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A theory of crystals consisting of Bose particles of a single type (e.g., He4 ) is developed by quantum 
field theory methods. Under the assumption that single-particle excitations in such crystals form a 
Bose condensate, the collective excitation spectra are determined and a number of exact relations are 
derived, e. g., the relation (1.4) between the normal and the superfluid densities. 

1. INTRODUCTION 

In our previous works [1, 2J carried out in cooperation 
with Levchenkov (in what follows [2J will be referred to 
as I, and equations from it as (I, ... )) we used methods 
of the quantum field theory to build a theory of crystals 
consisting of Fermi particles (e.g., He3). We have exam
ined most extensively the case when the Fermi crystal 
contains low-lying single-particle excitations forming a 
Fermi liquid at T = O. The possibility of such situation 
was first suggested by Andreev and Lifshitz [3J • Our re
sults differ from those of Andreev and Lifshitz in that 
they regarded the Fermi excitations as crystal defects 
("vacancions" and "impuritons"), assumed that their 
number is small, and treated the whole problem in the 
gas approximation, whereas our results depended neither 
on the number of Fermi excitations (there could be at 
least one of them per unit cell) nor on the intensity of 
interaction. 

The idea of Andreev and Lifshitz holds also for the 
case of crystals consisting of Bose particles (e.g., He4 ). 

Treating the problem phenomenologically [3J, they der
ived a system of hydrodynamic equations for a crystal 
possessing the property of superfluidity. Furthermore, 
within the framework of the gas approximation, they 
have studied the thermodynamic properties of a Bose 
crystal with a small number of defectons. 

In the present work we consider the properties of a 
Bose crystal at T = 0 by methods of the quantum field 
theory for an arbitrary number of bosons in the conden
sate and for an arbitrary interaction strength. 

The main physical results consist in the following. If 
a fraction of the particles in a Bose crystal are in the 
condensate, of density no, and, moreover, if the distribu
tion of the condensate particles is nonuniform, i.e., the 
"wave-function" of a particle in the condensate is per
iodic with the crystal period a, i.e., 

cpo (r+al =cpo (rl, (1.1) 

then in such a crystal there exist four branches of col
lective low-frequency excitation, and their spectrum is 
given by the following system of dispersion equations: 

(1.2) 

where cij and Kij are tensors having the symmetry of the 
crystal, p~!l) is the normal-density tensor of the crystal, 

1J 
and A is the lattice elastic-moduli tensor (cf. I, (4.18), 
(4.19), and (4.20)). 

One of the branches in (1.2), which corresponds to the 
variable cp, stems from the phonon branch in a uniform 
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superfluid Bose system. The other three, described by 
the vector ui' are genetically connected with the three 
acoustic modes of vibration in ordinary crystals. As is 
apparent from (1.2), these two groups of excitations are 
coupled together in a Bose crystal with condensate. 
Their interaction is described by tensor Kij' 

Along with the normal density there exists the super
fluid density 

(1.3) 

where cij is the tensor that appears in the system of 
equations (1.2) for the excitation spectrum, m is the 
mass of the free atom, and a is a new constant. The 
tensors ply> and plf satisfy the obvious relation 

(1.4) 

where n is the particle-number density of the crystal, so 
that p = mn is its specific weight. 

The superfluid current is related to the superfluid 
veloicty by the usual expression 

(1.5) 

As in the case of a fluid, rotation of the crystal can be 
shown to cause dragging of only the normal part of its 
density. 

Finally, a physical interpretation of the constant a in 
(1.3) is given by the expression for compressibility 
(cf. I, (5.20)): 

8P nlm (1.6) 

The tensors A and 1/ are basically defined as in 1. 

On going to the case of a licwid, 1/ij ~ P - 0, Kij - 0, 
and cij - cOij" The expresisons (1.3), (1.4) and (1.6) 
yield 

p(')a an m {JP 
c = ---;;,;- = -;;;: , a = --;-ap 

whence one obtains the familiar result for the spectrum 
(1.2) : 

8P 
{J)'=-k'. 

8p 

In the absence of condensate, A is the inverse of the 
elastic moduli tensor A, 1/ij = nliij' and (1.6) reduces to 
the trivial relation for the bulk modulus: 

1 8p 
A";;=--P{jjJ' 

The existence of four gapless branches of the Bose 
spectrum, described by the dispersion system (1.2), fol
lows from a well-known theorem by Goldstone [4J about 
broken symmetry. The branch corresponding to param-
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eter cp is due to the noninvariance of the state with con
densate ~nder the wave-function transformation cpo(r) 
- cpo(r)e1Ql • An equivalent formulation of this property 
is given by the Pines-Hugengoltz theorem [5J (see also [6 J, 

Sec. 25). The other three branches of the spectrum are 
brought about by the broken symmetry of the system 
under the operations of infinitesimal translation; this 
type of broken symmetry has been already considered 
in I. Peculiar features of the effect of broken symmetry 
in the case of Bose systems are discussed in Sec. 2. The 
system of dispersion equations (1.2) is derived in Sec. 3. 
In Sec. 4 the relation (1.3) for the superfluid density is 
derived. According to the results of Sec. 3, in the pres
ence of condensate all the four excitation branches of a 
Bose crystal are determined by poles of the single
particle Green's function. It is clear that as no - 0 at 
least three of the four branches persist. The only differ
ence is that at no '" 0 their spectrum is determined by the 
poles of the two-particle (four-point) functions. In the 
last section, the density and current correlation functions 
are obtained, the formula (1.4) is proved, and the limit 
as no - 0 is discussed. 

2. GREEN'S FUNCTIONS 

In the presence of the Bose conde!lsate the particle 
creation and annihilation operators IV(X) and I/J (x) (where 
x '" (r, t) is the space-time coordinate) averaged over 
the ground state with a given chemical potential, remain 
finite in the infinite-system limit 

(2.1) 

Owing to this circumstance, the usual form of the quan
tum field theory technique fails to describe the Bose 
systems with condensate. The necessary formalism was 
developed by Belyaev [7J • The appropriate derivation 
was carried out for uniform systems, but it can be read
ily generalized to the case of Bose crystals, since the 
uniformity is not an essential factor. 

The starting point of Belyaev's formalism is splitting 
the Heisenberg operators $ and $+ into two parts: 

,p(x)=s(r)+;j,'(x), ,p+(x)=s'(r)+,p'+(x), (2.2) 

where the functions ~(r) and ~*(r), defined by (2.1), des
cribe the state of the condensate and are c-numbers in 
the thermodynamic limit, and the operators $' (x) and 
$'+(x) correspond to the annihilation and creation of 
above -condensate particles. 

On substituting (2.2) in the Hamiltonian of the system 
the diagram expansion assumes its conventional form. 
The quantities ~(r)·and ~*(r) in this case play the role 
of external fields which are determined from the condi
tion that the ground-state energy E be a minimum fOr a 
given number of particles N. 

According to the definition (2.1), the quantities ~ (r) 
and ~ * (r) have the symmetry of the system's ground 
state and reduce for the uniform case to the constants 
~ (r) '" ~ *(r) '" n~/2 (no being the condensate particle den
sity). On the other hand, in crystal these quantities as
sume the form: 

(2.3) 

where the function cpo(r), normalized to unit volume, is 
an invariant of the space group of the lattice. Owing to 
the symmetry of the system with respect to time rever
sal, the quantities ~ (r) and ~ * (r) must be equal apart 
from a coordinate-independent phase factor. Having the 
freedom of choice for this factor, in what follows we 
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shall use the gauge corresponding to a real condensate 
wave function 

cp"(r) =cpo(r). 

As in the case of uniform Bose systems, in addition 
to the normal Green's function G(x, x') 
'" -i(T($'(x)$'+(x'») (T is the time-ordering operator) 
in a crystal with a condensate there exist also the anom
alous functions 

G(x, x')=-i(T(~'(x),p'(x'»), G(x, x')=-i(T(¢'+{x),p'+(x'»). 

For convenience we shall use the Nambu 18 J matrix 
formulation in which the Green's functions are combined 
to form the matrix 

G.,(x, x')=-i(T(,p.'(x),p,'+(x'»>, ,pt'=,p', ,p,'=,p'+. (2.4) 

From the symmetry of the system with respect to 
time reversal and from the definition (2.4) we have the 
following relations: 

Gtt(r, t; r', t')=G I1 (r', _t'; r, -t), G2.2(r, tj rt, t')=G22 (r', -t'; f, -t), 
G,,(r, t; r', t')=G,,(r', -I'; r, -I), G,,(r, t; r', t')=G 22 (r', t'; r, I), 

G,,(r, t; r', 1')=G,,(r', t'; r, f). 
(2.5) 

In the absence of external fields, taking into account the 
translational properties of the system, the Green's func
tion GQI!3(x, x') can be represented in the form 

( ') S dk (k ') 'k( .) Gar. X,X = (2:rt)1o. Ga.r. ro, ; r,l et x-x 
(2.6) 

=S~G nm(w k)m (r)m '(r')e"('-x') (2n)'.' ''I"n 'l"m , 

where k '" (k, w), kx '" k' r - wt, dk '" dkdw, we integrate 
over w from -00 to 00, and the integration over k is 
bounded by the volume of a unit cell of the reciprocal 
lattice (the Brillouin zone). {¢n(r)} is an arbitrary com
plete orthonormal set of functions invariant with respect 
to the lattice translation group. In (2.6) and below we use 
the convention that repeated indices are to be summed 
over. 

For convenience in the following analysis, we shall 
choose the basis {¢n(r)} so as to include the condensate 
wave function ¢(r) (n = 0) as one of its components. 

; Three more components of the basis ¢i(r) (i=1, 2, 3) 
i will be taken to be proportional to fJ¢o/fJri. We shall 

choose the coordinate axes in such a way that the func
tions ¢i and ¢j (i ., j = 1, 2, 3) will also be orthogonal to 
each other. The other components of the basis ¢n(r) 
(n., 0,1,2,3) will be regarded as arbitrary. In what fol
lows ¢o(r) will be referred to as the scalar and the set 
¢i(r) as the vector components of the basis {¢n(r)}. 

The function G~ (w, k) is related to the Green's 
A Qlt> 

function G(O) of the noninteracting system by the Dyson 
equation 

C=G(O)+G(O)±C. (2.7) 
In the coordinate representation the self-energy part 
~ QI!3(x, x') satisfies the same symmetry relations that 
the Green's function (2.5). It is convenient to define the 
bare Green's function Go then takes the form 

G (O)nm ( k) _ /lorn 
t t 0), - W + f.t ' 

G(o)nm( k)=~ 
22 ,w, -00 + J..l. ' 

(2.8) 

where J.l is the chemical potential, 

Let us now proceed to derive the relations which fol
low from the broken symmetry property of the system 
with respect to gauge and translational transformations. 
We note first that since ~ (r) and ~*(r) minimize the en
ergy E of the system at a constant total number of parti-
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cles N, the thermodynamic potential n '" E - NJJ. satisfies 
the conditions 

( bQ ) -0 
b£"(r) • - , (~) =0 

b£(r). . (2.9) 

These relations, as well as the quantities E and n, are 
invariant under the gauge transformation 

£(r) .... £(r)e'·, £·(r) .... £·(r)e-'·. 

We subject the relations (2.9) to this transformation, 
and then, since a is arbitrary, differentiate them with 
respect to a and thereupon let a '" O. As the result, we 
obtain 

are obviously propoz,:t.ional to b~ilinear~ ~ombinations of 
the functions XO(r), Xl(r) with XO(r'), Xl(r'). 

In order to elucidate the structure of the poles at 
w, k -I 0, we determine the self-energy part ~r::;(W, k) 
which is irreducible in the scalar and vector components 
of the bare function G~~nm (n, m '" 0, 1, 2, 3) ~nd reduci-

ble in all its other components. The function ~r:% is 

connected with the irreducible self-energy part ~m~ by 
the obvious equation al-' 

" nm =" nm + ~ " n'G (0)" 'm ,,",(l~ "'-'a;jl. I...J ,,",av 'I'll ","llji • 

l","O,t,2,3 

(3.3) 

1.11'10/=2;,,0/(0,0)-2;,,0/(0,0). (2.10) If we now change from ~ to ~ in the Dyson equation 
We have taken into account here the fact that the quanti- (2.7) we can then isolate in the infinite system of equa-
ties o2E/o~ *(r)o~ (r') and o2E/o~*(r)o~*(r') are determined by t~ons (2M V an indepen~ent finite S~bSystem for the func-
sets of G-line-irreducible graphs containing, respec- bons Gaj3(w, k) (JJ., II - 0, 1, 2, 3). 
tively, an incoming and outgoing or else two outgoing 
G-lines, and, therefore, 

b'Elb£' (r)b£ (r') =2;11 (0, 0; r, r'), 

b'Elb£,(r)b£'(r') =2;12(0, 0; r, r'). 
(2.11) 

The energy and the thermodynamic potential of the 
system, and hence the expressions (2.9), also remain 
invariant under a displacement of the crystal by an arbi
trary vector a. Upon dOing the transformation 

£(r) .... ~(r+a), £'(r) .... £·(r+a), 

we differentiate (209) with respect to a, and then let a '" O. 
As the result, taking (2.11) into account, we obtain 

(2.12) 

We recall that subscripts i '" 1, 2, 3 correspond to the 
functions ocpo/aq. 

Let us emphasize that the relation (2.10), being a 
consequence of the broken symmetry of the ground state 
with respect to gauge transformationsc is a generaliza
tion of the Pines-Hugengoltz theorem 5J to the crystal 
case. Relation (2.12) results from the broken symmetry 
of the ground state of the system with respect to arbi
trary translations. It has no analog in the case of uni
form systems. 

3. EXCITATION SPECTRUM 

Let us investigate the singularities of the Green's 
functions which, as is well-known [6J, determine the ex
citation spectrum of a system. We shall first prove that 
Gaj3(w, k; r, r') has a fourfold degenerate pole at w, k 
'" O. To do so, we observe that the poles of this function 
correspond to nontrivial solutions of the system of homo
geneous equations. 

S dr'G.~-I(w,k; r,r')X~(r')=O, (3.1) 

G.~-I(w,k; r,r')=G~~)-! (w,k; r,r')-2;.~(w,k; r,r'). (3.2) 

Whence, taking into consideration (2.8) and (2.10), we 
see that one of the solutions of (3.1) at w, k '" 0 is 

XO(r)=cpo(r) ( -~) 
Three more solutions of the system (301) at w, k '" 0 
follow from the theorem (2.12): 

X'(r) = ocpo(r) (1). 
or, 1 

The residues of the Green's functions at the above poles 
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G.~·' (w, k) = G~:) (w, k) b,,, + G!~) (w, k)~' (w, k) G;;' (w, k). (3.4) 

We consider first the case k '" 0, w -I O. Because of the 
symmetry, the quantities ~~ij3(W' 0) and ~~Oj3(W' 0) 

(i '" 1, 2, 3) vanish, and the system (3.4) splits into two 
sUbsystems: 

G.~oo (w, 0) = G~~) (w, 0) + G~~) (w, 0)1:.,00 (w, 0) G,~oo (w, 0), 
(3.5) 

It can be readily seen with the help of (3.3) that the rela
tions (2010) and (2.12) also remain valid if we replace 
~ by~. In view of this, the solution of (3.5), to within 
terms nonsingular at w - 0, can be written in the form: 

G OO ( 0) G 00 ( 0) a ( 1 - 11,,00) 
11 _CD, .= 22 _ -(i), =-no 1+0)-_-- , 

(()2 ~1200 

G"OO (w, 0) = G"OO(w, 0) = - --; no, 
r,) 

no.... '" "'" " .... 
GlI"(w, 0) =G,,;' ( -w, 0) = ,(p(n)-l[ 1-L,,-' (1-11,,) wl Lh ,., 

G ;'( 0) G "( 0) no - (n)-I 
12 W, = Zit {O, = Wz.PiJ • 

We have here used the notation 
no -a-' = -=---[ (1 - 1111 00 ) - 2;,," (P" 00 - P 12OO) ], 

" 00 "'12 
(n) '" "" ~.... .... 

p;; = no{2;,,-I[ (1- 11,,)' + 2;12(PlI + P,,) j};j, 

L.~OO=L.~OO(O, 0), 
0-

najl. 00 = a;;; ~ajl. 00 I r.o=o, 

0' -
Pa,p,°O = """'1f';2~a.jl.ooI6l=o, 

<£.~) 'j=L.~'j, 
- 0-
11.~ = a;;; 2;.~ 1._0 , 

_ 0'· 
p.~ = a;;;z 2;.~ 1.-0 • 

(3.6) 

In deriving the expressions for G~j3(w, 0) use has been 
made of the fact that the crystal structure of solid He4 is 
either cubic or hexagonal. pue to the appropriate sym-

metry' all the components ~ aj3(w, 0) are symmetrical 
tensors which can be brought into diagonal form in a 
common coordinate system. 

The functions G~~(w, 0) in (3.6), to within terms 
regular at w - 0, can be written in the form 

G.~·' (w, 0) = 8:' (w)D.,,' (w, 0)8;"' (w); 

D ( 0) a ( (n)-I 1 
00 w, =-, D"w,O)= PH --;;-, 

00 2 W· 

D;o.(w, 0)' =Do;(w, 0) =0; 

8 00 () 8 00 ( ) 'I. ( 1 - 11,,00) 
1 w =- , -w =no 1+w-_--

2~1200 ' 
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8I'I(oo)=8,~(- (0)= n;h [ Il~- : (~12-I<1- ITll»<I], (3.9) 

8."(00) =8."(00) =0. 

An examination of (3.4) shows that the factorization 
form of G/1- 11 in terms of the subscripts O! and (3 is pre-

0!{3 
served as we go over to the case k = 0: 

(3,10) 

A substitution of this expression in (3.4) leads to the 
following system of equations for D/..LII(w, k): 

D,,(oo, k)=D,,'(oo, k)+D,,'(oo, k)a-'I·",(oo, k)D,.(oo, k), 

D,,(oo, k) =D",(oo, k)a-"'''' (00, k)Doo(OO, k), 

D<;(oo, k) =D"'(oo, k) -D", (00, k)a-"'",,(oo, k)D.1(oo, k), 

D,,(oo, k) =D,,'(oo, k)a-"'"" (00, k)D",(co, k), 

(3.11) 

where the functions Dgo(w, k) and Dij (w, k) are defined by 

D,,'(oo,k)= a , 
{i)2_-Cl m k i k m (3.12) 

and the quantities clm' \Zmj' and Ki(w, k) are equal to 

f)' - -
C'm=an.---(:EllOO(O, k)-:E,,"(O, k» 1.-., ak,akm 

Ailm;=n'-a aa' (~I"(O,k)+"f.,<;(O,k»I.~., 
k, km 

(3.13) 

USing (3.9) and the symmetry conditions (2.5) we find 
easily that Ki(w, k) is an odd function of frequency. 
Therefore, to within the required accuracy it can be 
written in the form: 

".(00, k) =ioo""k,. (3.14) 

The dependence of the frequency on the wave vector 
at the poles of D lI(w, k) is given by the requirement that 
a nontrivial solution exist for the homogeneous system 
corresponding to (3.11). Taking (3.12) and (3.14) into ac
count, this system assumes the form (1.2), which gives 
the sought system of dispersion equations for four low
frequency excitation branches of the Bose crystal. All 
are the result of the broken symmetry of the system 
(gauge invariance and translational symmetry). Let us 
emphasize that the dispersion law of the four branches is 
linear: 

oo.(k) =c.(k/lklllki. 

It should be noted that the system of dispersion equa
tions (1.2), which we obtained on the basis of a micro
scopic theory, is identical in its structure to the appro
priate system of Andreev and Lifshitz [3J. The param
eters they use have the following correspondence to the 
constants introduced in the present section: 

(_ilP ) __ m', (ap ) (n) m' -. +p" =-"il a.... Ui/ a au" j.I a 

(uil is the lattice deformation tensor). 

4. SUPERFLUIDITY 

As is well-known [9J, systems of interacting Bose 
particles, containing the Bose condensate, possess the 
property of superfluidity. Let us determine the Bose
crystal macroscopic mass-current density j(s) which 
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corresponds to the motion of the superfluid component 
with a given velocity v(s). 

In the linear approximation this relation should be of 
the form: 

(4.1) 

where p~~) is a symmetrical second-rank tensor which 
1J 

can be naturally called the density tensor of the crystal's 
superfluid component. 

In order to relate the tensor p~~) with the constants 
1J 

that have already been introduced in the theory, we note 
that, since in the diagram technique the condensate plays 
the role of an external field, the vector h is a functional 
of the quantities ~ (r) and ~ *(r): ji = jd ~, ~ *}. In the ab
sence of true external fields, h = 0 for static boundary 
conditions and for a condensate at rest. If we keep the 
first two conditions and go over to the case of slowly 
moving condensate, the current density will then take the 
form: 

'(')=Sdr[llj,IU'}lls(r)+ Ilj,{s,s'} 1l6'()] 
/' Ils(r) Ils'(r) r. 

Since the indicated transition corresponds to the trans
formation 

S (r) -+-s <r) exp(imv'''r) =n:'<p. (r) exp (imv(')r), 

r (f) -+'g,'(r)exp( -imv(')r) =n~·<p.(r)exp(-imv'·)f), 

we obtain the following expression for the current den
sity in the approximation linear in v(s); 

.• " - (.) r a S d 'I, () -, .. (Ilj .{s, s·) Ilj,{s, s'}) (4 2) 
Ji -mv] ,,~·akj rnocpo r e ~-~ • 

In writing this formula we have used the fact that, ac
cording to the symmetry conditions, the integral 

Sd Ilj,{s, s'} () , .. 
r~<p. r e 

is an odd function of k as k ~ 0, Comparing (4,2) with 
the relation (A.14) derived in the Appen~ix and keeping 
in mind that h stands for the quantity < ji (x» averaged 
over the dimensions of unit cell, we obtain 

whence, from the definition (4.1), we find the expression 
for the superfluid density tensor of the crystal. 

5, CORRELATION FUNCTIONS 

We introduce the correlation functions R/1-II(X' x') 
(/1-, II = 0, 1, 2, 3) by the formulae 

R,,(x, x') = -i<T(n(x)n(x') i), ROi(X, x') = -i<T(n(x)/,(x'»), 

R,,(x, x')=-i<T(~(x)n(x'»>' R.;(x, x')=-i<T(j,(x)/;(x'»), (5.1) 

where 

are the particle-density and mass-flux-density operators. 

We are interested in expressions for the functions 

R.,(oo,k)= S~S dx'e-'k(x-x')R.,(x,x') (5.2) 
Vc 

" 
in the long-wave and low-frequency domain (w, k ~ 0); 
v c is the volume of the lattice unit cell. 
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It is clear that each function Ril v corresponds to a 
set of diagrams having one incommg and one outgoing 
line for interactions with either the scalar of the vector 
field, depending on the values of J.J. and v. 

It is convenient to represent RJ.J. v as a sum of two 
terms, one irreducible and the other reducible with 
respect to the Green's function: 

--0-- = --0-- + --~-
or in the equivalent analytic form: 

R .. (oo, k) =R.,+A~:) (00, k)D.,,' (00, k)A",(oo, k). (5.3) 

As w, k - 0, the Green's functions DJ.J.v are the only 
source of singularities of the correlation functions. The 
irreducible part RJ.L v can therefore be regarded as a 
constant equal to its value at w, k = O. 

AJ.J.v(w, k) is given by a set of graphs which have one 
incoming line for the D-function and one outgoing line 
for the interaction with an external field. The latter is 
either a scalar or a vector, depending on whether the 
subscript v takes the value 0 or 1, 2, 3. Similarly, A~~ 
is given by a set of diagrams each having one incoming 
line for the J.L-th component of external field and an out
gOing line for the D-functions. 

The symmetry property of the system with respect to 
time reversal enables us to establish the following rela
tions: 
A,,(oo, k) =-A .. (-oo, k), A" (00, k) =A .. ( -00, k), A .. (00, k) =:A .. ( -00, k), 

A,;(oo,k)=-A,;(-oo,k), A~;) (oo,k)=-A,.(oo,k), A~:) (oo,k)=A •• (oo,k); 

(5.4) 
i, j = 1, 2, 3; J.J. = 0, 1, 2, 3. From this, and using the 
equality 

A .. (0, 0) =A.~+) (0,0) =0, 

which follows from the physical requirement that 
RJ.J. v (0, k) and RJ.J. v(w, 0) be finite, we obtain in the long
wave and low-frequency limit 

(5.5) 

where dU' 1Jil' and hil are symmetrical second-rank 
tensors. 

The constants b, dil' 1JiZ, and hU are not really inde
pendent, and can be expressed in terms of the constants 
introduced before. It is shown in the Appendix 
[(A.4), (A.8), (A. 12)] that 

(5.6) 

From the conservation of total particle number and total 
momentum it follows that 

R.,(oo, 0) =0, 

whence, in view of the equalities (5.3)-(5.6), we have 

Roo=-a-', R.,=R,,=O, Rij=_p,\n). (5.7) 

Two more relations follow from the identities 
mooR .. -kB,,=O, 

m'oo'Roo-k,kj?,;=nmll,;, 
(5.8) 

which are a consequence of the continuity equation satis
fied by the operators mn(x) and 1j (x). Substituting (5.3) 
in (5.8) and using (5.4)-(5.7), (3.11), and (3.12), we ob
tain 
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(5.9) 

(5.10) 

In view of the formula (1.3) proved in the preceding sec
tion, Eq. (5.10) reduces to (1.4). The expressions 
(5.3)-(5.10) give a complete solution to the problem of 
Bose-crystal correlation functions. Using these results, 
we shall prove the statement that only the normal part of 
the density is carried along by a crystal's rotation. To 
do so, we note that the increment of the system's Hamil
tonian, which arises from the rotation and is linear in 
its angular velocity 0, is of the form 

ii,=- S dr~(x)v,(r), v(r)=[r XO]. 

Hence, if we turn on the rotation adiabatically slowly at 
t - -00, the average value of the mass-flux density will 
then, according to linear-response theory and definitions 
(5.1) and (5.2), be equal to 

j,=- S dr'S (2~' R,;(O,k)eik(·-·')v;(r'). 

Substituting here the expression 

R (0 k) _ (.) m' c"k,c;mkm 
H , --Pi! - , 

a CTlkTk. 

which follows from (5.3)- (5.7), we obtain the formula 

which proves the above statement. 

Let us now derive the compressibility formula (1.6). 
For this purpose we make use of the expression for 
Roo(O, k) which, according to (5.3)-(5.9), is equal to 

Roo(O, k) =-a-'+t]"k,Di;(O, k)t]lmkm , (5.11) 

where, in agreement with (3.11), (3.12), and (3.14) 

Next, we pass to the limit k - 0 in (5.11) taking into ac
count the effect of the finite size of the crystal. Substitu
tion of the result into the formula 

.!!...=~(!!:..)-' =-~[limR .. (O,k)]-' 
ap m all m .~. 

(which follows from the thermodynamics) leads to (1.6). 

As another application of the correlation functions we 
determine the linear response of the lattice structure to 
an external scalar field ocpeikx • To do this, one should 
follow the method applied in I to exactly the same prob
lem for the case of a Fermi crystal. Omitting the detail!: 
of the derivation, we present only the final result for the 
deformation tensor 

wih(R, t) =au.(R, t)laR, 

(where u(R, t) is the displacement vector of the lattice 
sites and R the macroscopic coordinate): 

(5.12) 

where the function 1Jjm (w, k) is of the form: 
00' 

t]Jm(oo,k)=t]lm+a-"'XJm, kk 
(l) -cTS r 6 

(5.13) 

In conclusion, we shall discuss the limiting case of 
vanishing density of the Bose condensate, no - O. In the 
absence of condensate there exists only one type of 
broken symmetry, namely with respect to arbitrary 
translations. Therefore, at no = 0 there are grounds for 
only three gapless excitation branches, corresponding in 
this case to acoustic phonons. At no f. 0 the poles as-
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sociated with these branches are contained in the single
particle G-function. Since three-point vertices exist at 
no F 0, the indicated poles also belong to the two-particle 
vertex part of r: 

):~:( :0: + ~ (5.14) 

,z, X2 

According to the results of Sec. 3 the singular terms 
in the G-functions are proportional to no. Let us prove 
now that the poles associated with acoustic phonons, 
which vanish in the G-functions, nonetheless remain in 
the vertex r. It is essential here that the Singular part 
of r turns out to be equal to the limit to which 
the second term in (5.14) tends. To proceed with the 
proof, we observe that a simultaneous displacement of 
both space arguments of the self-energy part ~ (x, x') as 
well as of the arguments of functions ~ (r), ~ * (r) (of which 
~ is a functional) by an infinitesimal distance oa leaves 
the function ~ (x, x') invariant. This implies that 

iTl: (XhX ,) + iTl: (x" x,) + in J dr' iT<p, (r') [Ill: (x" x,) + Ill: (x" x,) ] = O. 
iTr,' iTr,' ' iTr: Il; (r') Il;' (r') 

From this equality, in view of the remark made in the 
Appendix in derivation of (A.14), it follows that at k = 0 
the three-point vertex gi (Xl, X3; k) is equal to 

( . 0) _, -'I. [ iTl:(x" x,) + al:(x" x,) ] 
g( XhXS, --no flrti fJra i • 

The factor na1 arising from the product gl(Xl, X3; k) 
gj (X2' X4; -k) cancels the factor no to which the G-func-

tion at the pole in the second term of (5.14) is propor
tional. Therefore, the contribution to the pole due to the 
second term in (5.14) remains finite as no - O. In this 
case, the residue of r at k, W = 0 can be readily seen to 
coincide with the residue of r in the case of Fermi crys
tal (see I, (3.13)). 

APPENDIX 

We shall prove here a number of the above-employed 
identities which follow from general symmetry proper
ties of the system. 

To establish the first of them, we consider a uniform 
external scalar field I5cpe-iwt whose interaction with the 
system is described by a Hamiltonian of the form: 

H,",=Il<pe-'·'N, N= Jdr¢+(x)~(x), (A.l) 

Since the total particle-number operator N commutes 
with the main Hamiltonian of the system, we note that, as 
this field is turned on, the Heisenberg operator $ (x) 
transforms according to the following law 

~ - (Ilq> ) Ijl(x) -Ijl (x) exp -;;;-e-'·' . 

Whence the linear response of ($(x) to the field (A.l) is 
of the form 

(A.2) 

On the other hand, by virtue of the general diagram 
technique, this quantity is determined by a set of graphs 
each having one incoming line for the particle field and 
one outgoing line for interaction with the external scalar 
field: 
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The circle in the graph stands for the quantity Aoo(w, 0) 
= bw, introduced in Sec. 5. Comparing the equalities 
(A.2) and (A.3), in view of (3.8), (3.9), we obtain the iden
tity 

(A.4) 

The second relation will be derived by considering the 
linear response of the system to a uniform external vec
tor field of the form 

(A.5) 

(where h(x) is the mass-flux density operator of the sys
tem). Taking into account that the total mass flux coin
cides with the total momentum and the latter operator 
commutes with the main Hamiltonian of the crystal, we 
obtain the following expression for the linear response 
of ($(x) 

.<,~( »_ . Ilv, _'.1 'I. a<p,(r) 
u 't' X --l-e no --. 

war, 
(A.6) 

This quantity can also be determined by considering the 
vector component of the diagram relation (A.3). In this 
case, the line with the arrow will correspond to the ex
pression S~i'(W)Di'j' (w, 0), and the circle will correspond 

to the quantity Aij(w, 0) = -ihijw defined in Sec. 5: 

~ alP, ,,' . 7) Il<Ijl(x»=-i-S, (w)D,';-(w,0)A;';(w,O)6v;e-'·'. (A. ar, 
Comparing (A.6) and (A.7), and taking (3.8) and (3.9) 

into account, we obtain 

(A.8) 

One more identity will be established by considering 
the response of the system to a static vector field 

(A.9) 

As k - 0 the switching-on of such a field is equivalent to 
changing to a coordinate frame which moves with the 
velocity 15vi' and, therefore, the appropriate transforma
tion of the operator l/!(x) is of the form 

~(x) -+~(x) e-im''', 

where m is the mass of an isolated crystal atom. This 
gives us an expression for the linear response of the 
average value of the l/! -operator: 

- 'h Mop (x) )=-irllvn, <p,(r) m. (A.l0) 

On the other hand, the scalar component of the diagram 
relation, in the case of interaction with the field (A.9), 
yields 

(A.11) 

We have recognized that in this case the circle in (A.3) 
corresponds to the quantity AOi (0, k) = diZkZ and the func
tion Doo(O, k), according to (3.11), (3.12), and (3.14), is 
equal to -a/crskrks • 

Going over in (A. 11) to the coordinate representation, 
and then assuming that the typical dimensions of non
uniformity of the external field (~lkl-1) exceed the size 
of the system, we obtain, on comparison with (A.l0), 

(A.12) 

According to (2.1), the quantities ~ and ~ * enter in 
the Hamiltonian of the system symmetrically with the 
operators $' and $'+. Therefore, if we have two sets of 
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diagrams :Y' and Q which differ only in that the graphs Q 
have an additional input for the scalar line Doo at w = 0, 
then, in view of (3.9) and (3.1), the analytic expressions 
for :Y and Q are connected by 

J ". -, .. (fJi1' fJi1') 
Q= drno (jlo(r)e fJs'(r) - fJs(r) . 

(A.13) 

We now take as :Y the set of diagrams for the mass 
current h (x) = <fi (x). Then, considering the definition 
of AOj(w, k), given in Sec. 5, and the formulae (A.12), we 

obtain from (A.13) 

mc,jkj 1 J d Jd' "( -') ". (') [fJ<j,(X» fJ</,(x»] (A 14) --=- r r err no(J)o r -------. ' 
avo, fJ6'(r') fJs(r) 

In this expression, as in all preceding derivations, 
the long-wave limit is assumed for the quantities in
volved. Symbol c under the integral denotes integration 
over the volume of a unit cell of the crystal, which is 
equal to v c' 

11. E. Dzyaloshinskil, P. S. Kondratenko, and V. S. 
Levchenkov, Zh, Eksp, Teor. Fiz. 62, 1574 (1972) [Sov. 
Phys.-JETP 35, 823 (1972)]. 

600 SOY. Phys . .JETP, Vol. 40, No.3 

21. E. Dzyaloshinskil, p, S. Kondratenko, and V,S. 
Levchenkov, Zh, Eksp, Teor. Fiz, 62, 2318 (1972) [Sov. 
Phys,-JETP 35, 1213 (1972)], 

3 A. F. Andreev and L M. Lifshitz, Zh. Eksp. Teor. Fiz. 
56, 2056 (1969) [Sov. Phys.-JETP 29, 1107 (1969)], 

4 J. Goldstone, Nuovo Cimento 19, 154 (1961). 
5 D• Pines and N. M, Hugengoltz, Phys. Rev. 116, 489 

(1959). 
6 A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshin

skil, Metody kvantovol teorii polya v statisticheskol 
fizike (Quantum Field Theoretical Methods in statistical 
Physics), Fizmatgiz, M., 1965 [Engl. transl. by 
Pergamon Press, London, 1965]. 

7S. T. Belyaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [Sov. 
Phys.-JETP 7, 289 (1958)] . 

BV. Nambu, Phys. Rev. 117, 648 (1960). 
9 W. Kohn and D. Sherrington, Rev. Mod. Phys. 42, 1 

(1970). 

Translated by S. Luryi 
132 

I. E. DzyaloshinskiYand P. S. Kondratenko 600 


