follows, it is convenient to 
carry out in expression (6) the change of variables t, t ' 
- -t, -t', and v, Vi - -v, -v', which is equivalent to the 
time-reversal transformation. Using the fact that by 
virtue of the symmetry of the exact equations of motion 
with respect to time reversal the exact functions w satis
fies a relation of the type [9J 

w(r, -v, -tlr', -v', -t')=w(r, v, tlr', v', t'), 

we obtain as a result the following equation for Wnw: 
, , 4 

w •• =. ~~ H [nv][nv'l.p~-)· (r)e-'·'.p.~-) (r')e'·'· 
" -', (19) 

x w, (r, v, t) w,(r, v, tlr', v', t)dr . .. dt', 

where the probability densities w satisfy the time
reversed initial conditions. It is convenient, following 
Pafomov [6J, to formulate conditions for the w that 
describe the motion of the particle in the medium on the 
interface between the medium and the vacuum at the in
stant t = 0 of passage of the electron through the inter
face: 

w,lr, v, t=O)=tS(r)tS(v+v.); w,{t=t')=tS(r-r')tS(v-v') 

(VI is the velocity of the particle in vacuum). In other 
words, in this case the problem reduces to finding the 
distribution functions for a particle entering the medium 
at the instant t = 0 with velocity Vo = -VI' 

We write down the velocity v in the form v = Vo + 6v, 
where 6v is the change of the electron velocity in the 
medium as a result of the collisions. Then the product 
[nxv] • [nxv'] breaks up into a sum of four terms, 
namely 

[nv 1 [nv'] = [nvo]'+ [nvo] [n6v'] 
+[n6v] [nvo]+[n6v] [n6v']. 

Accordingly, the intensity Wnw also breaks up into four 
terms. The first term, at constant electron velocity, 
describes the transition radiation. The fourth term, at 
E" = 0, describes the bremsstrahlung [6J. Let us con
sider, for the sake of argument, the radiation to be pro
portional to the fourth term [v x 6V] . [n x 6V/], which 
we shall henceforth call the bremsstrahlung term. The 
conclusions that will be drawn below, namely that the 
form of the spectrum and the emission angles are inde
pendent, in the limit of high electron energies, of the 
energy loss over the coherent length, pertain equally well 
also to the contributions made to the intensity Wnw by 
the first three terms. 

Since the quantities 6v and 6v' differ from zero only 
in the medium, by substituting in (19) the expression for 
l/!;;l in the medium we obtain the following expression 

o b 
for Wnw: 

2> 2 h h-t 

. w.~= e W, Re S dt S <'Iv 6v' e'·' exp(2 Im k,z+ik'p) 
2n 0 0 (20) 

Xw, (rvt)w,(rvtlr+p, v', t+r)dr ... dr:. 

In the derivation of (20) we took into account the fact that 
the product [n x 6vJ • [n x 6v /l "" (6V . 6V') since the vec
tors nand 6v (BV') are practically perpendicular in the 
region of high electron energies of interest to us. 

According to Varfolomeev et al. rSJ, when account is 

823 SOy. Phys.-JETP, Vol. 40, No.5 

taken of the electron energy losses over the coherent 
length the distribution functions w satisfy an equation of 
the Fokker-Planck type with an rms multiple-scattering 
angle and a velocity that depend on the time. The use of 
this equation leads, for example, for the function 

u,= S e'·' e,k"w,(rvtlr+p, v', t+r:)d'p, 

which enters in (20), to an equation of the type 
AU, 6' ac =q(r:)d,u,-ik.c·Ov(r:) u,+ik,'V(T)zU2+i(w-k,'v(T) )u" (21) 

u2(r = 0) = 6(9 -8'), where, as usual, we have introduced 
the transverse angle vectors 9 with the aid of the equal
ity 6v = v8, where V(T) = Ivl. Equation (21) is analogous 
to the equation for the function U2 obtained by 
Pafomov [6J, except that in (21) the coefficients depend 
on the time. In the case E = 1, Eq. (21) is analogous to 
Eq. (6) from [sJ. 

The solution (21) can be easily written if attention is 
paid to the fact that it coincides in form with the 
Schrodinger equation for an oscillator with a time
dependent frequency and mass, and acted upon by a time
dependent force. The prescription for solving this equa
tion is given, for example, in [7J. The solution obtained 
in this manner is quite cumbersome and will not be 
presented here. For our purposes, it suffices to find 
the asymptotic form of the solution as E - "". 

Introducing to this end the function 

,I'{r:) =exp {-i(WT-k,'\V(T)dT) }U,(T), 

we obtain from (21) an equation in the form 

~-q(T)d,1jJ=/(O, T)1jJ, 
iiT 

.p(T=O) =<'1(0-8'), /(0, T) =-ik.c·OV(T) +ik,'v(T) 6'12. 

(22) 

We separate in the coefficient q(T) the parameter A, 
which tends to zero as E - "". For example, we write 
q(T) = AQI(T) (according to [5 J , q (T) = qoexp (2(t + T)/L), 
where qo is the rms scattering angle and is proportional 
to 1/E2), and choose QI(T) - 1 as T - O. 

We make the change of variable . 
T,= S a(T')dT'. 

o 

This change transforms (22) into 

o1jJ _( . 
o--Ad,1jJ=! O,T)1jJ, 
uT, 

1jJ(T,=O) =6(0-8'). 1(0. T,)=/(O, T)/a(T). 

We introduce the Green's function with the aid of the 
equation 

O(x) =1 if X>O, 6 (x) =0 if x<O. 

With the aid of the indicated Green's function, Eq. 
(23) can be transformed into an integral equation: 

+00 1"t 

(23) 

(24) 

(25) 

1jJ(O, T,) =G(e-o', T,)+ S S G(O-O"; T,-T,") 
-~ 0 (26) 

Xf(O",T,")1jJ(O",T.")dO" dT,". 

We now use the fact that in any finite time interval, as 
A - 0, the Green's function G - 6(8 - 9)8(T - T'). This 
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circumstance enables us to write (26) in the form 

" 
",(e, or,) =6(e-e') e( or,) + f f(e, t,") ",(e, or,")dor,", (27) 

o 

which is equivalent to the following differential equation 
(expressed in terms of the earlier variables T): 

iJ",/iJor=f(e, or)"" ",(or=O)=6(e-e). 

The solution of (28) can be easily obtained: 

",=6 (e-e')exp{ jf(e, or')dor'}. 
o 

Returning to the function U2, we can represent the 
formula (20) in the form 

b e21(i)2 h 

W n• =2n'Re f dte'w, (or, e, t)exp(2 Imk.z) 
o 

x Texp {i (wor-k; S v(or)dor) + ! I(e, or')dor' }dr de dor. 

(28) 

(29) 

(30) 

Since the distribution function Wi becomes an in
creasingly sharper function of 8 near 8 = 0 with increas
ing electron energy, and the velocity V(T) ~ 1 (it follows 
from (30) that the difference between v and unity can be 
neglected if 1 - v « E", and the phase f in the argument 
of the exponential can be neglected if qLc « E", i.e., 
(qLc)1/2 « (wLcfli2), it follows that in the limit of high 
energies the bremsstrahlung intensity is given by 

b e2 (()2 1\ tl-t 

W n.= 2.n' ReS dt<8'),exp(-2Imk,t) S exp[i(w-k:hldor. (31) 
o 0 

According to (31), as a result of an equation of the type 
(21) the possible dependence of W~w on the energy loss, 
in the limit of high electron energies, is connected only 
with the dependence of the mean-squared angle (8 2)t 
= J8~dr, 8, t)drd8 on the energy loss. 

If the energy loss can be neglected over the length Lc' 
then i 

, S Eo' dor <8 ),= ---=4qot 
o E'Ct} L . 

Substituting this expression in (31), we obtain the result 
(1), (2), and (18), i.e., the spectrum predicted in [3 J. 

Varfolo~eev et all chose the dlilpendence of the energy 
on the path In the form E = Eoe-t; L. This dependence 
as follows from Eq. (6) of [5J, leads to an exponential ' 
growth of (8 2)t which is faster than the decrease of the 
exponential exp(-2 1m kzt) = exp(-t/Lc )' According to 
(31), this leads to an exponential growth of Wb with nw 
increasing t1, i.e., with increaSing electron mean free 
path ~n the medi~m!. I~ Sho~ld be n~ted, however, that the 
relatlOn E = Eoe tiL IS vahd only If one neglects the 
influence of the medium on the energy loss. Thus, for 
example, the Landau-Pomeranchuk effect leads to a 
slower decrease of the electron energy with distance [1J . 
It is also well known [10J that, owing to the polarization, 
the ionization loss by unit length, for example in the 
limit of highest energies, become constant and indepen
dent of the energy of the incident particle. Since the 
theory of these losses actually makes no use of the con
crete form of E, the conclusion that these losses are 
constants is valid in the limit as E - co also in our case 
(although now the losses include also the pair-production 
processes). On the other hand, only the ionization losses 
remain, in the limit as q - 0 (E - co), both in the theory 
that does not take account of the change of the multiple
scattering constants [4J, and in the theory that takes this 
change into account r5J, and in this limit the two theories 
coincide. 
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Thus, the energy lost by the particle on its path in the 
medium is described, in the high-energy limit, by an 
essentially weaker dependence on t than exponential. 
This means that as E - co we can neglect the change of 
the electron energy in the medium over the quantum ab
sorption length Lc (for example, at constant losses 
E = Eo - const . t and for any finite t we ha.ve E i'::i Eo at 
sufficiently large Eo). Therefore (8 2)t ~ t in this limit, 
and consequently we find that in the high-energy limit 
the spectral and angular distributions are described by 
formulas (1), (2), and (18). At lower energies or at 
emitte~-quanta fr~uencies such that 1 - V(T) ;C E" and 
(qLC)l 2 ;C (wLcfl (see the derivation of formula (31)), 
allowance for the change of the energy OVl3r the length Lc 
may turn out to be important. It follows from the indi
cated inequalities that a similar allowance may be im
portant at electron energies E < Es(wLC)1/2 or, if the 
particle energy is fixed, at quantum frequencies 
w > E2/LcE~. For example, according to the first 
inequality, in the investigation of the spectrum of the y 
quanta with energy ~ 109 eV, the electron energy should 
be less than 1014 eV. However, an analysis of the role of 
the losses should be carried out with the aid of the 
Fokker-Planck equation with coefficients that take into 
account the influence of the medium on the electron de
celeration law. In addition, it is necessary to add to the 
indicated equation a term of the type -w /T, which des
cribes the relaxation of the electron distribution function 
due to radiation and pair-production processes. The 
matter reduces in fact to the use of a kinetic equation 
that takes into account the polarization of the medium 
both in the collision term, which is connected with the 
electron scattering, and in the collision term connected 
with radiation and pair-production processes. 
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