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It is shown that. under certain assumptions. the quantum collision integral for conduction electrons 
scattered by perturbations of the surface potential barrier can be replaced. in the quasiclassical 
region. by a boundary condition for the distribution function. The general boundary condiiton and its 
explicit form in a semi-infinite metal are obtained for the cases of scattering by small-amplitude 
roughnesses. by large but smooth roughnesses. and by point defects distributed within the surface 
layer. A correction to the current density due to scattering by small roughnesses under conditions of 
the anomalous skin effect is obtained without making use of the boundary condition. 

1. INTRODUCTION 

In kinetic theory, the surface scattering of conduc­
tion electrons is usually taken into account by means 
of a boundary condition that relates the distribution 
functions of the electrons incident on and reflected from 
the surface. The simplest such condition, first intro­
duced by Fuchs [11, is a linear relationship which includes 
a phenomenological parameter that has the meaning of a 
coefficient of reflection of electrons by the surface. The 
general form of the boundary condition is that of a lin­
ear relation, integrated over the momenta, whose basic 
properties can be analyzed within the framework of the 
phenomenological approach [2-41. Some authors (see the 
review in [41) have used semi-intuitive considerations 
to set the kernel of this relation in correspondence with 
the probability of electron scattering by the surface, 
which is then calculated in simplified models. The sub­
sequent derivations of the boundary conditions for the 
two simplest types of surface scattering are presented 
in [5,61. Baskin and Entin [51 have considered the scattering 
by localized defects randomly placed on the surface, and 
have shown that at small concentrations the amplitude of 
volume scattering by a single defect enters into the 
boundary condition. Fal'kovskir[61 has taken into account 
the effect of surface roughnesses with small amplitude; 
the corresponding boundary condition contains the cor­
relation function of the roughness amplitudes at differ­
ent points. 

An essential assumption in the above derivations of 
the boundary condition is that the electron wave function 
vanishes at the metal boundary, which corresponds to 
the approximation of the surface potential by a rectan­
gular barrier of infinite height. A similar assumRtion 
has been used to solve other problems (see, e.g.,[7, 81) 
in which surface perturbations must be taken into ac­
count. The actual finiteness of the height and region of 
variation of the surface barrier affects the probability 
of electron scattering, leading to a smooth decay of the 
wave function within some layer near the surface. To 
account for the related effects, and to generalize the 
results of[S, 6J to more complex types of surface scat­
tering, we must introduce explicitly the surface poten­
tial of an "ideal" boundary, the perturbations of which 
will lead to electron scattering by the surface. The prob­
lem then arises of the proof of the boundary condition 
for the distribution functions and of its relation to the 
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scattering potential. The solution of this problem is the 
aim of the present work. 

We shall discuss a generalized electron collision 
integral that describes the contribution of surface scat­
tering to the quantum kinetic equation for the density 
matrix, in the representation of the electron wave func­
tions in the field of the ideal houndary. Under certain 
assumptions it is possible to replace the collision inte­
gral in the quasiclassical region with a boundary con­
dition for the distribution functions. This condition is 
in the nature of an integral over the momenta, and its 
kernel is related either to the matrix elements of the 
scattering operator or to the transition probability be­
tween stationary states of the electron near the boun­
dary. We shall show that in the proper approximations 
the boundary condition reduces to the results of[S' 6], 
and we shall obtain its explicit form for other simple 
cases, when scattering occurs from smooth roughnesses 
or from point defects distributed within the surface 
layer. 

In conclusion, to illustrate the possibility of taking 
surface scattering into account without the use of boun­
dary conditions, we shall present the results of a quan­
tum-mechanical calculation of the current density under 
conditions of the anomalous skin effect in scattering by 
roughnesses of small amplitude. These results apply 
to the quasiclassical region, for which the corresponding 
analysis based on the boundary condition was given by 
Fal'kovski1[9 11 and include the quantum corrections of 
Van Gelder[lo . 

2. THE KINETIC EQUATION 

The starting point for our discussion is the quantum 
kinetic equation for conduction electrons scattered by 
a static potential. An equation of this type, as applied 
to the calculation of impurity conductivity, was studied 
in detail by Kohn and Luttinger[11 J, whose results have 
subsequently been developed further and generalized 
(see, e.g.,h2'i4]). We have to analyze situations in which 
the density matrix in the momentum representation has 
significant nondiagonal elements that describe the reac­
tion of electrons in a bounded metal to a spatially inho­
mogeneous electromagnetic field. Since no generally­
accepted treatment of such situations is given in the lit­
erature, we shall describe briefly the derivation of the 
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kinetic equation that we use here, so that we can formu­
late the assumptions to be used and show the possibility 
of including the specific features of the surface scat­
tering. 

It is convenient to begin with the Liouville equation 
for the Laplace transform of the single-particle density 
matrix p(t): 

p(z)= f dtexp(izt)p(t), (2.1) 
o 

which is of the form 

zp(i)-li-'[H, p(z)]-li-'[H.', p(z-oo)]=ip", (2.2) 

where H is the electron Hamiltonian including the scat­
tering potential, Hw is the amplitude of the Hamiltonian 
of the interaction wit.h an electromagnetic field varying 
like exp(- iwt), and plu is the initial value of the density 
matrix. In the approximation linear in the field interac­
tion, the density matrix consists of an unperturbed part 
Po and a correction P1 that is proportional to the field 
potential. To obtain the kinetic equation we must average 
the operators Po and Plover configurations of the scat­
tering potential that are equivalent from the macroscopic 
point of view. In our case this averaging (for which we use 
the symbol <. . .» corresponds to the average over the 
shapes of the roughnesses of the metal boundary and 
over the positions of the point defects. 

By separating the part of the Hamiltonian that des­
cribes scattering, 

V=H-<H)"",H-Ho, 

and solving formally the equation for the difference 
Po(z) -(Po(z) and P1(Z) - (P1(Z), we can write for 

(2.3) 

(Po(z) and (P1(z».a system of equations that includes 
the initial value pm. The stationary value of the density 
matrix p = Po + P1 is obtained with the help of the lim­
iting transition 

Po= lim {is<Po(is) >), p,= lim {is<p, (oo+is) >}. 
B ...... 0 ;s ..... o 

(2.4) 

in which the parameter s can be assumed to be real. By 
(lerforming this limiting transition in the equations for 
(Po(z» and (P1(Z» we can verify that when the condition 

~~~{iS<[ V,}de,n (e+ 1i~+iS) (p,n_<p,n»R (e _ 1i~+iS)])} =0 

(2.5) 
is satisfied for any w (R(E) is the resolvent of the op­
erator H), the initial value pin drops. out of the equations. 
Thus, when Eq. (2.5) holds for any pm, the kinetic equa­
tions for the stationary values Po and (h must be indepen­
dent of the initial conditions. In the cases considered 
here of scattering by point defects and by surface rough­
nesses, Eq. (2.5) is satisfied because the difference 
pin _(pin) is nondiagonal in the momentum representa­
tion. 

The equilibrium denSity matrix f is determined from 
the condition that the collision integral 10 in the equation 
for Po vanish: 

(2.6) 

which gives 

lim <[V,Fo(s) ]>=0, (2.7) 

Neglecting the change in the electron energy due to 
scattering, we shall assume that f is a Fermi function 
of the Hamiltonian Ho, and make use of this assumption 
to write an equation for the part of the density matrix 
that is linear in the interaction with the field. Using the 
explicit form of the operator H~, it is convenient to 
replace P1 with the difference g = P1 -PL, where PL 
satisfies 

(2.9) 

v(r) is the current density operator, and Aw is the amp­
litude of the vector potential. The kinetic equation for 
g is of the form 

(2.10) 

where the field part C and the operator I are specified 
by the follOWing formulas: 

[C,llo]=[H.E,jl. H:=e f drv(r)E.(r), 

I=-Iim <h-'[V,F,(s) P, 

(2.11) 

(2.12) 

F, (s) = 2:i f di-R (e + hOO2+iS ) h{w (s) +ih-'[ v, g]+[)R ( e _ liOO;iS) , 

-~ (2.13) 

w(s)= 2~i f deR (e+ i; ) {[H.E,Fo(s) ]+[V, C]}R( e - ~ ) . 

-~ (2.14) 
Equation (2.10) contains the electromagnetic field amp­
litude Ew(r) (rather than the potential amplitudes). This 
equation is the quantum analog of the BoltZmann equation; 
in the absence of a magnetic field, the role of the term 
PL in the calculation of average values is to compensate 
for the increments due to the change in momentum in the 
electromagnetic field. In the derivation above (in con­
trast to that given in£t3J) there is no need to introduce 
unwarranted assumptions about the form of the initial 
value of the density matrix in order to guarantee gauge 
invariance of the kinetic equation; we have made use 
only of the fully justified condition (2.7). It is also im­
portant to note the definition (2.3) of the operators Ho 
and V; in the case of surface scattering there is a sig­
nificant difference between Ho =(H> and the Hamiltonian 
of a free electron. 

We now consider the form of the collision integral I 
in our problem. We shall discuss surface scattering in 
an isotropic semiinfinite metal with a quadratic elec­
tron - dispersion law. The influence of an ideal boundary 
will be represented by a one-dimensional potential bar­
rier of height U. Aligning the xy plane with the metal 
surface, the eigenfunctions of Ho can be written in the 
form 

(2.15 ) 

where P and 11K are the projections of the electron radi­
us-vector and momentum on the xy plane, for the vari­
ables x and y we take periodic boundary conditions with 
a normalization to a surface area S, and 
ilk = (2mEp _ii 2K2)1/2, where E is the electron energy. 
Inside the metal (z < 0, E < J) we have the following 
asymptotic expression for the function Xk(z): 

x. (z) -+ (2In)'/ sin (kz-a (k) ), z-+-oo, (2.16) 

in which the phase ct (k) depends on the shape of the bar­
rier; for a rectangular barrier we have tan ,)! (k) 

If~ (is) (is) Fo(S)=Z;;;:_~ deR e+ 2 [V,j]R e- 2 . (2.8) = kNkg - k2 , where l1ko = "I2mU. 
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To write the collision integral I in the Ho represen­
tation, we introduce from [11,14] the scattering operator 
T(E), which satisfies the equation 

T(E) =V+VRo(E)T(E), (2.17) 

where Ro(E) is the resolvent of Ho. Then Eq. (2.12) for 
the matrix elements Ipp' can be put in the following 
form: 

I pp'= lim {( L, [Rop (cp,+!iw+is) Dpp,L;'p' (cPo Bp') -Lp~, (B p, Bp') . 
.~o 

p, 

R ( !i' ~ [ pp' ( hW+iS) . 
• Op, Bp'+ w+ls)D.,p']+ ~ Qp,p, Bp'--2- ROp,(B .. +!iw+!s)Dp,., 

pp' ( !iW+iS) ])} -Qp,p, Bp, + -?-, R oP, (Bp,+!iw+is) D.,p, ; (2.18) 

(2.19) 

± , 1 ~S (!iW+iS ) [( !im+is )_. 
L ... (E,E)= 2n_~dBTpp. B±-2- B--2--E 

_ ( B + !iW~iS _ E') -1] , (2.20) 

[ ( !iW+iS) ( !iw+is )] . Ro.· B--2- -Rop B+-2 - . (2.21) 

The summation over p in Eq. (2.18) includes the sum­
mation over /( and the integration over k from 0 to "", 
taking into account the degeneracy of states with 

-1'I.k> /2mU. When the matrix elements of the scattering 
operator are averaged over the configurations of the 
scattering potential, a diagonal singularity appears in 
the momentum representation. In the surface-scattering 
case a diagonal singularity appears only in the momen­
tum components lying in the plane of the metal boun­
dary; we then have 

(2.22) 

Since the scattering potential is concentrated in a nar­
row layer near the boundary, the dependence on the nor­
mal component of the momentum in Eq. (2.22) is smooth. 
It is this fact which determines the principal difference 
between the electron collision integrals for the cases of 
surface and volume scattering. 

3. THE BOUNDARY CONDITION 

If the scale of the field inhomogeneity is large in com­
parison with the de Broglie wavelength of the electron, 
the matrix elements gpp'are nonzero only for values of 
the difference p -p' that are small compared to the sum 
p + p'. In this case, which corresponds to the validity 
of the quasiclassical approximation, the form of the col­
lision integral can be simplified significantly. 

In Eq. (2.18) we neglect frequency dispersion and the 
influence of the electromagnetic field (the term ~pp'(s) 
in Eq. (2.19», which describe purely quantum effects. 
In addition, using (2.22), the first term on the right side 
of Eq. (2.18) can be transformed as follows: 

f dk,gx.x. <L;'.,x.) = <L;'.x') f dk,g •• x. '= <Lp~> Gp. (3.1) ~ I j 1 

o 0 

We have assumed that the characteristic scale of varia­
tion of the matrix elements Tpp' as functions of the dif­
ference k - k' (which is of the order of the reciprocal of 
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the effective radius of the surface potential) is large 
compared with the scale of variation of gpp" Similarly, 
we have 

~ dk. < Q~~,x, •• ) gx,.,.,., = < Q~;p,) Gp,' (3.2) 
o 

We can also carry out a transformation similar to 
(3.1) and (3.2) in the terms on the right side of Eq. (2.18) 
that contain the matrix elements of I, but the role of the 
quantity gPP' will be played by the resolvents ROp(ER' 
+ is). In these approximations the collision integral I 
is diagonal, and after the optical theorem is used for the 
scattering operator, Eq. (2.18) for Ipp == Ip takes the 
form 

(3.3) 

2 ~ 

J.p'= lim { h S de(Tpp' (B+is) Tp'p(B-is» 
....... 0 :rt _00 

s· } 
[(B-B.)'+S'] [(B-e.·)'+s'] . (3.4) 

To clarify the meaning of the quantity Gp , consider the 
relation between the denSity matrix (or more accurately, 
its nonequilibrium part) gPP' and the quasiclassical dis­
tribution function. For simplicity, we shall not write out 
explicitly the variables (p, K) that correspond to motion 
in the boundary plane, which can be taken into account 
with no particular difficulty. The quantity gkk' is re­
lated to the denSity matrix in the coordinate represen­
tation, g(z, z') by 

g .. '= S dz S dz'x.(z) g(z, z')x.· (z') "" :nS dz[<p(z, Q) e;q,+<p (z, -Q) e- iq , 

-'I' '(z, q) eZl(Q,-a("L'I' (z, -q) e-Z/(Q·-a('))). (3.5) 

In writing the second part of this equation we have neg­
lected the contribution to the integral from the narrow 
surface region, within which g(z, z') is comparatively 
small; this allows us to use the asymptotic expression 
(2.16) for the wave functions. In addition, we have set 
a(k) ~ a(k'). The function q;(z, Q) is the density matrix 
in a mixed representation (quantum distribution function), 
Q = (k + k')/2, and q = k -k'; in the quasiclassical case, 
when Q» q and q;(z, Q) is a smooth function of z, we 
can neglect the last two terms in Eq. (3.5) and set Q = k. 
Then, taking the definition (3.1) into account, we obtain 

g"''''<pq(k)+<p_q(-k), (3.6) 
~ ~ 

G.= Sdk'gu''''' S dqg"'=<p(O,k)+<p(O,-k), (3.7) 
o 

where q;q (k) is the Fourier transform of q; (z, k), while 
q;(0, k) and q;(O, -k) have the meaning of boundary values 
of the distribution functions of the incident and reflected 
electrons. Thus, in the given approximations, Gp is 
simply related to the distribution function on the metal 
boundary. 

In the well-known approach first suggested by Fuchs[l], 
the presence of surface scattering is described by a 
boundary condition in the form q;(O, -k) = (l-P)q;(O, k), 
where P is the coefficient of diffusivity of electron ref­
lection from the surface ll • It is easy to show that this 
boundary condition is equivalent to the introduction, 
into the Boltzmann equation for the sum q;q (k) + 'P _q (- k), 
of a term Ik that plays the part of an electron-surface 
collision integral and satisfies the equation 

!ik ( nm) 1.= ---P G.--I •. 
2nm !ik 

(3.8) 
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A comparison of this equation with Eq. (3.3) establishes 
the relationship between our collision integral and the 
Fuchs boundary condition, and permits us to connect 
the diffusivity coefficient (when it can properly be said 
to exist) with the operator for the scattering of the elec­
tron by the perturbations of an ideal metal surface. 

Equation (3.3) is equivalent to a boundary condition 
in integral form. This sort of boundary condition was 
discussed in (2-4], but the existing microscopic justifi­
cations (S, 6] in the particular models are limited by the 
assumption that the potential barrier is of infinite height 
that the surface scattering is weak. Our result, which is 
free of these limitations, can be written in the form 

2nm '\1 
'1'(0; -k, x) ='1'(0; k, x)-Ilk " .. /pp'[<p(O; k, x)-'I' (0; k', x')]. (3.9) 

p' 

This condition possesses all the general properties that 
were postulated in the phenomenological approach; in 
particular, it guarantees the absence of a particle flux 
through the surface. 

In addition, the analysis above gives an indication of 
the limits of applicability of the boundary conditions 
for the distribution functions in the solution of the kin­
etic equation. They are speCified by the requirement 
that the effective radius of the surface potential and the 
decay range of the electron wave function near the boun­
dary be small compared with the characteristic scale 
of variation of the distribution function. 

In the investigation of essentially quantum phenomena 
we must use the collision integral (2.18) in its general 
form, noting that the specific details of the quantum 
numbers p were not taken into account when we wrote 
it down. Quantum effects can be important not only in 
special conditions, when the quantization of the electron 
orbital motion is Significant (the quantum size effect, 
magnetic surface levels, etc.), but also in the compara­
tively simpler case of the anomalous skin effect(,ol. 

We obtained Eq. (3.3) for a semi-infinite metal. How­
ever, the derivation can be carried out in an entirely 
Similar fashion under the conditions of the classical 
size effect, where, although the meaning of the quantity 
Gp changes slightly because of the inclusion of a second 
boundary, Eq. (3.3) remains practically unchanged. 

4. SURFACE SCATTERING 

In this section we discuss the boundary conditions for 
the Simplest typical cases of surface electron scattering. 
In all these cases we can immediately take the energy 
integral in the general formula (3.4), taking the limit as 
s - O. We then obtain 

J pp' = 2: < I T p+p' (ep) 1')6 (ep-ep'), 

T+ (e) = lim T(e+is). 
(4.1) 

The combination (27Tm/flk)Jp'p in the boundary condi­
tion (3.9) can be interpreted as the probability of a 
single scattering of an electron from state p to state p' , 
per unit interval ofthe wave numbers k; its summation over 
p' i p gives the total scattering probability wp of an 
electron with momentum p in all directions except that 
corresponding to specular reflection. By the use of the 
optical theorem we can express wp in terms of the diag­
onal element of the scattering operator: 

(4.2) 
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In some cases the integral operator acting on 
'1'(0; k, K) in Eq. (3.9) can be reduced to multiplication 
by a function of p, which has the meaning of an effective 
diffusivity coefficient. If there is an electric field, non­
uniform along the z axis, acting parallel to the surface 
in an isotropic semi-infinite metal, the distribution func­
tion of the electrons incident on the boundary can be 
written in the form 

'1'(0; k, x)=xD(k, ep), (4.3) 

where the vector D (k, lOp) is parallel to the field and does 
not depend explicitly on /c. The boundary condition (3.9) 
reduces to the Fuchs condition in two cases. First, if 
J pp ' does not depend on the direction of /C', then the 
integral term in Eq. (3.9) vanishes and the part of a 
diffusivity coefficient is played by the total scattering 
probability wp. Second, if the D(k') is a smooth function 
compared with Jpp" then we can set D(k') "" D(k) in the 
integral term ofEq. (3.9), and the quantity that plays 
the part of P is 

2nm ~ ( XX') p=-- Jpp' 1--- . 
tzk. x' (4.4) 

This situation occurs under conditions close to the nor­
mal skin effect, when D(k) depends weakly on k. 

The specifiC form of scattering typical of a surface 
is due to statistically distributed geometric irregularities 
(roughnesses) of the boundary. The usual treatment of 
electron scattering by roughnesses is based on an ana­
logy with the problems of scattering of acoustic and 
electromagnetic waves by a statistically irregular sur­
face (see(lS]), and in effect assumes a surface potential 
barrier of rectangular form and infinite height. In a 
more general approach, the finiteness of the barrier 
height and of the region of decay must be taken into 
account. For a rectangular barrier of height U, the scat­
tering potential of a rough surface can be written in the 
form 

V(p, z)=U8(z-h(p»-Vo(z), 8(z>0)=1, 8(z<0) =0, (4.5) 

where h(P) is a random function that describes the shape 
of the roughnesses, and Vo(z) is the potential of an ideal 
boundary, specified according to Eq. (2.3) by the con­
dition (V) = O. The averages must now be taken over the 
different shapes of h(P), and we assume that (h(p» = O. 

When the amplitude h of the roughnesses is sufficiently 
small, the scattering by potential (4.5) can be analyzed 
by perturbation theory. In this case it should be kept in 
mind that the simple expansion of the scattering operator 
T in powers of V implies the assumption that the charac­
teristic value h is small compared to the damping scale 
of the wave function Xk(z) near the surface, i.e., com­
pared to h/v'2mU. Strictly speaking, therefore, this ex­
pansion becomes inapplicable in the limit of large U. 
However, by expanding the matrix elements of V in terms 
of h, we can use Eq. (2.17) to construct a series for T 
in powers of h, the terms of which will in general stem 
from different powers of V. It can be shown that each 
term of this series tends to a finite limit as U -"', and 
that the expansion of the matrix elements Tpp' in powers 
of h will be correct only if k, k' « h -1. 

The formal result corresponds to a direct "expan­
sion" of the potential V in powers of h(P). In the approxi­
mation linear in h we obtain for a potential of arbitrary 
shape 

V(p,z)= S dp'u(p-p',z)h(p'), (4.6) 
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where the kernel u(p, z) describes the effective interac­
tion between the electron and the surface. Then the scat­
tering probability takes the form 

lpp'=(2n)3/i~tSs(x-x') lupp'I'/)(ep-e p'), (4.7) 

~(x)=(2n)-'J dpexp(-ixp)(h(O)h(p», (4.8) 

where upp' is the matrix element of the function u(p, z). 

For a rectangular potential barrier of arbitrary 
height, the quantity h2kk'/7rmS occurs in place of upp" 
Then by substituting the expression (4.7) in the boun­
dary condition (3.9) we can easily show that it becomes 
equivalent to the Fal'kovsldr condition[sl. Thus, in the 
first approximation of perturbation theory this boundary 
condition is correct for a boundary potential barrier of 
any height. Note, however, that J pp ' begins to depend 
weakly on U as early as the second order of perturba­
tion theory. 

For an arbitrary barrier, when the correlation func­
tion (h(O)h(P» varies slowly by comparison with u(p, z), 
we can set 1(' "'l I( in the matrix element upp" and from 
the applicability conditions of perturbation theory, we 
can expand the square 1 upp,I 2 in powers of k and k' only 
when k is small; in this case we again arrive at the 
Fal'kovskir boundary condition. 

The problem of scattering by roughnesses of relatively 
large amplitude, when hk» 1, is also greatly simplified 
when the variation of the function h (P) is slow. If the dis­
tance over which h(P) varies is large compared to the 
characteristic amplitude h and the decay range of the po­
tential barrier, the scattering potential of the rough­
nesses can be put in the following form: 

V(p, z) =W(z-h(p)) - V.(z). (4.9) 

This expression is a generalization of Eq. (4.5) to the 
case of a surface barrier W (z) of arbitrary shape. We 
can now write the matrix element of the scattering op­
erator in the form 

then from the Lippman-Schwinger equation we obtain 

T]~k (p, z) = Xk (z) + ~ dp' ~ dz'Ro+ (p - p', z, z'; ex.)' exp {ix (p' - p)} 

x V (p', z') T]~. (p', z'). (4.11) 

The assumption that the variation of h(p) is smooth al­
lows us to remove the functions V(p', z') and 1Jp(P', z') 
from under the integral over p' in Eq. (4.11), setting 
p' ~ p; then the integral over p' is taken over the resol­
vent R~ only, and the problem becomes one-dimensional. 
We can conveniently estimate the omitted terms by writ­
ing down the Schrodinger equation for 1Jp(p, z); they can 
be considered negligible only if the characteristic gra­
dients of h(P) are small compared to unity and to the 
ratio k/I(, and the radius of curvature of the surface 
z = h(P) is large compared to k-1. These assumptions 
correspond to the validity of the Kirchhoff method in 
the theory of wave scattering by an uneven surface 
(see[151, Chap. VII), which is applied to the phenomeno­
logical treatment of electron scattering in, for 
instance, [2,7, lsI. Note that, in the existing literature, 
the Kirchhoff method is actually used only to analyze 
the differential and integral scattering probabilities. 
Our approach, based on Eq. (4.11), allows us first to 
formulate the boundary condition for the distribution 
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function and then Simply to state the applicability lim­
its of the results. 

In the approximations cited above the function 
7Jp(P, z) does not depend on 1(, and the dependence on p 
enters parametrically through h(P). Thus Eq. (4.1) can 
be written in the form 

Jpp' = ~s-~ ~ dpe-i (x-x') p (Th (ek, 0) Tkk' (ek', p»·/)(ek - ek' + ex - ex'), 

(4.12) 
where T(E, p) is the scattering operator in the one-di­
mensional problem, and Ek = Ep -EI(' By assumption, the 
correlation function (T'(O)T-(P); decays so slowly that 
1 I( - 1('1 « k, k' for the characteristic scattering events 
in Eq. (4.12). The conservation of energy is then guaran­
teed by the smallness of the difference k - k' compared 
to the sum k + k'. With sufficient accuracy, we can neg­
lect the square of k -k' compared to (k + k,)2, so that, 
because the integral over p in Eq. (4.12) is symmetric 
under the interchange of k and k', we can replace both 
k and k' with (k + k')/2 in evaluating the integral. Thus, 
to specify the expression (4.12) it is enough to find the 
diagonal element Tkk(Ek, p) == Tk(P). 

We note that the function l1k(z) satisfies the one-di­
mensional SchrOdinger equation with the potential 
W(z - h). Therefore l1k(z + h) can differ only by a phase 
factor from the function x~(z) that describes stationary 
states with the barrier wtz) and has an asymptotic ex­
pression of the form (2.16) with the phase Q! (k) re­
placed by a (k). On the other hand, the asymptotic for­
mula for 1Jk(z) from Eq. (4.10) can be expressed in 
terms of Tk. Thus we have 

z~-oo, (4.13) 

z~-OO. (4.14) 

The phase j3(k) is specified by the requirement that the 
first terms in Eqs. (4.13) and (4.14) be identical, each 
describing a wave incident on the surface; from this 
we can easily find Tk: 

/i'k -
T. = - i-- [1- exp2i(kh + a (k)- a(k» 1 (4.15) 

2nm 

and after we exchange k - (k + k')/2 and substitute this 
into Eq. (4.12) we obtain 

(4.16) 

K(l)= (2n) -'(k + k')' S dp exp{- i(k + k')lP}(exp{i(k + k') [h(O) 

- h(p)]l> "" (2n)-' S d/1exp( - il/1) < exp (i/1 ~: ) ). (4.17) 

The transition to the final expression in Eq. (4.17) cor­
responds to the determination of the short-wave (hk» 1) 
asymptotic form of K(,,). 

The function K(,,) has the meaning of a distribution 
function of the gradients of h(P) and drops off rapidly 
for values of r larger than the characteristic values of 
Vph(p), which are small compared to unity and to k/IC. 
For this reason we can expand all the smoothly varying 
functions under the integral in Eq. (3.9) in powers of 
IC - 1(' to arrive at the following expression: 

'11(0; k,x)-<P(O; -k,x)"" 

{ 0 1 (1 0 0' )} ",,2r 1+2k---x' --+- m(O'k x) 
ok 2 k Ok Ok' 'Y " , 

(4.18) 
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The derivative of the function rp(O; k, K) =KD(k, Ep) with 
respect to k is taken at constant energy Ep' If the skin 
effect is nearly normal, then D(k, Ep) depends weakly on 
k and only the first term on the right side of Eq. (4.18) 
is significant, which corresponds to the Fuchs boun­
dary condition with the diffusivity coefficient P = 2r. 
The value of this coefficient is small, while the inte­
gral scattering probability, calculated from Eqs. (4.2) 
and (4.15), is wp = l-(exp 2ikh(P»2, and is close to 
unity at kh» 1. 

In the region of the anomalous skin effect Eq. (4.18) 
is valid as long as the ratio of the depth of the skin 
layer to the length of the mean free path is large com­
pared to the gradients of h(P). Then the most important 
terms on the right side of Eq. (4.18) are those propor­
tional to K2, and the boundary condition for the distrib­
ution function does not have the form of the Fuchs con­
dition, but contains derivatives with respect to k. 

An analysis of the scattering by roughnesses shows 
that the scattering is strong (diffusivity coefficient of 
order unity) when the amplitudes of the functions h(P) 
and their gradients are sufficiently large. A detailed 
solution of the problem under these conditions encoun­
ters essential difficulties similar to those that occur in 
the theory of wave scattering. 

We note that the boundary conditions (3.9) that we 
have obtained serve to open certain paths for a subse­
quent phenomenological approach. 

Another type of surface scattering of conduction elec­
trons is due to point defects of the crystal surface. If 
we neglect interference effects in the scattering from 
different defects, it is sufficient to find the scattering 
operator from a single defect. By multiplying the tran­
sition probability for scattering at a single center times 
the surface concentration of defects, we obtain the de­
sired transition probability. In the case when the effec­
tive radius of the defect potential is large compared to 
the decay range of the wave function near the surface, 
in solving the problem of scattering for characteristic 
momenta much smaller than J2mU we can use the 
stationary wave functions for a rectangular potential 
barrier of infinite height. Then the matrix element 
Tpp' is proportional to the difference F(IC, k; IC', k') 
- F(IC, - k; IC', k'), where F(p, p') is the amplitude of 
bulk scattering by the potential of the given defect. A 
similar result was obtained in(5), where the scattering 
by defects of different types was analyzed. 

We have considered another limiting case, when the 
scattering is from defects whose effective radius is 
small compared to the electron wavelength. In this case, 
generally speaking, the behavior of the wave function 
near the surface plays an essential role. We must keep 
in mind, however, that in a real situation the small­
radius defects are not localized exactly on the surface, 
but are distributed with probability density w(z) within 
some surface layer. If the layer thickness d is large 
compared to the effective radius of the surface potential, 
the deviation of the barrier from a rectangular shape 
can be neglected, and by assuming the exponential form 
w(z) = d-1exp(z!d) we can find the diffusivity coefficient: 

t,p, kd 
P = 32nnl,d 1 + (f,p,) 2 1 + (2kd)' ' (4.19) 

where n is the surface concentration of defects, fo is the 
length for scattering length from the defect potential, 
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and po = JK2 + k2 . To obtain the result (4.19) we made 
use of the theory of low-energy scattering and computed 
the matrix element Tpp' in a manner similar to that 
used in, for instance,[u]. The integral term in Eq. (4.3) 
vanishes, so that Tppl does not depend on the direction 
of 1('. 

According to Eq. (4.19), at pod» 1 the diffusivity 
coefficient is a non monotonic function of the electron 
grazing angle. At kd» 1, the increase of P is inversely 
proportional to the sine of the grazing angle as the 
direction of incidence deviates from the normal to the 
surface; this may be explained by the increased distance 
traveled by the electron in passing through the layer of 
scattering defects. At kd « 1 this behavior is superseded 
by a quantum effect related to the smallness of the ab­
solute square of the electron wave function in the region 
occupied by defects, and P becomes proportional to the 
sine of the grazing angle. Note that the indicated asymp­
totic behavior of P is practically independent of the form 
of the defect distribution function w(z). 

5. CURRENT DENSITY IN THE CASE OF WEAK 
SURFACE SCATTERING 

In Sec. 3 we showed that the use of a boundary con­
dition to take account of surface scattering effects is 
related to the neglect of quantum effects due to the de­
cay of the electron wave functions near the surface. The 
role played by these effects can be analyzed Simply in 
the case of weak surface scattering, when the collision 
integral can be treated as a small correction in the 
kinetic equation, and the scattering can be considered 
in the Born approximation. We must then begin from the 
complete expression for I (see Eqs. (2.12}-(2.14». We 
give here the result of the calculation of the Fourier 
amplitude of the current density jqw (here q is the z­
component of the wave vector) for scattering under the 
conditions of the anomalous skin effect, when bulk scat­
tering also plays a part that is small and can be des­
cribed by a relaxation time T. 

The quantity j~w consists of three terms: 

(5.1) 

where u(q, w) is the transverse bulk conductivity; jd~ 
is a quantum correction due to the influence of the ldeal 
surface, which was studied in detail by van Gelder[lO]; 
and j&w is the contribution from scattering by rough­
nesses. Assuming that the surface barrier has a rec­
tangular shape and infinite height, we have 

i .. h = f dg'd'(q, q', w)E,., (5.2) 

2 2h' ~ 011 

ah(q, q', (0) = (2n;'m'w f dx f dx' f dk f dk' . 
~ - _00 _'» 

. 6 (x - x') (jp - Ip' )M",.p. (g)M ••• (g') 13 (8.-8.·+1'100), (5.3) 

M,p' (q) =xk'(k+q) (ex' HQ-ex.-liw-ili/T)-' 
+x'k(k'+q) (e.' "+q-£X' .,+liw+ilil-r)-', (5.4) 

where the function HI() is as specified by Eq. (4.8). To 
obtain Eq. (5.3), we substituted in the total collision 
integral (2.12) the value of gPP' obtained without taking 
account of surface scattering, then replaced R(E) every­
where with Rok) and, after paSSing to the limit s - 0, 
kept only the most significant delta-function parts of 
the resolvents. 
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The quasiclassicallimit of Eq. (5.3) is obtained if 
we neglect q by comparison with k, and flw by compari­
son with Ell; then, in particular, the difference fp -fp/ 
is replaceo by --4'lw ilfp/IlEp. It is easily apparent that in 
this limit cf1(q, q/, W) coincides with the corresponding 
Fal 'kovskil expression (9). An estimate of the quantum 
corrections shows that they are of the same order of 
magnitude as the contribution of j&& in Eq. (5.1) rela­
tive to the bulk part. Thus, for the case of weak surface 
scattering a quantum mechanical calculation, which does 
not use the boundary condition, leads to a result that 
includes the van Gelder corrections. 

We are sincerely grateful to Prof. P. S. Zyryanov 
for his active and careful supervision of this work. We 
deeply regret that our gratitude is posthumous. 

I)More commonly, a specularity coefficient equal to I-Pis introduced. 
The use of the quantity P in our analysis leads to some reduction in 
the length of the formulas. 

lK. Fuchs, Proc. Cambro Phil. Soc. 34, 100 (1938). 
2J. Ziman, Electrons and Phonons, Oxford, 1960, Chap. 
XI (Russ. Transl., llL, 1962). 

3 F . G. Moliner and S. Simons, Proc. Cambro Phil. Soc. 
53, 848 (1957). 
~. F. Green, Collection: Surface Properties of Solids, 
Chap. 2 (Russ. Transl., Mir, 1972). 

590 SOy. Phys . .JETP, Vol. 40, No.3 

~. M. Baskin and M. V. Entin, Zh. Eksp. Teor. Fiz. 
57,460 (1969) [Sov. Phys.-JETP 30, 252 (1970)]. 

sL. A. Fal'kovskil, Zh. Eksp. Teor. Fiz. 58, 1830 
(1970) [Sov. Phys.-JETP 31, 981 (1970)]. 

7E. A. Kaner, N. M. Makarov, and I. M. Fuks, Zh. Eksp. 
Teor. Fiz. 55,931 (1968) [Sov. Phys.-JETP 28, 483 (1969)]. 

8A. V. Chaplik and M. V. ~ntin, Zh. Eksp. Teor. Fiz. 
55,990 (1968) [Sov. Phys.-JETP 28, 514 (1969)]. 

9L. A. Falkovskir, Zh. Eksp. Teor. Fiz. 60, 838 (1971) 
[Sov. Phys.-JETP 33,454 (1971)]. 

lOA. P. van Gelder, Phys. Rev. 187,833 (1969). 
IIW. Kohn and J. Luttinger, Phys. Rev. 108, 590 (1957); 

109, 1892 (1958) (Russ. Transl. in Voprosy kvantovoi 
teorii neobratimykh protsessov (Problems in the 
Quantum Theory of Irreversible Processes), IlL, 1961). 

12S. Fujita, Introduction to Non-Equilibrium Quantum 
Statistical Mechanics, Saunders, Philadelphia, 1966, 
Chaps. 5,7 (Russ. Transl., Mir, 1969). 

13p. N. Argyres and E. S. Kirkpatrick, Ann. Phys. 42, 
513 (1967). 

14J. L. Sigel and P. N. Argyres, Ann. Phys. 74, 352 (1972). 
IsF. G. Bass and I. M. Fuks, Rasseyanie voln na statis­

ticheski nerovnol poverkhnosti 0Nave Scattering by a 
Statistically Irregular Surface), Nauka, 1972. 

ISS. Soffer, J. Appl. Phys. 38, 1710 (1967). 

Translated by R. Rutherford m 
130 

V. I. Okulov and V. V. Ustinov 590 


