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The processes of photon emission by an electron and pair production in the field of an intense plane 
monochromatic wave of arbitrary elliptic polarization, as well as in the field of two linearly polarized waves 
with mutually perpendicular polarizations and propagating in the same direction, are considered. 
Expressions are obtained for the probabilities of these processes, and numerical computations are .carried 
out for specific values of the parameters entering into the present problem. The characteristic features of 
the dependence of the total probabilities on the external-field frequency are discussed. 

1. INTRODUCTION 

Many papers have recently been published in which 
different quantum effects in the field of an intense elec
tromagnetic wave are investigated[l-5). The study of 
such effects is of great importance in connection with 
the production of high-power laser beams and the pos
sibility of their use for different physical investigations. 
Interest in these investigations will evidently grow in 
future, and therefore it seems to us that it is necessary 
to thoroughly investigate the quantum processes that can 
occur in the field of a laser beam (y-quantum emission 
by an electron, pair production, elementary-particle 
disintegration, etc.). 

The enumerated effects have been considered in the 
papers[l-5) for the fields of linearly- and circularly
polarized monochromatic waves. Since, as it turned 
out, the course of the quantum processes have specific 
characteristics that depend on the polarization of the 
wave[5], it is of interest to consider the general case 
of elliptic polarization. Apparently, this circumstance 
has a more Significant effect on the polarization char
acteristics of the particles (e.g., the emitted photons), 
although, as our calculations show, such integral char
acteristics as the magnitudes of the total probabilities of 
y-quantum emission and pair production also depend 
essentially on the polarization of the wave. 

Furthermore, it is also of interes t to consider the 
quantum effects in the field of nonmonochromatic wave con
sisting of a collection of waves of different frequencies. 
The course of the quantum effects in this case can be 
accompanied by the absorption pr emission) of photons 
either from the various waves, or separately from each 
of them. In this paper we shall consider the simple 
model of two linearly polarized waves of different fre
quencies propagating in the same direction, the polari
zations of these waves being assumed to be mutually 
perpendicular. In this case the exact solution of the Dirac 
equation for the electron has a particularly simple form, 
which Significantly simplifies the numerical computations. 

The probabilities of processes in a wave field depend 
on two invariants [I], to wit, x = ea/m (a f-L is the amplitude 
of the potential) and X = (kp)x/m 2 (Pf-L is the momentum 
and m the mass of the particle). For the case of several 
waves, the number of invariant parameters increases 
correspondingly. For x» 1, the analysis reduces to the 
study of processes in a constant crossed field[1]. The 
case x« 1 yields perturbation theory. We shall, in the 
present paper, assume that the values of the parameters 
x and X entering into the problem are of the order of 
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unity. This region requires the use of numerical integra
tion, and has not been investigated in detail before 
(with the exception of the case of one Circularly polar
ized wave[4]). 

Let us note here another circumstance pertaining to 
the two-wave model. If for one monochromatic wave the 
effective values of the number s of quanta absorbed from 
the wave in the case when x» 1 are ~ x3 and the quan
tum processes involve the absorption of a large number 
of the wave photons [5], then such a correspondence be
tween the values of the parameters si and Xi cannot be 
established for the two-wave model. Here, for x» 1, 
processes involving the absorption of a large number 
of quanta from one of the waves and a small number of 
them from the other can also turn out to be important. 

In the present paper we consider the effects of pair 
production and y-quantum emission by an electron in 
the case of a monochromatic wave of arbitrary elliptic 
polarization, as well as for the above-indicated two
wave model. The decay of elementary particles will be 
considered later. We use the same metric and y mat
rices used by Okun' in his book[6] 

2. ELLIPTICALLY POLARIZED MONOCHROMATIC 
WAVE 

As is well known, the exact solution to the Dirac 
equation with the potential Af-L(CP) of a plane electromag
netic wave has the form [7] 

( ) - -iPXF( )~ (1) I/lP x -e <p (2p.) '/. ' 

where 

F(<p) = [1 +_e_ kA ] ei ' I." 
2(pk) 

S(<p)=- S·X [_e_(PA) __ e'_A'] drp. 
,,(kp) 2(kp) 

Here Pf-L is a constant 4-vector, p2 = m2, the bispinor 
u(p) satisfies the free Dirac equation (p -m)u(p) = 0, 
cP = (kx), and k2 = 0. 

Let us choose the potential Af-L(CP) in the form 

(2) 

A"(<p) =a,. "cos <p+w,. "sin <po (3) 

The parameter E varies within the limits -1 S E S 1, 
the 4-vectors al and a2 are mutually orthogonal: a la2 = ° 
and, furthermore, ala, = a2a2 = _a2. 

Substituting (2) and (3) into (1) and integrating, we 
obtain 

r e ~ ~ ee ~, ] 
I/lp (x) = 1 + -- ka, cos <p + -(k ) ka, sin <p 

2(kp) 2 P 
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u(p) {[ e . (pa,) 
l< (2po) 'I. exp -i (kp) (pa,) sm <p-ee (kp) cos <p 

+~(l-e') sin2q;+(qx) ]}. 
8(kp) 

(4) 

The quasimomentum 
etal . 

q.=P.+ 4(kp) (l+e')k. 

satisfies the relation 

q'=m.'. m.=m[ 1+~( e~ ) (He') r 
The matrix element of photon emission by an electron 

has, as is well known, the form 
i/&'z 

M<I=-ie J (iIi,'e'",,) (;k,,),I' d'x. (5) 

The notation here is the same as in [1l. The substitution 
of (4) into (5) gives rise to certain functions of qJ, which 
we expand in Fourier series in a manner similar to what 
was done in[l]. Let us introduce the notation: 

Here 

_ [(a,p') (a,p)] 
a,-e (kp') - (kp) • 

e'a' [1 1] 
~ = -8- (kp') - (kp) . 

Let us represent with the aid of (6) and (7) the matrix 
element in the form 

(6) 

(7) 

M' 1 \""1 _ ( ) [( ~, + e'a'e' ( '~) 
i/=-!e (2p,'.2po.2k,')'" ~u p e. 2(p'k) (pk) ke)k Ao 

. (a,ke' e' ka, ) ( a,ke' e' ka, ) 
+e 2(kp'/ (2kp) A,-l-ee 2(kp') + 2(kpj A,' (8) 

e'a'(l-e') ~ J 
-I- 2 (kp') (kp)Je'k)kA, u(p) (2n)'1l (sk+q-q' -k'). 

We see that the matrix element (8) for a wave of ar
bitrary polarization E contains four complex functions 
Ai and Ai, in contrast to the cases of linear and circular 
polarizations analyzed in [1,4], when only three functions 
of the type (6) entered into the matrix element. Between 
these four functions exists a relation that can be estab
lished by a method Similar to the one used in h]: 

[s-2~ (1-e') )Ao+a,A,+a,eA,'+4~ (l-e')A,=O. (9) 

If we introduce the vector en = e'- k'(ke')/(kk'), then we 
can, with the aid of (9), reduce the matrix element (8) 
to the form 

1 {"1 [ ( a k?' e" ka ) Mi=-ie J U ' e"A+e -'-+--' A 
1 (2po'.2p" 2ko')"'.o....: (p) 0 . 2(kp') 2(kp) , 

(10) 
a2ke" e"ka2 , 

+ee (2(kP') + 2(kp) )A, ] u(p) (2n)'Il(sk+q-q'-k'). 

Squaring (10), and summing over the polarizations of the 
electrons, we obtain 

1M 12 e' 
\""1_i/_= __ , _, \""1 K(s) (2n)'6(sk+q-q'-k'). (11) 4 VT 2qo q,k, ~ 
r,r , 

Here 

K(s) =IAol'[2(pe" )'+ (pp')-m')+ReAoA,'[a, (kk') -4e(pe") (a,e"») 
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a'(kk')' ] 
+Re A oA,"e[a,(kk')-4e(pe") (a,e") )+IA,I'e' [ 2(a,,1" )'+ 2 (kp) (kp')' 

+4R AA '" ( ")( ")+IA'I" '[2( ")'-1- a'(kk')' .] e i , e e a,e a,e ,e 8 a,e 2 (kp) (kp') . 

(12) 

For E = 0 this expression goes over into the correspon
ding formula obtained by Nikishov and RHus in [1]. 

The expression (12) gives the square of the matrix 
element with allowance for the polarization of the y 
quantum. However, we shall not in this paper consider 
the polarization effects: we shall consider only the cor
responding total probabilities. 

Summing (12) over the polarizations of the y quanta, 
we obtain 

(kk')' . 
K(s)=-2m'IA,I'-a'e'e 2 [2+ (kp) (kp') .I IA,I' 

+a'e' [2+ . (kk')' ] [IA.I'+IA,'I'e'-ReAoA,(l-e'»). 
\kp) (kp') 

(13) 

As was to be expected, only quantities quadratic in E 

enter into this expression. The effects linear in E can 
be observed by studying, for example, the circular po
larization of the y quantum. 

For pair production by a polarized photon of momen
tum l, we obtain a quantity similar to (1~:) if we make 
the substitutions k' ~-l and p ~- p in this expression 
(Le., in (12)) and change the overall Sign in front of K(s). 

After averaging over the polarizations of the incident 
photon, the quantity, which is similar to (13) and which 
we denote by R(s), has the form 

K(s) =2m'IAol'-I-a'e 2e' [ 2- (kP(::~~')] IAol' 

-a'e'[2- (kl)' ][IAI2+IA'12e'-ReAA'(1-e2») 
(kp) (kp') " • , . 

The total probability of emission of a Ilhoton from a 
unit volume in a unit time is equal to Ct ] 

(14) 

• 00 2n u, d 1 
wT=w,EJ d<p' J (H:),~K(s). (15) 

8=10 0 

Here n is the mean density of the incident particles, 

2s(kq) 
u,=--,-. 

m. 

(kk') 
u=---

(kq') . 

For the probability of pair production we have 

(16) 

• Zn _/'0 du '1 ._ 
wp=W. E S dcp' S u[u(u-l)]'" m,:K(s). (17) 

S>8f,1 0 

where 

2m.' 
so=~, 

(kl)' 
u=-----. 

4(kp) (kp') 
(18) 

In (15) and (17), qJ' is the azimuthal angle[1]. In the gen
eral form, the expressions (15) and (17) contain three 
integrations, which cannot be performed analytically. 
The only exception is the case, considered in h], of 
circular pola'rization of the wave, when the dependence 
of the functions Ai on the azimuthal angle is trivial and 
these functions can themselves be computed analytically 
in terms of the Bessel functions. The number of inte
grations thus decreases to one. In the gE!neral case, how
ever, we can obtain concrete values for the probabilities 
only through a numerical integration over the angle qJ' 

and the phase qJ of the wave. 

We have carried out such computations of the expres
sions (15) and (17), and the results are shown in Fig. 1. 
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FIG. I. The probability W'Y of emission of a photon, (a), and the 
probability Wp of pair production, (b); X = I. 

The values of the parameters X and E used in the compu
tations are indicated in the figure. For the circular po
larization E = 1, the corresponding curves were obtained 
also in[4l by NarozhnYl, Nikishov, and Ritus. For com
parison with their results, the values of the probabilities 
given in Fig. 1 should be divided respectively by 1T and 
21T. The curves computed by us for E = 1 agree with the 
curves given in[4J. As can be seen from Fig. 1, the mag
nitudes of the probabilities Wyand Wp essentially de
pend on the polarization of the wave, this dependence 
becoming stronger and stronger as E approaches unity. 
The nonmonotony of the x dependence of W p is, as has 
already been indicated in [4 J, due to the existence of a 
threshold for pair production. It can be seen from Fig. 
1b that the nearer the polarization of the wave is to 
being linear, the more pronounced this nonmonotony 
is in the region x> 0.4. 

3. TWO LINEARLY POLARIZED WAVES WITH 
MUTUALLY PERPENDICULAR POLARIZATIONS 

Let us choose the wave potentials in the form 

Here <'oi = kix, ala2 = 0, and <,00 is the phase shift. 

(19) 

Taking into account the fact that klk2 = 0, we find 
the exact solution of the Dirac equation with the poten
tial (19) to have the form 

() -ipxF ( )F ( ) u(p) 
1jJ. x ~e 1 <p, ,<p, (2po) ';' . 

(20) 

Here Fi(<'oi) has the form of (2) with k and A replaced 
respectively by ki and Ai' We shall henceforth assume 
that kl and k2 are incommensurate. There will arise in 
the computation of the matrix element (5) in the present 
case two types of functions An and Bn defined by: 

cosn <p,ei/,(·,)~ E An (s,; a" ~,) e- i "." 

(21) 

We have introduced the following notation: 

[ (aiP') (a,p)] e'a.' [ 1 1] 
a,~e (k,p') - (k,p) , ~'~-8- (k,p') -(k;p) , 

!,(<p,) ~aisin (<p,+05,)+~,sin2(qJ,+05,), 05,~O, 05,~<po. 
(22) 

Notice also that in the present case the quasimomentum 

e2a 2 e2a 2 

q.~P. + 4(k:p) k". + 4 (k:p) 'k". 

and the effective mass 

[ 1 ( ea, ) 2 1 (ea,)'] 'I, 
m.~m 1+- -- +- -

2 m 2 m 
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The functions An and Bn are connected by relations of 
the type 

(23) 

Here Kj = Aj and Kj = Bj . 

USing (21)-(23), and introducing the notation 
e" = e' -k'(kie')/(kik'), we can write the matrix element 
(5) for our case in the form 

1 { ~ [ ~aJ"e" ~e"A';al] 
M'j=-ie ), u(p') e"Coo+e ---+--- CIO 

(2po' 2po 2ko')';'- 2(k,p') 2(k,p) 

(24) 

[ a,k,(," e" 'k;a,] } 
+e 2(k2P') + 2 (k,p) COl u(p) (2:rr)'05 (S,k,+S2k2+q-q'-k'). 

We have introduced the notation Cij = AiBj. The sum over 
Sl and S2 extends to both negative and positive whole 
numbers. 

Upon squaring (24) there arises, besides the double 
sum over Sl and S2, another double sum over s; and s~. 
However, since we assume that kl and k2 are incommen
surable, we obtain on the basis of the conservation laws 
that sf = Sl and S2 = S2 , and the summation remains a 
double summation. As a result of the definition (21), the 
function~ Btl, depend on <,00 only through the exponential 
factor elS2<'o~; therefore, on account of the equality 
S2 = S2, the dependence of the probabilities of the pro
cesses on <,00 vanishes, and we shall assume that CPo = O. 
The functions Bi are in this case real. Squaring (24) and 
summing over the polarizations of the electrons, we 
obtain 

~ IMi/I' =~ I:N(s,s2) (2:rr)'05(s,k,+S2k 2+q-q'-k'). (25) 
~ VT 2qo qoko 
T,r' 81 8 2 

Here 

N(s,s,) ~Coo'[2(pe" )'+(pp') _m2 ] +CIOCoo[a, (k,k') -4e(pe") (a,e")] 

a '(k k')' 
+COICOO [a,(k2k') -4e(pe") (a2e") ]+C IO'e2 [2(a,e")2 + 2(;k,) '(p'k,) ] 

2 2 [ . "2 a,' (k,k') 2 1 2"" +COI e 2(a2e ) + ( ') +4COIClOe (a,e ) (a,e ). 
2 pk2) (p k, ' (26) 

If we are not interested in the polarization of the emitted 
y quantum, then, summing over the polarizations, we 
obtain 

N (s,s,) ~-2m'Coo'+a,'e' [2 + (k:;;~~'~')] (ClO'-C .. C,,) 

(k k')' 
+a,'e' [2 + (k2p~ (k2P') 1 (COI'-COOC,,), 

For the photon-emission probability we have 

W,=W, E rd<P' r(1~uu),m-'N(S'S2)' 
81820 0 

Here 

ea, 
X t =-. 

m 

(27) 

(28) 

(29) 

The summation over Sl and S2 at fixed values of the re
maining invariants is carried out over the region admis
sible on the basis of the condition Us > O. In contrast to 
the case of one monochromatic wave, the processes for 
which Sl and S2 have different signs-which corresponds 
to absorption from one wave, and emission into the other, 
of a definite number of quanta-also contribute to the 
probability (28). 
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The remaining invariants entering into the expres
sion for N(SlS2) have the form 

~,=ux,'!8)(" (X, =-z, cos '1", 

x;' " [2S,)(, 2s,)(, m.' ] 'J. 
az=-Zz sin <p', Zi=-ru --+---u-, . 

Xi Xi Xz m 

(30) 

We have chosen the x axis in the direction of the vector 
aI, the y axis in the direction of a2' 

Similarly, for pair production, after averaging over 
the polarizations of the incident photon, we have 

N(s,s,) =2m'C,,'-a.'e' [2 - (k';~'~~:P')] (CIO'-COOC20 ) 

, '[2 (k,l)'] (C ' C C ) 
-a, e (k,p) (k,p') 01 - 00 02 • 

(31) 

For the total probability we have 

(32) 

where 
(k,l) , 

u=----
4 (k,p) (k,r') , 

(33) 

The values of Q'i are also formally given in this case by 
the formula (30), but for i3i and Zi we have 

~,=ux,' /2)(" 

4x'u {( x' X')[U ]}". 
Z, =-;;- 1+f+f :"' -1 

(34) 

The si summation in (32) is performed in the follow
ing fashion. For a fixed value of one of the sis, say 
Sl = 81> we find y from the equality 

(35) 

Let s~in be the whole number nearest to, and greater 
than, y. Then the S2 summation (for a fixed Sl = 81) is 
carried out over the values S2 2: 8¥1in and the 81 sum
mation is performed over all whole numbers. 

Using (28)-(32), we computed the probabilities Wy 
and Wp as functions of Xl for some concrete values of 
!!!e otlier invariants X2 and Xi' The results for 'Ny and 
Wp are respectively s~wn in Fig. 2, a) and b). As in 
the single-wave case, Wy is a smooth function of Xi, 
although it grows more slowly with increasing Xi than 
in the case of one monochromatic wave. 

The dependence of Wp on Xl is nonmonotonic, the 

818 Sov. Phys.-JETP, Vol. 40, No.5 

-;:- 5m'''~' 1.5 ~I,oe!, -.... II 5......... '-V''------.J ...... o· ~ ~----1 I::; Z 13:0.5 , ......,---_________ ...J 

, ----L'_L-...J 

o 1.0 Z.O x, 0 o.q 0.0 1.1 

FIG. 2. !!Ie probability W'Y of emission of a photon, (a), and the 
probability Wp for pair production, (b); Xl = 1 and X2 = 1.2. 

reason for this nonmonotony being the same as in the 
single-wave case, Le., the existence of a threshold 
for the pair-production effect. However, the principal 
maximum of each of the curves in the present case is 
more smoothed out than in the case of one monochromatic 
wave. 

Let us note another circumstance concerning the 
nature of the behavior of the curves in Fig. 2 as X2 is 
varied. For y-quantum emission the corresponding 
probability in the xl-value interval under consideration 
increases with increasing X2. In contrast, the X2 depen
dence of the probability for pair production is also non
monotonic. 
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