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The amplitude u of a sound wave excited by an electromagnetic wave incident on the surface of a 
metallic sample is calculated. The case of a strong magnetic field and short wavelengths 1;1> r;l> k,-l 
is considered [I is the electron mean free path, r is the Larmor orbit radius, and k,-l is the sound 
wavelength (divided by 211")]. Oscillations of u corresponding to geometric resonance are possible in a 
magnetic field parallel to the surface. In the presence of open electron trajectories, resonance 
oscillations should be possible. Resonance oscillations corresponding to certain selected points on the 
Fermi surface may arise in an inclined magnetic field. The case of a magnetic field perpendicular to 
the sample surface is considered for a metal with a spherical Fermi surface. 

Investigations of kinetic phenomena in metals under 
conditions of strong spatial dispersion are important in 
that they allow us to infer properties of different groups 
of electrons on the Fermi surface from various features 
of the kinetic characteristics. In the problem of elec
tromagnetic generation of sound, such a condition is 
smallness of the sound wave in comparison with the char
acteristic scales of electron displacements (free path 
length l, Larmor radius r). Analysis of the generation 
problem in the absence of a magnetic field has, however, 
shown that the amplitude of the sound wave UOO is deter
mined by the averaged contribution of all the electrons 
on the Fermi surface.[ll The situation changes materi
ally in the presence of a strong constant magnetic field 
Ho, as a consequence of the action of which certain 
groups of electrons excited by the electromagnetic 
wave in the skin layer congregate in narrow layers at 
definite distances from the surface-distances that de
pend on Ho. For this reason, the force exciting the 
sound is modulated spatially with a period characteris
tic of the electron distribution. In our paper, [2] we have 
shown that for the case of Ho parallel to the surface 
and closed electron orbits, the value of UOO undergoes 
oscillations of the geometric-resonance type,t3] which 
depend on the ratio of the Larmor diameter and the 
sound wavelength. It is important that the amplitude 
of the oscillations depends not only on the averaged value 
of the deformation potential X(p) , but also on its local 
value (which characterizes definite points on the Fermi 
surface). 

In the present work, we consider the behavior of UOO 

for arbitrary orientations of the field Ho and different 
forms of the Fermi surfaces. For open orbits, the pic
ture changes qualitatively, because the characteristic 
period with which the electron distribution is modulated 
is the value of the drift displacement of the electrons 
perpendicular to the directions of openness and of the 
field Ho. In short, the so-called resonance oscilla
tions [41, which are very Significant in magnitude and 
which depend on the ratio of the electron-displacement 
length and the sound wave length, should be observed 
for uoo • A similar situation may also exist for closed 
orbits in a field that is inclined to the surface: here 
there is a characteristic mean displacement of the 
electrons perpendicular to the surface, and the gen
eral picture of the oscillations, including geometriC 
resonance, can be a very rich one. It should be noted 
that the considered effects are physically related to 
the well-known phenomena of the current spikes inside 
a metallic sample, which are connected with oscillations 
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in the conductivity (see the review in [5]). However, the 
latter are determined by the part of the distribution 
function of the electrons that is odd in the velocities, 
while the oscillations of uOO depend on the behavior of 
the deformational exciting force 

2 S Of, 
(Af>=- -,;; dpAfa;:' (1 ) 

which is connected with that part of the nonequilibrium 
contribution to the distribution function which is even 
in the velocities fafo/aE (we recall that x(p) = X(-p)). 

We also consider the case of a normal field Ho, when 
the problem can be solved exactly for spherical Fermi 
surfaces and specular scattering of the electrons. 

1. BASIC EQUATIONS 

An electromagnetic wave -exp(-iat) is incident on 
the half-space y>O. We assume that sound waves of 
different polarizations are excited and propagate along 
the y axis independently (it is not difficult to carry out 
the generalization). Then the equation of motion of the 
medium is written down in the formes] 

2 ( tI'u, 2) at.,. 1 [. I pc. --+k. u, 1= __ -- JHo I, 
dy' dy c 

(2)* 

where p is the density, Cs the sound velocity corre
sponding to the polarization, ks=w/cs, the second term 
on the right is the ponderomotive force (the force 
associated with the inertia of the electrons is not taken 
into account because of its small role in the problems 
considered below). As a consequence of the weakness of 
the electromechanical coupling, the problem of deter
mination of the exciting force in (2) can be solved inde
pendently, i.e., we take into account the variations of f 
only under the action of the electromagnetic wave, and 
then find the sound amplitude. Here the electronic damp
ing of the sound is not taken into consideration, but when 
needed it can be introduced phenomenologically. (Natu
rally, such an approach is suitable only at a large dis
tance from the possible intersection of the electromag
netic spectrum and the sound-wave spectrum; this con
dition is assumed to be satisfied in what follows.) We 
seek a solution of (2) which satisfies the condition of 
balance of forces on the free surface y = 0: 

pc,'du.jdy=r,I, 

and has the form of an outgoing wave (-exp(iksY)) as 
y -00: 
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( 4) 

--I dte'h-' (2: I,,(t)- L[jHo]I)] -e-<h,y J dt e,h.' (~Iy(t)- L [jHoL), 
y 

We use the kinetic equation 

of, at A 

vy -;;- + Q - + 'IIt=g""eEv 
uy OT ' ( 5) 

to find the distribution function. Here n is the cyclo
tron frequency and v the collision frequency. Since our 
principal interest is in the qualitative picture of the 
oscillations, we shall not take into account here the 
scattering of electrons on the surface, i.e., the bound
ary condition for f. (As is known, in related problems 
of anomalous field penetration, such an approximation is 
sufficiently good.) Then, using the usual method of even 
continuation of the field g(-y) = g(y), we find the solution 
of (5) by means of a Fourier transformation: 

, 
j'=Q-'(l-G)-' J dT' g'(T, T')exp[H(T')-H(T)], 

T_211 

Here 
w w 

j'= S dyf(y)exp(iky), t(y)=(2n)-'J dkf'exp(-iky), 

and similarly for gk. The following notation has been 
introduced: 

, . 
H(T)= SQ-'kVdT', g'(T,T')=g'(T')exp S1dT", 

'" 
G=cxp[-2n(y+iQ-'kv)], a=(2n)-' Sdca(T), 

o 

(6) 

(7) 

In experiments with direct observation of sound gener
ation, the sound amplitude uoo is measured far from the 
surface that is irradiated with the electromagnetic 
wavesY-9 J Acc,ording to (4), uoo is determined by the 
coefficient of elkSy as y -00. 

Using the Fourier expansion for f in (4), and taking 
into account the symmetry relation fk(v) =-f-k(-v), which 
follows from (5), we obtain an expression for the sound 
amplitude as y - 00 in the form 

i 
2pc.'u,oo =- [i"HO]'-~I:', 

klc 

j'·=e<vf;. >, ~'=<'j.f.->, 2f,±=f'±f-', 
(8) 

Thus the amplitude of the excited sound wave is ex
pressed in terms of the Fourier components j and £ 
for the value of k = ks; these are determined by the 
parts of fk that are even and odd, respectively, in k. 

We further consider the case in which the character
istic dimensions that enter into the problem obey the 
following inequalities: 

{)«.k.-'«.r«.l (9) 

(0 is the thickness of the skin layer, r the radius of 
the Larmor orbit, l the free path length). As a conse
quence of the left-hand inequality of (9), the Maxwell 
equations that serve to determine Ek reduce for 
k = ks to the relation 

In short, the first term of (8), which is due to the 
ponderomotive force, is expressed in terms of the 
derivative of the electric field On the surface of the 
crystal, i.e., in terms of the value of the magnetic 
field of the incident wave, and does not depend on the 
kinetic characteristics of the metal. We therefore 
limit ourselves below to consideration of the second 
term of (8) only: 

(PH is the projection of p on the direction of Ho and 
m* is the cyclotron mass). The integral over T can 
be calculated here by the stionary-phase method be
cause of the second inequality of (9) (H( T) »1): 

s" A i S" ~g. "HG n g,(T,)}.(T,) 
dd"f'=-Q dT H'(T) +Q l-G ~ IH"(T,) I 

o 0 l=a.,t1 

(11) 

2:rr exp [i,,(s,-so)/4] {~() '( )G '[H( () 
+ Q (1-G) IH"(To)H"(T,) 1'1, A To g To,T, exp' Ta) 12 

-H(T,) ]+~(T,)rt(T" Ta)CXP i[H(Ta)-H(T,) +n(so-s,)/2]}, 

Here Til',{3 are the roots of the equation H'(T)=O, 
si = sign H"( Ti), and it is assumed that H"( Til' ,(3) '" 0 
(the prime denotes the derivative with respect to T). 
The first term of (12) is the contribution of the region 
of integration which does not contain points of stationary 
phase (in the calculation of the conductivity tensor Je. 

IJ 
the similar term vanishes). It determines the part of 
the amplitude 

00 ieE/' S _ 2ft: ""lyVj 
U/l =--'-3 dpHm S d'T--, 

pc, h 0 k.v 
(13) 

in which the dependence on the field Ho enters only 
through the quantity Ek, calculated from (10) (the de
pendences of the uk on Ho are well known; see, for 
example, [5 J). At Ho=O, (13) is identical with the result 
obtained in [1J. The contributions of the second and 
third terms of (12) to (8) (we denote them by un and un!) 
depend Significantly on the value and orientation of Ho. 
We shall analyze this in specific examples. 

2. OPEN ORBITS 

In this case, the period T of the motion of the elec
tron enters into (12) in the form 2rrO -1; it depends on the 
period Po of the dispersion law along the direction of 
openness. It follows from the equations of motion that, 
on the average over the time interval T, the electron 
moves perpendicular to the directions of openness and 
of the field Ho through a distance d = cPo/ eHo, which 
does not depend on the value of PH. The quantity 27Tn-1kv 
enters into expression (7) for G and is connected with 
the displacement d in the following fashion: 

2 Q-'k Poe, " .v=k. --Sill e""k.dy 
eHo 

(14) 

(e is the angle between the direction of openness and 
the normal to the surface). At ksdy > 1 (i.e., sin e 
>(ksr)-1), the denominator I-G in (12) causes resonant 
oscillations of uoo in the magnetic field. An estimate 
with the use of (12) gives for the resonant part of uoo 

( 15) 

4niw " 4niw " dE, I --I, ·=--a,·g·=-2- l=x z, 
c2 c2 J J dy 11=0' , 

(10) The maximum and minimum of (15) are respectively 
achieved at the points ksdy = 27T(n ± y). The curve of 
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FIG. I. Dependence of the amplitude 
of the excited sound on H~l in the 

tdy/ZJt presence of open orbits. 

the dependence of u"" on HoI is anti symmetric rela
tive to the points ksdy = 2rrn (see Fig. 1), in contrast 
to the resonant oscillations of the sound-absorption co
efficient a on the open orbitsYJ For ksdy < 1 
(e < (ksrfl), the resonant oscillations disappear. 

In an inclined field Ho that forms an angle cp with 
the surface, the contribution to u"" from the open 
trajectories can change. It is not difficult to establish 
that for cp < (kSZ)-l we have Eq. (15) as before, and 
that for 

(k.r) -'><p>(k,l)-' 

this contribution is comparable in magnitude with the 
result for closed trajectories considered below. 

3. CLOSED ORBITS 

In an inclined field and for closed orbits, the mean 
displacement of electrons in the direction of the normal 
is different from zero and is given by dY=VHn- l sincp, 
which enters into the expression for G. All the terms of 
(12) make contributions to u""; their values depend on 
the value of 2rrksdy, i.e., on the angle cpo We first con
sider the nonresonant case 2rrksdy« 1, i.e., cp «ksr)-l. 
Here 

1-G- (21Q+ik,dy)-I, 

and calculation shows that 

~ _ ieE:'. Sd . ~ A;y(T')Ux(T,) {k.vHv'sin<p 
UJII- pc.'h' Pam..:::... IH"(T,)I P(k,vll sin <p)-' 

i=a, P 

~ {k.I<P1-', <p«k.Z)-', 
- Uj! (k.rq» -', <p> (k.Z) -'. 

(16) 

(P is the principal value of the integral; the x axis is 
perpendicular to the normal and to Ho). 

In the OSCillating part of u"", which is connected with 
the third term of (12), those orbits which correspond 
to the central cross section of the Fermi surface per
pendicular to Ho make a contribution at cp < (ksl) -1. 
After simple computations, we obtain the same result 
as for cp = 0:(2) 

~ _ 2isa'eE:' I {)'e 1-' I {)'e 1-"'1 neH, I 'f, 
UIIU- - -- -- --

pc,'h'v k, a Po' ap,' k,uxc (17) 
X Ux(Ta')A,y (Ta') cos (k,Dx'-ns,/4). 

Here D~ =[Px(T'ix)-Px(T~)]c/eHo is the extremal di
ameter of the orbit, -fla {3 are the pOints on the central 
cross section at which ;'y=O (see Fig. 2), VX(T'ix) 
=-VX(TS), A(T~)=A(T~), s'ix=-s~ as a consequence of 
the central symmetry of the Fermi surface; the value~ 
of all the quantities are taken at these pOints, except A, 
which is averaged over the orbit corresponding to the 
central cross section; Sz = sign(vila2E:/ap~) at T= T~. 
Equation (17) refers to the case in which Aly( T a ,(3) '" 0 
(the analysis for Aly( Ta ,(3) = 0 will be given below for 
the example of a spherical Fermi surface). Expression 
(17) describes oscillations of u"" analogous to geometric 
resonance.[3 J We note that similar terms in the conduc-
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FIG. 2 

tivity and in the sound-absorption coefficient a have 
opposing phases and relative values -(ksr)-1/2« 1.[5,3 J 
In our case, the ratio of (17) and (13) is y-l(ks r)-1/2 in 
order of magnitude, i.e., it can be considerable. For 
larger angles of inclination cp > (ksll- l ,the quantity uIII 
depends on which of the functions PH is sharper-( 1- G) 
or exp[±i(H(T{3)-H(Ta))]. It is not difficult to establish 
that for 

(k.l) -I<<p< (1Ik,l) '" 

uIII is expressed by Eq. (17), and that for 
(k,r) -I>rp> (1Ik,l) ", 

~ _ 2isa'eE:' QA;o(Ta') cos (k,D,') I ~ I-' I !UH I-' 
UjIU- - pc/h3k s 2(f) iJPTl2 apH (18) 

(Pry is the projection of p on the direction perpendicu
lar to x and Ho). 

We now return to consideration of the case of suffi
ciently large angles of inclination cp > (ksr)-l , when 
ksdy > 1. Here resonant oscillations of u similar to 
those considered in Sec. 2 for open trajectories may 
appear. The difference is that in the given case, dy de
pends on PH; therefore, the resonance, as in the analo
gous case for the conductivity (5) and the sound absorp
tion,l4J appears only in the vicinity of the elliptical 
limiting point and in the presence of an extremum in 
dy(PH) outside the central cross section. 

In the analysis of resonant oscillations in the neigh
borhood of the elliptical limiting point corresponding to 
the limiting value of the momentum PH, we represent 
the dispersion law E(p) in the form of an expansion in 
~Pi = Pi - p~ with accuracy to within quadratic terms 
and, using the equations of motion of the electron, we 
find the dependence H(T) in the explicit form (7). From 
the condition of the presence of the effective points Ta ,(3 
on the orbits in the vicinity of a limiting point deter
mined by the width of the resonance denominator 1- G, 
we get the limits on the angle of inclination cp, which 
ensure the presence of resonant oscillations: 

(k,r) -I<<p< (k,l) -"'. 

Here the resonant point of u"" equals 

00 i'IteE~ A;~Vm 0 I fPe i)2e _1/. 

Ujll=- 'h'kK'" ",snM(-/',.) T"""'~I, (19) 
PCs 8 on p~ prJ 0 

where 

M(/',.) =1 (1'+/',.')-'''[ (1'+/',.') '''-SH/',.]-''', 
L'.=k.dy-n=k,<pQ-'un'-n<t:1, 

and n is the number of the resonance. 

The values taken at the limiting point are marked with 
zeroes in (19), and Ko is the Gaussian curvature, 

G. I. Babkin and V. Va. Kravchenko 500 



( k.<P fJ'e) 
sH=sign Q ()PH' O· 

The maximum of the function M(-~) is equal to 
33/4/2y l/2 and is reached at ~ = }'SH/3l/2 (in the analogous 
increments to ak and O!, the maximum occurs at oppo
site values of ~). 

If the Fermi surface is not convex and there are ex
trema of dy(PH) on it, resonant oscillations of the type 
(19) are also possible at these points (for angles of in
clination cp > (ksr)-l). 

4. SPHERICAL FERMI SURFACE 

The case in which AZy = 0 at Vy = 0 is not included in 
the foregoing results. We analyze it for a spherical 
Fermi surface, for which one can use the following form 
of the deformation potential: 

"-
,"lj=7vlVJ, (20) 

the parameter A - EF (for a gas of free electrons, 
A=-mv2 [10]). 

a) Ho paralle I to the surface. In this case, Vx = VI cos T 

Vy=VI sin T, Vz =V cos e, VI =v sine, e is the azimuthal 
angle. The integrals over dT in (6) can be calculated 
conveniently by using an expansion of exp(ikr sin e cos T) 
in a series in Bessel functions. Simple calculations lead 
to the following results. 

The amplitude of the transverse sound wave for ksr 
»1 is equal to 

u oo = -~E·'.!:....~{ H(k.r)-'I'(2n)-'I· sin(2k,r-n/4), j=x, (21) 
1 2 J £F I kspC,2 1, j=z 

The coefficient in front of the curly bracket in (21) has 
the same order of magnitude as uI in (13). We note 
that the oscillating contributions not associated with 
Eks (i.e., with the oscillations of ak) exist only for an 
exciting field Ex1 Ho, and their relative value is 
-(ks r)-3/2 «1. 

We turn our attention to the following circumstance. 
If the field in the incident electromagnetic wave is paral
lel to the x axis, a Hall field Ey is generated in the 
sample, the Fourier component of which turns out to be 
equal to 

1 (n)'I' ( n) E:=E:-- -- cos 2kr-- . 
2n1 kr 4 (22) 

The Hall field makes a negligible contribution to the ex
citation of the transverse sound, which is omitted in (21) 
(a similar situation also existed above for AZy "'- 0 at 
Vy = 0). However, for excitation of the longitudinal 
sound in our case with deformation potention (20), the 
Hall field plays a decisive role and gives the oscillating 
contribution 

(23) 

which is (ksr)1/2 times greater than the monotonic con
tribution. 

b) Ho II ks II y-normal field. The paper by Kaner and 
Fal'kolu ] was devoted to analysis of this situation. The 
authors Ul] considered not UOO but the quantity u at 
y = O. In accord with (4), the latter has the form 
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2pc/u,(O)= - ~ +-[j"HoL 

t-.J IY ck. 
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1 fW dp [ ~p i 
+~p _oop-k, - ~,y +~[jPHoll]' 

(the Fourier expansion has been used for f). Only the 
integral part of u(O) was calculated in Ull_the part 
connected with the features of the functions LP and jP 
that determine the penetration of the electromagnetic 
wave, i.e., the value actually found is for the deforma
tion at y = 0, which is further damped in the skin layer, 
together with the electromagnetic field. Since experi
mentors usually measure uoo , we now carry out a cal
culation for this quantity. 

In the given case, Vy=v cos e, vx=vl cos T, and 
Vz = v 1 sin T. This case is of interest, in particular for 
the fact that the distribution function (6) . 

1'=Q-I f d.' g.(.')exp[ (.' -.) (l+ iQ-'kvy) 1. 

g.=e[E}vx+E,'v,] 

is, as can easily be shown, the exact solution of the 
kinetic equation for specular scattering of electrons 
on the surface. 

(6') 

Let the electric field of the incident wave be parallel 
to the x axis. We give the results of the calculations 
for the transverse waves Ux and Uz excited in this case: 

(24) 

where 
C'PF '" 4 

Uo '"1=-. K =-ImY-'-(k.l)-' 
4:rt(tlepcs 2 ' 2EF 1 3 ' 

4 fH 1+i1 
K,=(k.r)-'--3 Rey-', Y=2f+(1-r')ln--, f=--. 

f-t k,r 

The formulas (24) were obtained in the longwave approx
imation kso« 1, using the expressions for EkS that 
follow from (10). We note that Ux is expressed directly 
in terms of the absorption coefficient of transverse 
sound O!, which is equal in our notation to 

The contribution from the ponderomotive force (the 
term without Al in uz) was also included in (24); it is 
linearly dependent on Ho. The contributions from the 
deformation force (the terms with AI) are quite non
linear. Figure 3 shows the dependences of Kl ,2 on 
(ksr)-l-Ho for different values of ksZ. The behavior 

(25) 

of the function K2, which varies nonmonotonically, is of 
interest: at ksr - 1, it reaches a maximum, which is 
sharper the greater the value of ksZ, and then falls off 
(at large Ho, as Hal). Thus, monotonic decay of Ux from 
the maximum value corresponding to Ho = 0 should take 
place with increasing Ho; Ux falls off asymptotically as 
Ho2 in strong fields. The character of the asymptote 
for Uz in large fields is clear: Uz - Ho, approaching 

FIG. 3. Dependence ofK1,20n 
(ksr)-I ~ Ho. KI is given by the 
solid lines, K2 by the dashed ones. 
The numbers on the curves cor
respond to the values of the 
parameter ksl. 
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this dependence from above for Al > 0 and from below 
for Al < O. 

5. DISCUSSION 

As we have already observed, we have not consid
ered cases of coincidence of the lengths of the sound 
waves and the weakly damped electromagnetic waves, 
i.e., the excitation of coupled waves. We shall touch on 
the possibility of such an approach for the case of 
dopplerons. For open orbits, as is well known,[12J the 
first dopplerons are obtained only upon satisfaction of 
special requirements as to the structure of the Fermi 
surface (the presence of additional electron groups with 
parameters of the necessary value); effective dopplerons 
of large number are possible at w» ll. We shall assume 
that these requirements are not satisfied. For an in
clined field, it suffices to assume that the frequencies 
satisfy a condition that is opposite to the condition for 
realization of the doppleronsY3 J 

In a normal field, we have considered only the Fermi 
sphere, for which the interval of fields in which doppler
ons are realized is extremely small. Resonant interac
tion of sound with other types of weakly damped electro
magnetic waves was considered by Skobov and Kaner;[14J 
we assume that the corresponding conditions of interac
tion of the spectra are not satisfied in our cases either. 

We now proceed to the analysis of the obtained results. 

Formally, the oscillations are introduced by two co
factors into the expressions for u"". The first is con
nected with the part of the distribution function fk(v)/Ek 
that is even in the electron velocities; the character of 
its changes was analyzed in the text. The second is con
nected with the Fourier components of the conductivity, 
which enter through the values of Ek in accord with 
relations (10). As was shown in Secs. 2 and 3, the 
oscillating parts of u"" lEks depend in the case of 
closed orbits on the values of a number of parameters 
of the electron spectrum at definite points on the Fermi 
surface, and, in particular, in accord with (17)-(19), on 
the values of the deformation potential Ajy. The oscilla
tions of the conductivity make contributions to uosc that 
depend on the averaged values of ~. Therefore, to es
timate ~ at the different points of the Fermi surface, it 
is necessary to use cases in which the role of the oscil
lations of u in the general pattern of variation of u"" 
is unimportant. It is not difficult to show that for an 
arbitrary Fermi surface (with Aiy '" 0 at Vy = O-as as
sumed in Secs. 2 and 3), one such case is that of small 
angles of inclination of the field q; < (ksl)-l. Here the 
monotonic part is (Tk - uo(kr)-l - Yit (to distinguish it 
from y in (17) we denote the average over the Fermi 
surface by Yav). In short, expression (17) depends only 
on the values of the parameters of the Fermi surface 
at the point -fla (or 1)' with the exception of the factor 
YaviY. USing the independence of YaviY of the rotation 
around the field Ho, given samples with different orienta
tions, we can in Frinciple obtain a comparative estimate 
of the values of A at different pOints of each central 
cross section of the Fermi surface from the value of 
the oscillations of u"". In the case of larger angles of 
inclination q; > (ksl)-l , the relative contribution from 
uk is of the same order as that described by formu-

osc 
las (18) and (19). The general picture of the oscillations 
of u"" , which are considerable in magnitude, is compli-
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cated here, which makes it difficult to obtain estimates 
for ~. In the case of very considerable resonance oscil
lations (15) due to electrons on open orbits, we obtain 
a result similar to the foregoing: for q; < (ks l)-l the con
tribution of uk is inSignificant. osc 

Thus, measurements of the amplitude of u"" and its 
dependence on Ho make it possible in principle to es
timate the values of ~(p) in a number of cases; more
over, we can obtain the same information on the dimen
sions and shape of the Fermi surfaces from the mag
nitude of the periods of the oscillations as is obtained 
by means of the radiofrequency size effect for the case 
of ultrasound absorption. 

We now review the results for a spherical Fermi sur
face. According to the data of Sec. 4a), the oscillations 
of u"" are determined by the current spikes, i.e., the 
contribution uosc - umon(ksr)-1/2, and are comparatively 
small for transverse sound. Under these conditions, the 
excitation of longitudinal sound, in which the Uosc are 
conSiderable and, according to (23) and (22), are op
posed in phase to the oscillations of transverse sound, 
is of interest. In a normal field, the weak-field behavior 
of u~, which depends strongly on the values of ksl and 
Al = \/2€F, deserves attention. Thus, at ksl > 1 in the 
range of fields where the function K2 increases (see Fig. 

.3), and at values of I All - 3- 5, the quantity I A11K2 in u~ 
numerically exceeds (ksr)-l. If these values of Al are 
negative, then the value of Uz in the given region of 
fields has a different sign than in strong fields, i.e., the 
opposite phase. At a certain value of Ho (in the region 
ksr-l), the amplitude of u~ gives to zero in the con
sidered case and then begins to increase, approaching 
its asymptotic value from below. For lu~ I, we get a 
maximum in this case at ksr > 1 and a minimum at 
ksr - 1. This behavior of u~ was observed experimen
tally by Wallace, Gaerttner and Maxfie ld [8J for 
potassium. 

To reconcile (24) with the experimental values of u~ , 
values of Al -7 are required, but they lead to a strong 
difference between the independently measured coeffi
cient of sound absorption a and Eq. (25). Evidently, the 
divergences of theory and experiment in this problem 
are of interest in principle, because the exact solution 
of the problem for specular scattering was used in 
Sec.4b). 

Account of diffuseness can scarcely correct the situ
ation. Let us estimate the role of diffuseness of scatter
ing for Ho = O. Using the distribution function for com
pletely diffuse scattering of electrons on the boundary 

• 
t{vy>O)= J dy'Q{y',y), t{vy<O)= J dy'Q{y',y), 

• 
Q{ ' ) eE{y')Y {y'-y)v 

y ,y =---exp---
VIJ VIJ 

in Eq. (4), we obtain 

",k,em {< vx'v,,' > S E () k llxOO =-- --- dy x y cos ,y 
ipc/ k s 2 v/,+V 2 0 

< v 'v' > 00 ( YV) } - -~ S dyEx{y)exp -- . 
k~ Vy +V till>O 0 VII 

(26) 

The first term of (26) coincides with (24) at Ho=O; the 
second term, which is lacking in the case of specular 
scattering, only reduces the general result: for kso« 1 
and the maximum anomalous skin effect, i.e., as II - 0, 
it is equal to 1,{ of the first term. Diffuseness does, of 
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~our~e, lead to a certain increase in E, but this growth 
IS ummportant; thus, the surface impedance increases 
by no more than 9/8 times. 

We shall not discuss the experiments of [9] in which 
oscillations of UOO were observed, because its'data are 
insufficient for comparison with our results. 

*[jHol =j X Ho. 
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