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Nonstationary expansion of high-energy electron cloud in a cold plasma with a weak magnetic field 
is considered. It is shown that within a broad range of parameters the dispersion of fast particles 
occurs in a diffuse manner with a characteristic velocity that is much lower than the particle 
velocity. Effective isotropization of the directions of particle velocities occurs during the dispersion. 
while the energy spectrum itself is weakly deformed. A feature of turbulent dispersion is the 
"evaporation" of sharply anisotropic low-density particle streams from the cloud. with their velocities 
parallel to the dispersion direction. The velocity of these particles is close to the free dispersion 
velocity. 

1. The expansion dynamics of a fast charged particle 
cloud in a plasma is of fairly general interest, especially 
in its application to solar and magnetospheric physics. 
The dispersion of fast particles from a local source 
also plays an important role in anomalous plasma heat
ing when most of the energy is dissipated in a small 
volume, near the point of reflection of a microwave field 
for example. In such problems pair colliSions are not 
significant to fast particle dispersion, while collective 
effects leading to plasma turbulence and anomalous 
collision frequency are decisive. 

Turbulent dispersion of a fast electron cloud in a 
plasma with a strong magnetic field (Wp« wiI) is 
considered in [1-3 1 • In a strong magnetic field, the 
plasma-wave spectrum and the diffusion of the par
ticles in velocity space become one-dimensional. For 
a sufficiently dense cloud we can thus write a relatively 
simple system of "quasi-gasdynamic" equations de
scribing the dispersion. 

For the case of a weak magnetic field (wiI «wp) or 
for zero field the diffusion of the fast particles in 
velocity space and the spectrum of the plasma turbu
lence excited by the particles are no longer one-di
menSional, making the problem more complicated. A 
simplifying factor in this case is the fact that fast par
ticles excite plasma oscillations whose phase velocity 
is much lower than the average velocity of the fast par
ticles (Vph «vo). As a result, the particles experience 
elastic collisions with the plasma oscillations and 
their velocity distribution function remains almost 
isotropic. Therefore the cloud expands diffusively with 
a characteristic velocity Significantly lower than the 
free dispersion velocity. The plasma turbulence level 
is maintained by the weak anisotropy created by the 
expanding cloud. Typical of this case is the formation 
of a "halo" 1) of lOW-density particles having an en
ergy plateau within the interval wT < W «Wo = (1/2)mvg 
(WT is the thermal energy of background-plasma par
ticles); this halo controls the intensity of the plasma 
waves. A quantitative investigation of this problem is 
given below for the case of a simple model of one
dimensional symmetric dispersion. 

2. We consider a one-dimensional (in coordinate 
space) symmetric dispersion of an electron cloud along 
the So axis, controlled by a weak magnetic field, for 
example. The system of guasilinear equations describ
ing such a dispersion is [2l: 

480 SOY. Phys.-JETP, Vol. 40, No.3 

+~~ (Dv%!.!..+D=~~). 
v ax av v iJx 

De. De. 
--at+v gra; =2 (y.-v.) e •• 

D" 1 . 4 ' ~ +, 
D" = ( ';) J J k'dkdye. 
Dxx 0 -I 

{ [ {() ( (() ) ] ,r,} -1 ><Re kv l-x'-y'--,;; Tv-2xy {() ( (()X) 
~ y-~ 

kv lev' 

( {()X)' 
y-~ 

ku 

y,= -n-,,-k!-:-/ D-{()- (-:-: ) 3 I r dvdx Re {[-(~-V -+ ( x- -~,-> ) -a~-] f 
, -1 

[ {() ( (() )] -.r,} x I-x'-y'- -,;; k;; -2xy . 

The kinetic equation for the electron distribution 
function f is written in terms of the variables of the 
velocity modulus v = Ivl and the cosine x of the angle 
between the velocity and direction of the dispersion; 

(2) 

(3) 

(4) 

Ek is the spectral energy denSity of the plasma oscilla
tions, Yk is the growth rate of the plasma oscillations, 
Ilk is the linear decrement and includes the Landau 
damping in the background plasma and the collision 
damping, and y is the cosine of the angle between wave 
vector k and so. 

If the high-energy electron cloud is dense enough, 
the anisotropy due to the second term in the left-hand 
side of (1), which appears during the dispersion process, 
is quickly eliminated through scattering by the waves, 
and the particle distribution is kept quasi -isotropic. This 
condition permits us to write the distribution function 
in the form 

f + 
!=F+(l). F=<!>,.. 2' S dx!. (l)«:.F. ( 5) 

and to write separate equations for the isotropic F and 
anisotropic <I> parts of f (see also [4l): 

OF =.!!..~[( (I_x')' )!!!..]+~~V'[<D,,>_(D_')!!..] 
at 4 os D= os v' av D= iJv 

+.."'.~ [( (l-x')Dv% )!!!..] _~I ~v, [v,( (1-x')Dv% )~] .(6) 
2 os D= iJv 2v' iJv D= as 

The anisotropic part <I> of the distribution function is 
expressed in terms of F in the following manner: 

_ v' iJF s% ,(x"-I) 
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According to (4) plasma oscillations satisfying con
dition (5) are excited in the region of low phase velocities 

(8) 

Using this condition and substituting (5) and (7) in (4), 
we obtain the following expression for the growth rate: 

l'=Wp(WP)'-'::'[--F(Wp)-.!!LSw+S'dVdXRe 1 ,v'(l-x') OF] 
k np k4wp (1-x'-y') /, Dxx as' , -, 

(9) 

where w'" wp = (41Te2np/m)1/2 is the Langmuir frequency 
and np is the concentration of the background plasma. 

We use one more simplifying assumption that is valid 
at sufficiently high values of y, i.e., the intensity of the 
plasma waves is determined at the quasi-stationary 
level (2] 

-r-v=O, a(,,(-V)laUph=O' a'(,,(-V)/i)uph'<O, (10) 

where IJ is the total damping of the plasma waves by the 
background-plasma particles. The last two relations of 
(10) follow from the requirement that condition y = IJ be 
satisfied in the extremum point where y - IJ reaches a 
maximum. 

Equations (10) enable us to write the intensity E and 
the phase velocity vph of plasma waves as functionals 
of F. We can readily see that the first relation of (10), 
taking (9) into account, represents an Abelian integral 
equation in terms of y. Its solution is of the form 

D= = ~(1-x')'D(t, s). 
U 

(11) 

The angular dependence of the energy density of the 
plasma waves is found from the solution of one more 
Abelian integral equation which follows from (3) and 
(11) when (8) and (9) are taken into account: 

m' 
E.= 3n'e'k. y'D(t,s){j(k-k'(t,s)), 

~ aF 
if y S dvu'T<O; (12) 

, s 

- aF 
£,=0, if yS dvv'-'>O, 

, as 

Here k* = wn/vph (as in D(t, s)) is expressed in terms 
of Fusing rlO). The diffusion coefficients present in (6) 
are readily computed for the obtained energy distribution 
(12) of the plasma oscillations. USing (6), (9), and (10), 
we obtain the following system of equations determining 
the behavior of turbulent dispersion of a fast-electron 
cloud: 
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(I3b) 

n p ov rJ. I Ws ,aF I -I -----, .(Uph F)+JlVph dvv - D =0. 
W p aVph iivph 0 as 

(I3c) 

The initial and boundary conditions take the form 2) 
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1=0, F=F"(s, v), D=D"(s, v),Vph=uph'(s); (14a) 
of 

F~O; V~OO, F~O; s=O, ~=O; 
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FIG. 1 

The system of equations (13) enables us to find the dis
tribution function F(t, s, v), the phase velocity Vph(t, s), 
and the intensity D(t, s) of plasma noise, 

The analytic solution of (13) and (14) can be obtained 
from the following considerations. It follows from (I3a) 
that velOCity diffusion occurs primarily in the region of 
low velocities V«Vo. In this region the plasma waves 
cause a rapid smoothing of the energy distribution func
tion. By virtue of (13b) a relatively small number of 
particles with v ~ Vph is sufficient to stabilize the in
stability. Consequently, in the low velocity region there 
forms an extended "halo" that is due in part to the 
cloud electrons and in part to electrons from the plasma 
itself (Fig. 1). The relaxation of the distribution func
tion in the low-energy region is quantitatively described 
by the first term in the right-hand side of (I3a). 

A different behavior is shown by the cloud particles 
with velocity Vo »vph. Under certain conditions dis
cussed below we can neglect the energy diffusion of these 
particles and consider merely the last term of (13a), 
which describes the spatial expansion of the cloud. 

The solution method described above is convenient 
if we start with a fast-particle cloud with a small energy 
scatter and with an extended "halo" of background elec
trons having a relatively low amplitude (Fig. 1). 

As an example, we consider turbulent expansion of 
the cloud, given an initial fast-particle distribution 
function of the type 

noes) (CL+3) 
F,=--, (j(v-vol+--, nh(s)M"(v)[1(v)-1(v-vol]. (15) 

4nvo2 4J1V~+3 

Here o( 0 and 1(~) are the Dirac delta function and the 
Heaviside unit function, no is electron density in the 
cloud, nh is particle density in the "halo," and MQ!(v) 
is a polynomial of the Q!-th degree in v. 

The evolution of F in the region of low energies is 
described by the equation (see (13a)) 

( 16) 

t=O, F=Fo(s. u); 
aF 

v=vph, 0;=0; u=u·, F=F·(s,v). 

The last boundary condition is due to the fact that the 
solution of (16) for v=v* (vph «v*) should produce a fit 
with the total solution of (13a). For the case of low 
colliSion frequency the phase velocity of the waves is 
determined by Landau damping in the main plasma. 
In such a case Vph ~ 3v and varies little in the course of 
dispersion of the cloud. 

The solution of (16) is derived in the Appendix. Pro
vided that V*5 r -l» 1 this solution is independent of v* 
and F* in the region v ~ vph and is determined by the 
following expression (A6): 
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F(T,Vph) = 1':,Sdvv2 exp (-~) F.(s, v), 
~. 0 25T 

where 

Substituting (15) into (17) we obtain a solution in the 
form 3) 

Here 

A = (2a+3) r(0.6+0.4a)% 
4nv';+> r (0.6) . (0.4) •.• e' 

and r( I;) is the gamma function. 

(17) 

(18) 

(19) 

We apply the obtained expression for the distribu
tion function in the "low" velocity region (19) in order 
to determine the coefficient D. For this purpose we 
substitute (19) and (18) in (13b) and obtain a first-order 
differential equation relating T to t. This equation is 
readily integrated and yields 

( n S', I SW , iJF I -'/') · T = 2A6 vph dt dv v as + T. . - T., . . (20) 

where o=(0.40'+lf1 • 

After the relationship between T and t is established, 
the quantity D can be determined with the aid of (18): 

(21) 

Under certain conditions discussed below we can 
neglect the energy diffusion of the cloud particles. 
Retaining in such a case only the last term in the right
hand side of (13a) and changing over to the particle 
density in the cloud 

n=4n S dv v'F, . 
we obtain the following equations describing the turbu
lent dispersion: 

~ =~.!.- (v-.!!!:"') . 
at 4 as as 

(22) 

Differentiating (22) with respect to time and using (19)
(21) we obtain 

a'n _VpfV.' (1-6) a [( )_. an] 
- - ------.,- T+T. -
at' 4 6 as as 

(23) 

Equation (23) yields a correct solution in the region of 
s values for which an/as", 0. 

We now assume that an/as =0 at a certain point 
s = s* (s > 0) 4) and that the cloud expansion proceeds 
from the origin s = 0. Then in the region s > s* the 
solution is described by (23). In the region s < s* for
mally D- 1 _00 (see (20) and (21)) and an/as:::: 0. Actually 
in this region there is no plasma turbulence and the mo
tion of the cloud particles follows the law of free dis
persion. The solution for both regions must be "fitted" 
at s=s*:n-(s*)=n+(s*). 

The simplest to solve is the case 0 == (0 .40' + 1) -1 « 1. 
Here T in (23) can be considered as independent of t 
and s, and equal to Too. Thus the dispersion of the main 
cloud at lsi> Is*1 is described by the equation 
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a'n+ a'n+ 
-fif = vd2 a;;-' 

, Vph'V,' (1-6) 
vd =-4(T'+Tw)6 ' 
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(24) 

under the following initial and boundary conditions: 

t=O, n=n.(s); s=s', n+=n-. 

The density n-(t) is independent of s in the region 
lsi < Is*l. To find n-(t) we can use the law of conser
vation of the total number of particles in the cloud 

+00 +_ 

L[n-(t)+n+(t,s) 1ds=2N.= S n.(s)ds. 

(25) 

(26) 

For sufficiently large t» So/vp (so is the initial dimen
sion of the cloud) the contribution from the region lsi 
2: Is* I to the integral of (26) is small and therefore 

(27) 

The dispersion rate can be expressed, taking (20) into 
account, in the form 

where nh is the particle density in the "halo" and 
Uomax is the maximum initial particle denSity in the 
cloud. 

(28) 

Figure 2 illustrates the approximate form of the so
lution for t 2: so/vp. The same figure shows the energy 
denSity E of plasma waves as a function of s. Selecting 
as an example the initial distribution no(s) in the form 
of a triangle 2so wide, we have 

v.' ( no SO) l!{O,Ht+l) 

"t=- 0.3-- , 
a nh S 

D= 03--
SUOS (no So ) 11(0,'0:+1) 

S.'Vph (0.4a+1) . nh S ' 

so' 
D=O, Isl<s,+vdt--, s,+vdt<lsl. 

Vdt 

We consider the limits of applicability of the ob
tained solution. A comparison of various terms in the 
right-hand side of (13a) readily shows that the condition 
V*5 T-1 »1 under which solution (19) holds is satisfied 
through the entire cloud-dispersion phase. 

Integrating (13a) with respect to s from -00 to 00, 

we obtain an equation describing the "cooling" of the 
cloud. Using (29) we have 

0.6[0.3 (n./nh) s./s 11/(o.<e+1) 1 a (1 aF) 
a'(t+s./v p ) u' au -;;Tu ' 

where 
+W 

u=..!:.-, F=SdsF. 
v. 

(30) 

According to (39), the characteristic time t* de
scribing the change in the energy spectrum of the cloud 
is defined by the relation 

, ( no so) l/(O.'r.z+t) t·v 
a- 0.6 0.3-- In_d -1' 

nh S so' 
(31) 

Therefore for a» 1 the cloud cools down very slowly 
and the cooling effect can be neglected in the description 
of spatial diffusion. 

n 

FIG. 2 
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The approximate picture of the dispersion appears to 
be valid also in the more general case of arbitrary ini
tial conditions and parameters. However, the quantita
tive description based on (13) can differ significantly 
from the foregoing. 

We now briefly consider the dispersion as a function 
of the external magnetic field. We note that even in the 
absence of external magnetic field there is a small frac
tion of particles that do not interact with plasma waves 
in the manner described above. These are particles 
whose velocities are subtended by a narrow cone about 
the dispersion axis. The existence of this cone is due 
to the fact that the energy density of the plasma oscil
lations vanishes at kl So (so is the dispersion axis) and 
it is precisely these waves that interact with particles 
with v II so. The number of such particles can be found 
by determining the anisotropic part q, of the distribu
tion function. According to (7) and (11) we have 

Vph 1 1- x I ' (ll",,--Fln --, x:;:cos(sv). 
Vo l+x 

Using this we find the region of transverse electron 
velocities for which the above analysis is invalid: 

v.J.~2vo exp(-vol21]v.ph), 1]>1. 

(32) 

(33) 

If the external magnetic field differs from zero, the 
fraction of these particles increases. In fact, for a 
weak magnetic field the nature of the dispersion is 
preserved if the particle effectively interacts with a 
large number of gyrofrequency harmonics, i.e., if 
the following condition is satisfied: 

k.J.v.L.;p 1 or ~~;p 1. (34) 
ffilI Vph W H 

The particles for which the reverse inequality is satis
fied interact with the oscillations only at the Cerenkov 
resonance w=ksvs, and the relaxation in velocity space 
is one-dimensional. 

We note one more difficulty with the isotropization 
caused by the increasing external magnetic field. Iso
tropization is possible if passage through zero Vs is 
permitted in the quasilinear diffusion process. Passage 
through zero occurs when w = nWH (n = 1, 2, ... ), i.e., 
the plasma wave spectrum contains frequencies that 
coincide with the gyrofrequency harmonic of the elec
trons in the cloud. This condition imposes the following 
limitation on the strength of the magnetic field: 

ffiII/Wp<UT2/Vph2, {i)n<t:ro p , 

where vT is the thermal veloCity of electrons in the 
main plasma. 

We sum up the results: 

(35) 

1. Turbulent dispersion of a fast (vo »VT) particle 
cloud in dense plasma with a sufficiently weak magnetic 
field has a diffusive character and the mean dispersion 
velocity is significantly lower than the characteristic 
velocity of the particles in the cloud. The turbulence is 
concentrated in thin "walls" at the edges of the cloud. 

2. The dispersion process is accompanied by strong 
isotropization of the velocity directions of the particles 
in the cloud, while the initial energy spectrum is rela
tively weakly deformed. 

3. Typical for turbulent dispersion is the formation, 
in velocity space, of an extended "halo" of low density 
particles having an energy plateau in the interval 
wT<w«wo. 
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4. Sharply anisotropic lOW-density particle streams 
whose velocities are directed along the dispersion axis 
of the cloud "evaporate" from the relatively slowly 
expanding cloud. The velocities of these particles are 
close to the free dispersion velocity. 

APPENDIX 

We make the following change of variables in (16) 
t 

T=1.08 S vph'D dt', z=v'. (A.1) 

As a result, we have 

iJF/iiT=z'-'/v iJ'F/i)z', (A.2) 
where 

\,='/" cE[abJ, iJFliJsl,~"~O, FI'~I'=F'. 

After Laplace transformation in time domain, Eq. (A.2) 
assumes the form 

pF -Fo=Z'-'/v d'Ff dz'. (A .3) 
Solving this inhomogeneous linear differential equation 
by the Euler method we find that 

The coefficients C1(p) and C2(p) are determined from 
the boundary conditions 

i)F(p, z)/iJz=O at z=a, 

F(p, z)=F'(p) at z=b. 

The solution F(p, z) has the simplest form for 
1 «(V*)5 T-l. In this case F(p, a) does not depend on v* 
or F* and is written in the form 

1 • 
F(p,a)= 'I, I/"-'K (2 'I, 'I'v) Sdz' Fo(Z')Z'(l/v-'I,) 

P a I-v vp a " (A.5) 
x Kv (2vp'!'z"/"). 

The inverse Laplace transform in the limit of small 
values a - 0 yields 

Vl-Zv S' 
F (t, a) = dz Fo (z) Z'/v-' exp{-v'z'/vl-d 

-r'-Vf (i-v) 0 

1) An analogous situation occurs in the asymptotic regime of current 
instability [2]. 

(A.6) 

2)The initial conditions (14a) cannot be arbitrary, of course, since (l3b) 
and (13c) are algebraic for a given Fa. 

3)Solution (19) in this form can always be obtained upon a suitable 
choice of the coefficients in MOi(v). 

4)For symmetric initial conditions, the solution in the region s < 0 is 
symmetric to the solution for s> O. 
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