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The transition from the quantum kinetic equation to the classical Boltzmann equation via the 
quasicJassical approximation is considered. A quasicJassical representation for describing molecules 
with rotational degrees of freedom is proposed, in which the expectation values of operators 
representing physical quantities are equal to the corresponding classical values. For translational 
degrees of freedom, the states for such a representation are the well-known coherent states. The form 
of the kinematic part of the quasiclassical kinetic equation is considered for a gas in a magnetic or 
electric field that may affect the rotational degrees of freedom by interacting with the magnetic or 
electric dipole moments of the molecules. It is shown that when the rotational quantum numbers are 
large, the density matrix should be averaged over the rapid rotation. After such averaging, the 
density matrix should depend only on integrals of the rotational motion. The possible dependence of 
the collision probability for molecules with rotational degrees of freedom on the orientations of the 
relative velocity and rotational angular momenta of the colliding molecules resulting from the 
nonspherical character of the scattering is investigated. The symmetry properties of the collision 
probability are considered and the point groups are listed that describe the symmetries of molecules 
for which the probabilities for the direct and inverse collisions are equal. 

It is well known that information concerning the in
teractions of molecules can be derived from studies of 
phenomena that are described with the aid of the kin-
etic equation, and the inverse problem of calculating 
the kinetic coefficients from the known interaction po
tential is of no less interest. It is clear that for the 
solution of such problems there must be a connection 
between the characteristics of the interaction and the 
kinetic coefficients. At present such a connection can 
be found with the aid of Boltzmann's equation only for 
the case of monatomic gas. As regards molecules 
having internal degrees of freedom, for them the prob
lem is much more complicated owing to the larger 
number of parameters required to describe the inter
action. The interaction between molecules having inter
nal degrees of freedom lacks spherical symmetry, and 
as a result there appears a whole class of phenomena 
that are not observed in the case of monatomic gases. 
Such phenomena may include, for example, changes in 
the transport coefficients in magnetic and electric fields, 
birefringence of a gas undergoing viscous flOW, the 
thermomagnetic rotation effect, depolarized Rayleigh 
scattering, nuclear spin relaxation, and others. To des
cribe these phenomena one must use the kinetic equa
tion for molecules having internal degrees of freedom. 

Before 1961, authors of papers on kinetic phenomena 
attempted formally to extend the Chapman-Enskog me
thod to the case of gases whose molecules have internal 
degrees of freedom, using various solid-body models 
(rough spheres, sphero-cylinders, etc.) to describe the 
molecular collisions. These studies suffered from a 
common fundamental defect: the solution was sought in 
a form that involves only a single vector-the velocity 
vector v. Such a solution is not suitable for describing 
the phenomena listed above, since for these phenomena 
the dependence of the distribution function on the rota
tional angular momentum vector J[ll, which is respon
sible for the lack of spherical symmetry in the scat
tering, is important. A kinetic equation for the J-de
pendent distribution function was first obtained by 
Kagan and one of US[2] in a discussion of transport 
phenomena in a diatomic paramagnetic gas in a mag
netic field. 

Not only is a claSSical description possible, but also 
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a quantum approach. A quantum equation for gases with 
rotational degrees of freedom was first obtained by 
Waldmann[3 l, and independently by Snider[4 J• We note 
that at room temperatures, when rota~ionallevels with 
large quantum numbers are excited, the two approaches 
(classical and quantum) lead to the same results. At 
the same time, the classical kinetic equation for 
the J-dependent distribution function is considerably 
simpler than the corresponding quantum equation, since 
the density matrix that satisfies the quantum equation, 
being a function of the coordinate r and momentum p 
of the molecule, is still a matrix with respect to the 
quantum numbers characterizing the orientation of the 
J vector. 

The use of the Kagan-Maksimov classical equation 
or the Waldmann-Snider quantum equation to describe 
the phenomena listed above made it possible to con
struct a semiphenomenological theory in which the 
transport coefficients were related to the matrix I 
describing the scattering via the collision integrals. 
It was difficult to calculate the collision integrals di
rectly because until recently there was no expression 
available for .r in which the lack of spherical symmetry 
in the molecular scattering appeared explicitly. The 
most correct description of nonspherical scattering 
making use of the quantum theory of scattering was 
proposed by Hess, KOhler, and Waldmann[5J for treat
ing the collisions of diatomic molecules, and in [6] for 
collisions of molecules with arbitrary symmetry. Thanks 
to the nonspherical scattering model proposed in [6] it 
became possible to take the deviations from spherical 
symmetry explicitly into account in the kinetic col-
lision integrals. We must note, however, that great 
mathematical difficulties are encountered in uSing the 
quantum collision integral, even in the case of diatomic 
molecules.f7] But the classical collision integral con
tains an expression for the collision probability whose 
calculation in the classical treatment also appears to 
be impossible. It is therefore desirable to devise a 
quasi classical representation in which the quantum 
kinetic equation would assume a simple classical form 
in the first order in the expansion parameter fl (Planck's 
constant). 

The most convenient representation for passing from 

Copyright © 1975 American Institute of Physics 472 



the quantum kinetic equation to the corresponding clas
sical one via the quasic1assica1 approximation proved 
to be one in which the expectation values of operators 
representing physical quantities are equal to the cor
responding classical values. For translational degrees 
of freedom, the coherent states that are well known in 
quantum optics l8 ] have the desired properties. It was 
found that states with analogous properties can also be 
constructed for rotational degrees of freedom: in this 
representation the off-diagonal elements of the density 
matrix are small as compared with the diagonal elements 
and can be neglected. Thus, the quasic1assica1 descrip
tion, unifying the classical and quantum approaches, 
enjoys all the principal advantages of each, since it 
enables one to use the thoroughly developed formalism 
of quantum mechanics fo calculate the density matrix, 
which is diagonal in the quasiclassicallimit. We note 
that the quasiclassical representation for the rotational 
degrees of freedom also enables one to take into ac
count in the simplest possible manner the possible depen
dence of the density matrix on the orientation of the ro
tational angular momentum vector, which is responsible 
for the lack of spherical symmetry in the molecular scat
tering, and to take the point symmetry of the molecules 
into account in deriving expressions for collision proba
bilities. 

In Sec. 1 of this paper we formulate the general prop
erties of the quasiclassica1 representation that are used 
to show how the quantum kinetic equation reduces to the 
classical Boltzmann equation in the first approximation 
in the expansion parameter. The coherent states men
tioned above are used for a quasic1assica1 description 
of the translational degrees of freedom. As regards 
the analogous states for rotational degrees of freedom, 
we note that definite difficulties that arise in connection 
with the description of the angular variables [9) are en
countered in constructing them. 

In Sec. 2 we construct the corresponding quasic1as
sical rotational states for the case of large rotational 
quantum numbers and investigate their basic proper
ties. In this section we also consider the form of the 
density matrix in the representation afforded by the 
quasiclassica1 rotational states (QRS). 

In Sec. 3 we derive expressions for the left-hand 
side of the quasiclassica1 kinetic equation in the pre
sence of a magnetic or electric field that can affect the 
rotational degrees of freedom by interacting with the 
magnetic or electric dipole moment of the molecule and 
thereby alter the density matrix. In such problems the 
external field must always be treated as perturbation, 
and the effect of the field can accordingly be treated in 
the first non vanishing order of perturbation theory, 
while the density matrix is to be averaged over the 
rapid rotation that takes place in the case of large ro
tational quantum numbers. As a result of this averaging, 
the density matrix should depend only on integrals of 
the rotational motion. 

Section 4 is devoted to a study of the collision proba
bilities for molecules with rotational degrees of freedom. 
In deriving expressions for the collision probability we 
were primarily interested in its dependence on the mu
tual orientations of the two rotational angular momentum 
vectors and the relative velocity vector of the colliding 
molecules. To obtain this dependence we used an expan
sion for the scattering matrix ,r that takes into account 
the deviation of the molecular interaction from spherical 
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symmetry[8J. It will be evident from the resulting for
mulas that the point symmetry of the molecules imposes 
definite limitations on the behavior of the collision prob
ability. Here we also consider the relation between the 
probabilities for the direct (w) and inverse (w') collisions 
and indicate molecules (having definite symmetry) for 
which w = w'. 

1. THE QUANTUM KINETIC EQUATION IN THE 
QUASIClASSICAL REPRESENTATION 

As is well known, the time variations of the state of 
a quantum system are determined by the equation of 
motion for the density matrix: 

. ap " 
IliTt=[J'tff,p], (1.1) 

-where Yf is the Hamiltonian operator and 
[£, ttl =£tt- P£ In the case of rarefied gas, when we 
consider only two-body colliSions, we can use Eq. (1.1) 
to derive the following equation for the Single-particle 
density matrix[4) tt(l): 

ifiilp (l)/at = [ie (1), p (1)] + Sp, [V, Qp (1) P (2) Q+], 

~(1, 2)=~(1)+J'&(2)+V(1, 2), 
(1.2) 

in which 5 is the Mpller wave operator [lOJ, which is well 
known from scattering theory and satisfies the equation 

~}la>={HGaVQ} la>={HQGaV} la>, (1.3) 

in which 

Ga=(Ea-K+ie)--', Kla>={~(1)+J-e(2)} la>=Eala>, e-+-+O. (1.4) 

Equation (1.2) is written in operator form and there
fore is independent of the representation, which is al
ways to be chosen from considerations of convenience. 
A representation in which the expectation values of op
erators representing physical quantities agree with the 
corresponding classical values has been found to be the 
most convenient for passing from the quantum kinetic 
equation to the classical one. Operators representing 
physical quantities are diagonal to terms of the order 
of fl in the quasiclassicallimit, so the passage from the 
quantum equations to the corresponding classical equa
tions is very clear in such a representation, since it 
reduces simply to the passage to the limit -n. - O. More
over, the plane -wave representation I p) usually used in 
the quantum theory of scattering has definite disadvan
tages from the point of view of a quasiclassical treat
ment since the quantity < plxlp) is not defined at all in 
this representation. For translational degrees of free
dom (TDF) the so called coherent states[8J, which are 
well known in quantum optiCS, have the required prop
erties. The analogous states for the rotational degrees 
of freedom (RDF) have not been so thoroughly studied, 
although attempts have been made to construct them [11J. 
We also note that the quasiclassical case of large rota
tional quantum numbers was not considered in those 
studies. 

Now let us formulate the fundamental properties of 
the quasiclassical states and show in general form how 
the quantum kinetic equation (1.2) in the quasiclassical 
representation passes over into the classical kinetic 
equation. 

In the traditional quantum mechanical approach one 
usually seeks a complete set of commuting operators 
representing physical quantities and uses their common 
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eigenfunctions as the required set of basis vectors. In 
a quasiclassical treatment we include the operators 
for all the physical quantities that are necessary for a 
description of the state of the gas molecules in the com
plete set of operators {Ad, i = 1, ... p, even though 
these operators may not commute. Hence the quasiclas
sical states I A > are not necessarily orthogonal to one 
another. However, in the general case the completeness 
condition is sufficient when choosing a set of basis 
vectors [a J• 

In accordance with what was said above, we define 
the quasiclassical representation I A > by the following 
formulas: 

where 

SPA iJ.)(A 1=1, 

<AI~dA)=A', i=1, ... , p, (AIA)=1, 

~,=Sp, I A)A,(A i +0 (Ii), 

(1.5a) 

(1.5b) 

(1.5c) 

We note that in order for condition (1.5c) for the 
quasiclassical approximation to be satisfied it is suf
ficient that 

(A' I~d A)=(A' IA)A,+O (Ii) =A/ (A'I A)+O (Ii), (1.6) 

as can be easily seen by substituting (1.6) into the ex
pansion 

~,=Sp, Sp"1 A') <A' I~, I A) <A I, 

which is valid for any operator Xi. 

Now let us consider the properties of the single-par
ticle density matrix'P in the A representation. With the 
aid of Eq. (1.5c) and the formal expansion 

_I - - { ~ ap (At ••• Ap) - } I P A)=p(A, ... Ap)IA)= p(A, ... Ap )+ L.J aA, (A,-A,)+ ... A), 

'-I (1. 7) 

we obtain 

p=Sp,IA)p(A) (AI+O(h). (1.8) 

In writing Eq. (1.8) we have assumed that the denSity 
matrix'P becomes a diagonal operator in the quasi
classical limit and have written only the first diagonal 
term. It is clear that peA), which is real and nonnegative 
because the density matrix f5 is Hermitian and positive 
definite [a], has the properties necessary for a classical 
distribution function. The rule for calculating average 
values in the I A) representation is 

G = lim Sp,<AlpGIA)= Sp,p (A) <AIGIA), ,-. 
i.e., it reduces in the limit n - 0 to the rule for calcu
lating average values in classical statistical mechanics. 

To obtain an equation for peA) we calculate the diag
onal matrix elements in Eq. (1.2) in the limit h _0. 
With the aid of Eq. (1.7) we obtain 

.Pp=~p ={~+~~1 p, ~=~<AI[~,ilIA) (1.9) 
ill at iA Ii 

for the left-hand side of Eq. (1.2). To calculate the 
right-hand side of Eq. (1.2) we make use of (1.3), (1.4), 
(1.8), and the well known relations 

(A I T+ - T I A) = (A I T+ (Gt. - G,) T I A) = (A I T (Gt - G,) T+ I A), 

T=v"Q (1.10) 
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and after some manipulation we obtain 

l co1 [p(1), p(2) l=Sp, Sp"" (p(A/)p(A,') W(A,'A,' .... A,A,) (1.11) 
-p (A,) p(A,) W(A,A2 .... A/A,')}, 

in which IA> = IAJ 'IA2>, the subscripts 1 and 2 refer 
to the first and second particles, respectively, and 

W(A,'A; .... A,A,) = (2nlli) i (AITIt.') 1'6(E,.-E,) 

is the probability density per unit time for the transi
tion from state A' to state A. We also note that by using 
the unitarity condition (1.10) we can easily obtain the 
following relation between the probabilities w and w': 

(1.12) 

As is evident from Eqs. (1.9) and (1.11), the equation 
obtained for peA) is indeed the kinetic equation of clas
sical statistical mechanics. 

As we mentioned above, we shall use the coherent 
states as the states IA) for the TDF. Equations (1.5a) 
and (1.5b), which define the quasiclassical representa
tion, are derived in [aJ. However, it is not difficult to 
see that condition (1.6) for the quasiclassical approxi
mation is valid by making use of known properties of 
the coherent states. Thus, for example, for the coor
dinate operator x we have 

(Z'-Z)' 
<A'lxIA)",,<z'lxIZ)= xo<Z'lz>+ --_-(Z' IZ)= x,(Z' IZ>+ o (Ii), 

1'2 
where 

1 
Z = -=(xo+ip,), 

1'2 
<Z'IZ)=exp{- :Ii [IZI2+IZ'12-2Z'Z'1}, 

(1.13) 

(xIZ)""<xlxoPo)= (nli)-·i. exp (- (x;;o) , ) exp ( ~ pox) exp (- ~ xi"). 

2. QUASICLASSICAL STATES FOR 
ROTATIONAL DEGREES OF FREEDOM 

a) Linear (diatomic) molecules 

We shall define the wave functions for the quasiclas
sical rotational states (QRS) so as to minimize the 
quantity 

(~)2 = (/2)-:</)2 
1 (I') 

The attainable minimum is (Li.J/J)~in = l/(J + 1); in the 
IJM> representation this value is achieved only for the 
states I J ± J). In view of this, we choose 

[ 21+1 ]'1' (w!JJ)""(wI/O/)= i' 8n' D,/(w), 1;$>1. (2.1) 

as the QRS with (J) alon g the z axis (he re the < wi JKM ) 
are wave functions characteriZing the orientation of a 
dynamical systeIP with definite quantum numbers J, K, 
and M(!2J, and DMK(w) is Wigner's function [12J). We 
recall that K = 0 for linear molecules (K is the projec
tion of the rotational angular momentum onto the axis 
of the molecule). The QRS functions for arbitrary orien
tation of the rotational angular momentum vector are ob
tained from (2.1) with the aid of the unitary operator 
&l(cpeo) that rotates the coordinate system from one in 
which J is directed along the z axis to one in which the 
orientation of J is specified by the angles e and cp: 

II)"" 1/8<p)=9l'(<p80) Ill), 

We easily find the coefficients for expansion of the 
function 1 J) in the complete set of basis functions 
IJM): 

V. D. Borman et al. 

(2.2) 

474 



(J'¥'118<p)= I\JJ.D.'~:J(<peO). (2.3) 

Making use of the completeness of the states IJM), the 
orthogonality of the matrices DiIK(w), and Eq. (2.3), 
we can easily show that the QRS functions form a com
plete set: 

(2.4) 

LPJ=1, do=sinOd8d<p. 
J 

We also note that the QRS functions are normalized to 
unity because of the unitarity of f!i (cpOO). However, the 
QRS, like the coherent states, are not orthogonal. USing 
the theorem on the addition of rotations, we obtain the 
following expression for the overlap integral for two 
QRS: 

<1'8'<p' I JO<p)=I\J'JDJJJ(ql', 8'-0, -<pl. (2.5) 

It can be shown that in order for the condition 

(J'8'cp'l G 118<p) = (1'0'<p' 118<p)UO,p i G 118<pHO( 1/1) (2.6) 

for the quasiclassical approximation in~the QRS repre
sentation to be satisfied, the operator G must satisfy 
the following conditions: 

1. Only terms for which Z is small as compared with 
J should appear in the expansion of G in the spherical 
tensors GZm ; and 

2. FAor all positive p not exceeding Z, exp(-pJ) 
x (J II Gill J) should tend to zero as J tends to infinity 
(J II Gill J) is the reduced matrix element of the oper-
ator (GZm ). . 

It is clear that the operators Ji for the components 
of the rotational angular momentum satisfy this condi
tion. It now remains to show that, in accordance with 
(1.5b), 

(2.7) 

One can see that Eq. (2.7) holds for the QRS functions by 
making use of the definition of the functions I J) and the 
formula 

exp (-ilJ>!,)!k exp (iIJ>Ji ) =cos IJ>lk+sin IJ>Eikl!l, i'#k. 

In concluding, we also give the equation satisfied by the 
functions I J): 

{(cos 8 cos cp+i sin cp)!.+ (-cos 0 sin q,+i cos <p).Ty+sin 8J~} IJ)~-O. 

b) Symmetric top molecules 

The QRS functions for a symmetric top can be con
structed in a manner similar to that described above 
for linear molecules. First we select a quasiclassical 
state for which 

<jz) = <1,.) = J, <jx) = <Jy> = <Jx'> = <.Iy.) = O. 

We have 
[ 21+1 ] ,/, 

(wllll)= i J -- DJJJ(w). 
8n' -Here the Ji' are the operators for the components of the 

rotational angular momentum in the coordinate system 
{x', y', z'} fixed rigidly to the molecule. The remaining 
QRS with arbitrary orientations of J can be written as 
follows: 

(2.8) 

Here a and ljI. define the orientation of J in the coordinate 
system fixed to the molecule. The minus l'igns in front 
of a and ljI appear because the operators Ji' on which 
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f!i(-1/!, -a, 0) depends are generators of the inverse rota
tions of the coordinate system fixed to the molecule 
about the principal axes[12]. On expanding IJ) in the 
complete set of basis states IJKM>, we obtain the fol
lowing expression for the expansion coefficients: 

(I' K' M'1J8<pcr1jJ)= I\JJ.D~:J (cp80)D~:J (-1jJ, 0, 0). 

It is evident from (2.8) that all the properties of the QRS 
for symmetric top molecules are similar to those of the 
QRS for linear molecules and so need not be discussed 
in detail. Here we give only the completeness relation: 

(21+1)' fJ d(OdQ I18CP01jJ)(/8<P01jJI=P;, 
. 4n)' 

PJ = L I/KM)UKMI, .L.PJ=1, dQ=sin0 dod1jJ. 
M,K J 

c) The density matrix in the QRS representation. 

In the general case the density matrix P for the ro
tational degrees of freedom can depend both on the angu
lar variables, for which we choose the Euler angles 
w = {a, f3, y}, and on the operators Ji for the components 
of the rotational angular momentum. In view of this, we 
expand the density matrix as follows: 

(2.9) 
'm 

where n is a set of operators describing the translational 
degrees of freedom and 

Bm'(w)= L~h'Dm.'(w) (2.10) 

is a combination of compone~ts of the matrix D~k(W) 
that is invariant under the transformations of the point 
symmetry group of the molecule[s). 

For states that do not differ much from equilibrium 
states one can evidently drop all but the first few terms 
with Z comparable with unity from the sum in (2.9). In 
view of this and the fact that (J II P II J) is a partial 
probability and therefore tends to zero as J tends to 
infinity, we shall assume that the density matrix f) is 
quasidiagonal in the QRS representation. We should also 
point out that it is meaningless to use the density matrix 
in the QRS representation except when 

r=spph,1. 

Since in the QRS representation the denSity matrix is 
diagonal in J to terms of the order of 1/J, we replace 
the function Dfuk(w) in (2.10) by an equivalent operator 
that is diagonal in J: 

Dm.' (w) -+"(, (I) Y'm (1) y,; (1')', 

where YZm(J) = (J'V)lYzm(r) is a sph~rical tensor opera
tor constructed from the operators Ji for the components 
of the rotational angular momentum. The functions 
YZ m (J), YZk(J'), and Yl(J) for l = 0-4 are given explicitly 
in[6). As a result of this substitution, the denSity matrix 
for the rotational degrees of freedom will depend only 
on the operators J. and J. ' . 

1 1 

In accordance with the fact that the density matrix 
pis quasidiagonal, we can use (2.4) to obtain the fol
lowing equation for linear molecules: 

'f) = L (21+1) J. ~: lJ>p(I) 111+ o( +), p(I)=(IlplJ>. (2.11) 
J 

It is convenient to expand the matrix element p(J) in the 
complete set of functions DfuO(cpO 0): 
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p(J)= l>m(J)Dmol(rp80). 
1m 

(2.12) 

To find the coefficients p 1m (J) we first substitute (2.12) 
into (2.11) and make use of (2.3) to obtain 

(Hf'lpIJM)= L Plm(J) (lmJMIJM')(IOJJlJJ), (2.13) 
1m 

where (j,md2m2Ijm) is a Clebsch-Gordan coefficient. 
Then multiplying (2.13) by (z'm'JMIJM') and summing 
over M and M', we find 

PI (J)= 21+1 (IOJJlJJ)-' ~ <lmJMIJM')<JM'lpIJM). (2.14) 
m 21+1 i..J 

M'M 

Finally, using (2.12) and (2.14), we obtain 

p(J)= LDm,l(rp80) 21+1 (IOJJlJJ)-'L <lmJMIJM')<JM'lpIJlIf>. 
'm 21+1 M'M (2.15) 

For top-type molecules the formula analogous to (2.15) 
has the form 

(21+1) (2s+1) 
p(J)= ~ D ol(rp80)Dto"(1I'oO) (IOJJlJJ)-'(sOJJlJl)-'· 

.;..,j m (21+1)' 
lm,st 

'>( ~. <lmJMIJM')(stJKIJK')<JK'M'lpIJKM). 
~ 

M'M,K'K 

(2.16) 

Formulas (2.13), (2.15), and (2.16) determine the re
lation between the QRS and I JKM) representations; 
moreover, it is evident from (2.15) and (2.16) that, while 
the density matrix p is quasidiagonal in the QRS repre
sentation to terms of the order of l/J for arbitrary e 
and CP, generally speaking it is not quasidiagonal in the 
IJKM) representation for values of K and M of the order 
of unity. 

3. THE KINEMATIC PART OF THE 
QUASICLASSICAL KINETIC EQUATION FOR 
GASES HAVING ROTATIONAL DEGREES OF 
FREEDOM 

In this section we shall discuss the form of the left
hand side (1.9) of the quasiclassical kinetic equation 
for a gas in the presence of an external magnetic or 
electric field for the general case in which the gas 
molecules have rotational degrees of freedom. Such a 
discussion becomes necessary if, for example, one is to 
investigate the effect of external fields on the transport 
coefficients for molecular gases. We note that in the 
presence of a field that can be treated as a perturbation, 
the QRS functions can be used only as zeroth approxi
mation functions. If the field has no effect in this approxi
imation, then in place of the states Iii.) we must use the 
states I X > that satisfy the equation 

(3.1) 

in which if (0) is an operator for which the states Iii.) are 
exact eigenfunctions,;> is the perturbation operator, 
and E is the eigenvalue of the "perturbed" operator 
{WO) +;" }for the eigenfunction I~:>. 

a) Nonparamagnetic molecules in a magnetic field 

Let a, b, and c be unit vectors in the directions of 
the axes of a coordinate system fixed to the molecule 
and conforming to its symmetry [6J. Then for the Ham
iltonian operator for a non paramagnetic molecule in a 
magnetic field B we have 

where 
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~o=A (a},) '+B(b/:) '+C (d,)', (3.2) 

A, B, and C being the rotational constants of the mole
cule. In writing (3.2) we have assumed that the axes of 
the coordinate system {x', y', z'} are parallel to the 
principal axes of the tensor of inertia of the molecule. 
In the general case this is valid provided the point sym
metry of the molecule is no lower than C2v or D2h; 
hence in the following we shall consider only molecules 
with such symmetry. For symmetric top molecules we 
must put A = B in (3.2); for linear molecules, A = B 
and C = 0; and for spherical molecules, A = B = C. Here 
the perturbation operator is 

d6'=-(~B), (3.3) 

where jJ. is the operator for the magnetic moment of the 
molecule. In the general case';' should also include 
terms depending on the nuclear spin; however, we can 
drop them since we are interested in the case of large 
J (J» 1) and the magnetic fields are usually such as 
to decouple the rotational and nuclear magnetic mo
ments[I31. 

Using the gyromagnetic tensor gik, ,:!e write the 
molecular magnetic moment operator JJ. as follows: 

~,=g,.J •. (3.4) 

In most cases the properties of the gyromagnetic ten
sor are determined by the geometric symmetry of the 
molecule['4 J; hence we write 

giA=g,a,a.+g,b,b.+g,c,c •. (3.5) 

For linear and symmetric-top molecules, g, = g2 and 

(3.6) 

Finally, for spherical molecules we have g, = g2 = g3, 
and the gyromagnetic tensor is fully isotropic: 
gik = gOik· 

We write the left-hand side of the quasiclassical 
kinetic equation for molecules with rotational degrees 
of freedom as follows: 

(3.7) 

1,=i<[.76', J,]), 1,.=i<[.76', i,.]>, 

where the averages are to be taken over the states 
(3.1). We note that using the six variables Ji and J i' to 
describe the rotational degrees of freedom, which is 
done in order to simplify the calculations, does not lead 
to contradictions because the condition 

J,'+J,'+J,'=J,.'+J,.'+J,.'=/'. 

is to be imposed on the variables. With the aid of (3.2) 
and (3.3), we obtain 

!'J.E =(:16'). (3.8) 

Then using (3.8), we find 

a ' 
1, aJ, =-i"(effB,L" (3.9) 

where the Li, the operators for the angular momentum 
components, depend on e and cp, and 

"(eff=g, sin' cr cos'1I'+g, sin' 0 sin' 1I'+g, cos' 0 for g,,.t=g,,.t=g,, 
"( eff=g,+ (g,-g,)cos' 0 for g,=g,,.t=g,, 

"(eff=g for g,=g,=g,. (3.10) 

In accordance with (3.7) we obtain the following expres
sion for the operator ji'8/8Ji': 
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a ~ 

I" ai" =-'i$"I"L", 

$" =2 [A -g, (BJ) 1-'], $,,=2 [B-g, (BJ)I-'], 
$,,=2[C-g3 (BJ)/-'], (3.11) 

where the Li' depend on (1 and 1/1. USing the relation 
Ji,Li , = 0, it is not difficult to show that 

a ~ 

J" ali' =-i!!lJ,·-!lJx' }/"L,' 

for symmetric-top molecules, and Ji ,a/8Ji , = 0 for 
linear and spherical-top molecules. 

For reasonable values of the field strength B, the 
terms proportional to the field strength in (3.11) are 
small as compared with the corresponding field-inde
pendent terms and can be dropped. For example, for 
NH3 molecules we have [14, 15J C = 6.29 cm- l , A = 9.96 
cm -1, g3 = 0.48 Mn , and gl = 0.56 Mn (Mn is the nuclear 
magneton), so in a 1 kOe field the corresponding ratio 
is of the order of 10-7 • It is evident from the relation
ships adduced that Ji , ~ wo, where Wo is the frequency 
of the free rotation of the molecule. Since Wo is much 
larger than the collision frequency T- l we have 

I"ap/al,,=O. (3.12) 

in the zeroth approximation in WoT. We note that the 
use of Eq. (3.12) to eliminate the "fast" variables is 
similar in import to the averaging over the rapid rota
tion that was considered in [11 for diatomic molecules. 

A density matrix of the form 

p=p(l, A sin' a cos' IjJ+Bsin' a sin' IjJ+C cos' a) (3.13) 

can serve as the solution to Eq. (3.12) for molecules 
with C 2v and D2h symmetry, and a density matrix of 
the form 

p=p(l, cosa), (3.14) 

for symmetric-top molecules. For spherical-top and 
linear molecules, Ji,a/8Ji' = 0, and there are no limi
tations of the type of (3.13) and (3.14). Hence, in accor
dance with (2.9) one must take into account only the 
point symmetry of the molecule. We also note that 
Eqs. (3.13) and (3.14). mean simply that after averaging 
over the rapid rotation of the molecule, the density ma
trix can depend only on integrals of the rotational 
motion. 

b) Polar molecules in an electric field 

For the Hamiltonian£, for a molecule with a dipole 
moment d in an electric field E we have 

i6'=i6'o+i6', ;Y&'=- (dE). 

For molecules of various symmetry types,.;t\ is given 
by Eq. (3.2). We shall also consider fully asymmetric 
molecules. In this case Ho is also given by Eq. (3.2) 
provided the axes of the coordinate system {x' ,y' ,z'} 
are parallel to the principal axes of the tensor of iner
tia of the molecule. The dipole moment operator di for 
an asymmetric molecule can be written as follows: 

(z,=d,a,+d,b,+d,c,. 

One must put d, = d2 = 0 for molecules with C2v sym
metry, symmetric tops, and linear molecules with 
Coo v symmetry. As in the case treated above we have 
Eq. (3.8), so here we have 

~'. aAE 
i<[J'a,J,])= [dXEL, d=~ TE' AE =(J'a'). (3.15 ) 

Using (3.15), we obtain 
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a ~ 

I'aJ;=-i"(effE;L" 

"( eff=l-' {d, sin a cos IjJ+d, sin a sin IjJ+d, cos a} (3.16) 

The coefficient Yeff vanishes for linear molecules with 
Coov symmetry. In an electric field the expression for 
ji,a/8Ji' takes the form 

iJ ~ 
I, -- =-i~·'I·'L" , all' ", 

dr.,=2A - ~(EJ)I-', f!.,=2B - ~(El)I-2, 
I" . 1.' 

d, 
~,"T"U: - J;,p;lJ'J-'" 

(3.17) 
Equation (3.17) is valid for asymmetric molecules. For 
symmetric-top molecules we have 

a ~ 

I,· ai" =-i{~"-~,'}I,'L,, 

~d for linear molecules with Coo v symmetry, 
Ji,8/8Ji' = O. 

The terms proportional to the field strength in (3.17) 
are small as compared with the field-independent terms 
and can be neglected. For example, for NH3 molecules 
(d = 1.50) with E = 300 V /cm the corresponding ratio is 
of the order of 10- 4 • As in the case of a magnetic field, 
the remaining terms in (3.17) will be the largest in the 
kinetic equation, so that Eq. (3.12) will be valid in the 
zeroth approximation in WoT. 

Up to now we have been conSidering the linear ap
proximation in the field strength. The higher order cor
rections need be taken into account only when the fields 
are strong enough to require it or the effect of interest 
vanishes in the linear approximation (the case of linear 
molecules in an electric field). In the last case, taking 
the z axis in the direction of the electric field we obtain 
the following expression for the second order correction 
AE(21: 

AE(') = \'1 I <JMI,U'IJ'M) I' 
J,M ~ A [J'-J"J (3.18) 

Using (3.18), we obtain the following expression in the 
second order of perturbation theory for y ~ff for a lin
ear molecule with Coo v symmetry: 

(') 3d' 
"( err = 4A1' (EJ). 

c) Paramagnetic molecules in a magnetic field 

In paramagnetic molecules, the effect of rotation 
always predominates over multiplet splitting when the 
rotational quantum number K is large; hence Hund's 
case b[16] is realized by such molecules. In view of this, 
we choose to describe the free molecule in terms of the 
states I AKNSJe cp > , where A is the projection of the or
bital angular momentum L onto the axis of the molecule, 
K is the rotational angular momentum, N is the total 
orbital angular momentum, S is the spin of the molecule, 
J is the total angular momentum of the molecule, and e 
and cp are angles specifying the orientation of the total 
angular momentum in the laboratory system. In this 
case the operator for the interaction with the field has 
the form 

(3.19 ) 

where Mo is the Bohr magneton and Si and Li are the 
operators for the spin and orbital angular momentum, 
respectively, of the electrons in the molecule. Operator 
(3.19) is diagonal in all the quantum numbers except J, 
so the left-hand side of the quasiclassical kinetic equa-
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tion can be expressed in the usual form: 
o o~E 

2p=J, 01/' J,=[,tXBj" 1'= -as' 
With the aid of the expression for the Zeeman splitting 
of the terms of a diatomic molecule[I7] we obtain 

o -J'M=- -iYefIB,L" 

__ [ 20 + N+o-o'+s (8+1) ] 
Yeff- 1 I' 110, o=I-N, (3.20) 

where a is the projection of the spin onto the direction 
of the total angular momentum J. 

4. COLLISION PROBABILITIES FOR NONSPHERICAL 
MOLECULES WITH ROTATIONAL DEGREES OF 
FREEDOM 

In discussing the scattering of nonspherical molecules 
with rotational degrees of freedom we shall be primarily 
interested in such dependence of the collision probability 
w (UI - ,\'i\.;) on the directions of the relative velocity 
and rotational angular momenta of the colliding molecules 
as may be allowed by the molecular symmetry. In order 
to obtain this dependence one must expand the scattering 
operator T in a manner that takes the lack of spherical 
symmetry of the scattering of rotating molecules ex
plicitly into account[6]. Using the notation of [IS] for prod
ucts of spherical tensor operators, this expansion for 
the scattering of molecules by molecules can be written 
as follows: 

i= ETIl'L(K(O),r) [B'(<u)XB"(<UI) jLY'(r), 
(4.1) 

where the subscript 1 indicates the second molecule in 
the collision, r is the radius vector joining the centers 
of mass of the colliding molecules, and j{o corresponds 
to the operator j{ defined in (1.4) with the spherically 
symmetric operator .i'~<;jt for the rotational energy, 
which is given by 

i6r~~) =1/,(A+B+C)j" 

The invariant combination B~ (w) of elements of the 
ma".trix Dfnk(W) is defined by Eq. (2.10). We note that 
if T is invariant under inversion, the TUIL vanish ex
cept when [ + [1 + L is even. 

For scattering from an atom (from a spherically 
symmetric particle) one must put [1 = 0 in (4.1). 

USing expansion (4.1) for a collision probability w 
invariant under inversion and time reversal, one can 
obtain the following expression for the case of local 
scattering in the center of mass system (the necessary 
properties of the combinations Bfn (w) are discussed 
in the Appendix): 

w(Ak"A'A,')= 2/in W(q, m, (<J1jl})Il(E.+E.,-E.:-E.,,) , (4.2) 

where q = k' - k is the change in the relative momentum 
in the colliSion, and the symbol {c} represents a set of 
four quantities: {yi} = {y, y', Yl> y;}. The nonspherical 
expansion for the quantity Win (4.2) has the following 
form: 

where m = {2; {S}, QQI}, n = {{R}, F, F I}, 

= ({I}) = ~ ,( (I}) [ (2Q+1) (2Q,+1) ] II. , 
CXmn a mn q, ~a'rl'Y q, 2P+1 

w' 
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[I I, L} 
X<LOL'OIPO) l' It' L' b"",(U})b,",({J})Cll'FC"""" 

Q Q, ~ 

';={ll,L}, 11= {ll', 88', Q}. t]={ll', RR', Flo 
b ... , ( {I} ) =b. (I, 1') b., (I" It') , 

I J' 1 I I b.(/J')=<J'J'I'-J'IS'O)(J-llIISO) J' 1 I' ; 

S' 8 Q 

dm=Y." ([ YS'XYSjQX [ys"Xys, jQ,}"" 
.%'n=(Re VV') [Y"'XY")F[yn,'Xyn,v,. 

(4.3) 
Y"'=Y"'(q) , ys'=y"'(J'), yn'=yn'(o'Ijl') 

and the quantities cU'F are defined in the Appendix. The 

coefficients avv,(q, {J}) in (4.3) have the following prop
erties: 

aw'(q, {/})=~:,.(q, {I}), 

, a.,' (g, {I}) =a." (q, {/}I) , {/}1={I',I,l/,l,}, 

(4.4a) 

(4.4b) 

Condition (4.4a) is associated with the fact that W is 
real, and (4.4b) , with the invariance of W under time 
reversal. 

Using the expression obtained above for the collision 
probability Wand Eq. (4.4b) we can establish the rela
tion between the probabilities for the direct 
(w(UI -i\.'A,m and inverse (w(i\.'i\.; -UI)) collisions. 
We note at once that the equation w = w' can easily be 
obtained on the assumption that T is Hermitian, since 
in that case 

I <al TI b) 1'=1 <bl Tla) I', 

In the general case, however, the following relation 
obtains: 

Wm:=(-1)SWmno 8",,2+ Es'+ ER', (4.5) 

Hence, for t.he spherically symmetric probability W (0\ 

(2" = Sl = R1 = 0) the equality w = w' obtains for all 
molecules. For the nonspherical part of the collision 
probability, the values possible for the sum X depend 
on the point symmetry of the molecules. Let us examine 
a few particular cases. 

, I.,Let us consider only, the "zeroth" invariant com
bmahon ~no, where no = t{R}, OO}. Then in accordance 
with the I;1roperties of the 9j symbols in the expression 
for bl)1)1 (tJ}) , the following equalities should obtain: 
R' = R, R~ = RI, [' = [, and [; = 11. When [' = 1 and 
[; = [1, the O!mn differ from zero only for even values 
of S' + S + Q and S~ + SI + QI' In this approximation, 
therefore, the sum in (4.5) is equal to 2" + Q + QI. There 
are three cases in which 2" + Q + QI will always be even: 

a) when Q, = 0 (then Q = 2") (this case corresponds 
to scattering by an atom; 

b) when L = L'; and 

c) when 2" = 0 (then Q = Q,). 

When the nonsphericity parameter E is small (E is 
proportional to the ratio of the terms in (4.1) with 
[ f 0 to the terms with [ = 0) the molecular partner in 
the collision can be treated as spherically symmetric, 
then in accordance with case a), the approximation with 
the zeroth invariant combination ~no leads to the result 
w = w'. We note that in this approximation 1 = [' and w 
is quadratic in the nonsphericity parameter E. 

2. It is not difficult to see that, because of the prop
erties of the 9j symbols, the equalities J = J' and 
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J , = J; must obtain for the term in W linear in the non
sphericity parameter, for which 1 = 1, = 1min and 
l' = Z; = 0 (lmin is the minimum value of 1 allowed by 
the symmetry). It can be shown that in this approxima
tion with {S} and {R} small as compared with J and J " 
the ratio of the 9j symbol with even S'-S to the 9j sym
bol with odd S' -S will be of the order of J when Z is 
even, and of the order of l/J when Z is odd. In other 
words, the statement 

L, S'+ L, R'- is even 

is correct with an accuracy of 1/Jo Thus, in this ap
proximation the equality w = w' holds with an accuracy 
of 1/J for molecules whose symmetry forbids odd 
values of 1 and 1" The molecular symmetry point groups 
for which 1 can only be even [5] are C2h, C4h, C6h, D3d, 
D5d, D2h, D4h, D6h, 0h, and Ih; moreover, the point 
groups for which lmin is even are D2d, D4d, D6d, D3h, 
and D5h' 

3. Let us consider the case in which the quantities 
avv,(q{J}) in (4.3) are real (this corresponds to real 
values for Tll L(K(Ol, r) in (4.1)). It is not difficult, 
USing the syminetry of the expressio~s in (~.3) under 
exchange of v and v', to show that 1:S1 + 1:S1 must be 
even in this approximation. Hence here, as in the pre
ceding case, the equality w = w' holds for those mole
cules for which the possible values of 1 are even. 

In concluding we note that for the case of linear 
molecules one must put {'p} = 0 and {a} = 1T/2 in (4.3); 
then the possible values for!f' and {R} should be even. 

The authors are grateful to B. I. Nikolaev for assis
tance in formulating the problem and for discussing the 
results. 

APPENDIX 

Here we present some of the properties of the func
tions 

and the coefficients (3 ~ used in section 4 in deriving 
formulas for the collision probability. 

1. The functions B~ (w) are normalized as follows: 

S dCllBm'·«(i))Bm'«(i))~8n'!(21+1). (A.l) 

2. From the usual rule for the addition of angular 
momenta we find 

Bml(CIl)Bm."(CIl)~ L,clI'L(lml,m,iLM)BML(CIl), 
(A.2) 

where 

CII'L~ 2:n;1 (Iml,m,iLM)-' S dCllBML' (CIl)Bm'(CIl)Bm."(CIl)IlI+I,+L,,., (A.3) 

and K is an arbitrary integer. 

3. Using the definition of the functions Bb(w) and 
the normalizing condition (A. 1), we find 

L, i~.'i'=1. (A.4) 

4. With the aid of the formula for the integral of the 
product of three D functions (12], we find 

5. Using Eq. (A.2) and known properties of the D 
functions (12], we obtain 
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>p, 

6. Equation (A.6) can be solved to give 

~.'~.,"= L,clI'L(lpl,PliL(p+p,) )~~+p,. 
r. 

(A.6) 

(A.7) 

7. In accordance with the symmetry of the operator 
T, the function [B1(w) x Bll(Wl)]L in (4.1) behaves under 
inversion and complex conjugation like the spherical 
harmonic Ylm (r). This makes it possible to determine 
the behavior under inversion and complex conjugation 
of the {3~, which depend on the shape of the molecule. 
Having defined inversion for the Euler angles as a ro
tation of the coordinate system {x', y', Z I} through an 
angle 1T about the y' axis, we have 

1(~.'~ • .',) = (-1) '+P'~-.'~~'." (~.'~.,"r~ (-1) '+"~-.'~~.,. (A.8) 
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