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A kinetic equation is derived for the probability distribution, considered in the hydrodynamic 
approximation, of the velocity field and beam density of noninteracting particles. Various statistical 
properties of the beam are investigated by means of the derived equation. The meaning of the 
kinetic-equation solutions is discussed in the region in which caustics are formed and the beam is 
split into several streams. It is noted that all the results obtained can be interpreted by geometric 
optics. 

INTRODUCTION 

The study of the statistical properties, particularly 
the probability distributions, of random fields satisfying 
equations of the hydrodynamic type is of great interest. 
It is stimulated by the ever increasing number of prob
lems that arise in the theory of turbulence, in optics and 
in many other branches of physics (see, e.g., [r6]). How
ever, the probability distributions of these fields have 
not been investigated so far with sufficient rigor, owing 
to the strong nonlinearity of the initial equations. None
theless, in some cases it becomes possible to obtain ex
act kinetic equations of the probability densities of the 
fields or, in other words, it becomes possible to sum an 
infinite coupled chain of equations for the moments of 
the considered fields. 

In this paper, using as an example the derivation of 
the kinetic equation for the probability distribution of the 
components of the velocity vector va (x, t), of the tensor 
u{3y = aV{3laxy, and the density p(x, t) of the beam of non-
interacting particles, considered in the hydrodynamic 
approximation, we investigate the statistical properties 
of nonlinear waves that satisfy the simplest equations of 
the hydrodynamic type. The obtained equations enable us 
also to investigate the properties of the random simple 
waves, at which one arrives in the study of waves in a 
plasma, of gravitational waves, etc. (see, e.g., [3-7J ). 
They can also be interpreted as the kinetic equations of 
an optical wave considered in the geometrical-optics ap
proximation, since the geometrical-optics equations co
incide with the equations of a beam of noninteracting 
particles in the hydrodynamic approximation. 

We analyze the solutions of the derived equations in 
the particular case of a one-dimensional beam. We ex
plain their meaning in a multiple-stream beam. We ob
tain the probable density distribution of the beam of non
interacting particles propagating in the absence of ex
ternal forces or, in the language of geometrical optics, 
the probability distribution of the intensity of a light wave 
behind a one-dimensional phase screen. 

1. KINETIC EQUATION FOR A BEAM OF 
NONINTERACTING PARTICLES 

The velocity field and the density of a beam of non
interacting particles situated in an external randomly
inhomogeneous force field satisfy in the hydrodynamic 
approximation the equations (see, e.g., [3 ,8J ) 

avo avo 
--+v,--=F., at ax, (1.1) 
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ap op av, 
-+v,--+p--=O at ax, ax, ' 

where va are the components of the vector velocity field, 
p is the density of the beam, Fa are the components of 
the random vector force field, a, {3, 1', c = 1, 2, 3. We 
supplement (1.1) with the nine equations for the compon-
ent of the tensor u = av lax ,differentiating the 

ay a I' 
equation for va with respect to xl': 

au., au., aF. --+ v, --+ u"u., = --. at ax, ax, (1,2) 

2. Our problem is to find a closed equation for the 
one-pOint probability density W[ v a' u{3y' p; xc' t]. To 
this end we consider the mean value of the arbitrary 
function cp[ va' u{3y' p] and write down its derivative with 
respect to time, using (1.1) and (1.2). As a result we ob
tain 

(1.3) 

We note that the mean values in the left hand side of this 
equation turn out to be closed with respect to the sought 
probability denSity, i.e" they can be calculated with the 
aid of this density. At the same time, the terms in the 
right-hand side are not closed with respect to this den
sity. 

We assume now that Fa are the components of a 
Gaussian field 0 -correlated in time having a correlation 
function 

(F.(x, t)F,(x+s, t+r»=Da ,[s]6(-r). 

We recall that a real random field can be replaced with 
sufficient accuracy by a 0 -correlated field if its correla
tion time is much shorter than the characteristic times 
of variation of the beam parameters. In this case the 
terms in the right-hand side of (1.3) can also be closed 
by using the Furutsu -Novikov formula [6,9\ which leads 
to 

< arp) < a2 rp ) --F, =Da , ---
OVa avo av, ' 

< arp OF.) < a'rp ) ---- = B., ---
8Urt:r aXr BUCtT aUal ' 

(1.4) 

where 

1 B_,----1 a'D.,[s]/ . D., = --D.,[O], _ 
2 2 as' .~Q 

Substituting (1.4) in (1.3) and taking into account the 
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arbitrariness of the function cp, we can easily obtain 
from (1.3) the sought kinetic equation for W: 

ow oW a 
-+ v~--- u"w-u~~-:- [pW] 

iJt ax~ dp 

a a'w iJ'W 
--- [u"u.~ W]=D.~---+B.~---

du., avo av~ au., iJu" 

(1.5) 

It is necessary to add to this equation the initial condi
tion 

W[v., u~" p; x,, O]=wo[v., u~" p; x,]. 

The obtained kinetic equation describes the evolution 
of the probability density W[va , u (3y' p; x, t] in time and 
makes it possible, in principle, to determine the changes 
of such physically-interesting statistical characteristics 
of the beam as the probability distribution of its density, 
of the velocity field, of the number of streams in the 
beam, etc. 

3. We now use simple examples and particular cases 
to explain the meaning and certain properties of the so
lutions of (1.5). For the time being we note only that if 
the beam is statistically homogeneous at the initial in
stant of time and the velocity field does not depend on the 
beam density and on the tensor ua at that point of space, 
. if Y i.e., 

Wo[V., u~" p; x,]=Vo[v.]u[u~" p], 

then W can be represented in the form of the product of 
two probability distributions: 

W[v., u~" p; t]=V[v.; t]U[u~" p; t], (1.6) 

which satisfy the individual equations 

av a'v 
-=D.~--e -, (1.7) 

at avo dV, 

au a a a'u 
-- u"u-u,,-:- [pU]-- [u" u.~U]=B.~ (1.8) 
at iJp au., aU.T aU~T 

and the initial conditions 

V[v.; O]=vo[v.], U[u~" p; O]=uo[u", pl. 

Thus, it follows from (1.6)-(1.8) that a beam-velocity 
field that is initially independent of the beam density and 
of the tensor u(3y remains statistically independent of 
these quantities during all the succeeding instants of 
time. For example, an initially Gaussian velocity field 
still remains Gaussian, in spite of the nonlinearity of the 
initial equations, since its probability distribution satis
fies the usual diffusion equation (1.7). 

We note that this result pertains only to the single
point probability density of a statistically homogeneous 
beam, for in this case the probability is not influenced by 
the terms v (3av a lax.(3' v {3aplax (3' and v {3au a /ax (3' which 
lead to the nonlinearity of the equations that connect the 
beam density and the tensor u{3y with the velocity. It 
can be shown, for example, thil.t even a two-point 
initially-Gaussian probability density of the velocity 
field will become more and more non-Gaussian with 
increasing time as a result of the nonlinearity of the 
initial equations. 

2. THE MEANING OF THE KINETIC EQUATION FOR 
SINGLE·STREAM AND MULTIPLE-STREAM BEAMS 

1. We confine ourselves for Simplicity to the study of 
the statistical properties of only a one-dimensional beam 
moving under the influence of a force F(x, t) along the x 
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axis. In this case, Eq. (1.5) goes over into the Simpler 
equation for the probability density w = w[v, u, p; x, t]: 

aw aw a a a'w a'w 
-+v--uw-u- [pw]-- [u'w]=D-+B- (2.1) 
at ax iJp au au' au' 

with the initial condition 

w[v, u, p; x, 0] =Wo[u, u, p; x]. (2.2) 

There is no known solution of (2.1) in the general 
case. It is easy, however, to go over from (2.1) to an 
easily-solved equation for the average particle density 
in phase space (x, v): 

- -
R(v,x; t) = S du S dpw[v, u, p;x, t]. 

o 

Multiplying Eq. (2.1) by p and integrating it with respect 
to u and p, we arrive at the equation 

aR +v!!!..=D~. (2.3) 
at ax av' 

We note that the solution of this equation can be inter
preted as the probability distribution of the velocities 
and coordinates of one particle at the instant t, if at the 
instant t = 0 its value was 

Ro(v,x)= S du S dppwo[v,u,p;x]. 
o 

Equation (2.3) itself is then the well known Einstein
Fokker-Planck equation, which describes the diffusion 
of particles in a field of random forces (see, e.g., [6, 8J ). 

Another particular case of (2.1) is the integro-differ
ential equation obtained in [10J for the one-dimensional 
probability density of the beam velocity field v(x, t). It 
follows from (2.1) if the latter is integrated term by 
term with respect to p and u, and if simple transforma
tions are made. 

If the beam propagates in the absence of external 
forces (D = B == 0), i.e., if the velocity of each beam 
particle remains unchanged, then (2.1) can easily be 
solved by the method of characteristics: 

[ UP ] i 
w[v,u,p;x,t]=wo v, 1-ut ' Ii-uti ;x-vt (1-ut)' (2.4) 

2. Let us analyze the result by assuming the density 
Po(x) and the velocity vo(x) of the beam particles at the 
initial instant of time to be specified functions of x. We 
assume also the beam to be initially Single-stream. In 
this case the velocities of particles situated in physically 
infinitesimally small intervals dx are practically indis
tinguishable from one another, and the functions vo(x) 
and Po(x) are single-valued. By the same token, we con
sider the initial condition 

Wo=1l [v-vo (x) ]M U-Uo (x) ]Il[p-po ( .. ) ], 

and consequently 

w=ll[v-vo(x-vt) ]1l[_U_-uo(x-vt)] 
1-ut 

XI) [-_P_-Po(x-vt) ] __ 1_. 
Ii-uti (i-ut)' 

(2.5) 

Let the particle velocities vo(x) vary sufficiently 
smoothly along x, i.e" let the modulus of uo(x) be limited, 
Then the beam remains single-stream within times 0 5 t 
5 1/uo, where Uo = -min uo(x) (see, e.g" [8,l1J). During 
this time interval, (2,5) can be represented in the form 

[ uo(X-v,t)] [ po (x-v,t) ] 
w=ll[v-v,]1) u I) p 

i+tuo(x-v,t) 11+tuo(x-v,t) I ' 

where VI = Vl(X, t) is the only root of the equation 
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v-vo(x-vt) ~o, 

and is equal to the particle velocity of the single-stream 
beam at the x at the instant of time t. 

The expression obtained is the probability distribu
tion of the velocity, of the velocity gradient, and of the 
density of a determined single-stream beam of non
interacting particles, 

The solutions (2.4) and (2.5) acquire entirely different 
meanings in time intervals in which some particles of the 
beam overtake the others and the beam becomes multi
ple-stream. Assume that a given instant of time t and at 
a given point x the beam consists of N streams, i.e., the 
velocity v(x, t) assumes the N values Vl(X, t) ... vN(x, t) 
of the roots of Eq, (2,6). Then (2.5) can be rewritten in 
the following equivalent form: 

_ ~ Il ( ) Il [ U o (x-v.t) ] Il [ po (x-v.t) ] 2 7 
w-.t... v-v. u- 1+tuo(x-vnt) P-I1+tuo(x-v.t)1 .(.) 

n=1 

It is easily seen that here w no longer has the meaning 
of the probability distribution of a beam, but is the sum 
of the probability distributions of each of the N streams 
of the beam. It is obvious that the normalization of w is 
equal to the sum of the normalizations of the probability 
distributions of all the fluxes, i.e., to N. 

3. Let now Po(x), vo(x), and uo(x) be random functions 
with specified statistical properties. Averaging (2.5) 
over the random initial conditions, we arrive at (2.4). 
Therefore the meaning of the function w specified by 
formula (2.4) is determined entirely by the meaning of w 
for the determined beam (2.5). For example, so long as 
a beam with unity probability is single-stream, the quan
tity w expressed by formula (2.4) has, just as in the de
termined case, the meaning of the probability distribution 
of the beam parameters. In a multiple-stream beam, on 
the other hand, w can be represented in analogy with ex
pression (2.7) in the following manner: 

~ N 

w=1:p(N;x,t) 1: w.[v,u,p;x,tl. (2.8) 
N=1 n=1 

Here p(N: x, t) is the probability that the beam at the 
point x and at the instant t consists of N streams, and 
wn(v, u, p; x, tiN) is the probability distribution of the 
parameters of the n-th stream in the N-stream beam. 
We note that p(N; x, t) and wn[v, u, p; x, tiN] cannot be 
obtained separately from each other within the framework 
of this analysis. 

Thus, in a multiple-stream beam, w is not the proba
bility distribution. As follows from (2.8), the normalized 
value of w is equal to the average number of streams of 
the beam at a given instant of time t and at the given 
point x: 

00 00 

S dv S du S dp w[v, u, p; x, tl= 1: Np(N;x, t) =<N(x, t) >. (2.9) 
-00 _oc 0 N-=I 

4. It follows from (2.8) that the mean value of any 
function of the beam parameters, calculated with the aid 
of w, is in fact the weighted sum of the mean values in 
each of the streams of the multiple-stream beam: 

00 N 

<t(v, U, p) >~ 1: p(N; x, t) 1: <t(v, u, p) >.,N. (2.10) 
N=1 n=1 

Here 
00 00 00 

<f(v,U,p»nN= S dv Sdu S dpf(v,u,p)wn[v,u,p;x,tINI 
_OC> _00 0 
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is the mean value of the function f (v, u, p) in the n -th 
stream of the N-stream beam. 

It is seen from (2,8) and (2.10) that in the region 
where the beam is multiple-stream the mean values ob
tained with the aid of w do not always have the same 
meaning as for a single-stream beam. Thus, whereas 
the average beam density (p), the average flux (pv), 
and the average kinetic-energy density (pv 2)/2 of the 
beam, which are equal to the sums of the corresponding 
mean values for each of the streams, retain their mean
ing also in the multiple-stream beam, the mean value 
( In p), for example, calculated with the aid of w for a 
multiple-stream beam, no longer has the meaning of the 
average logarithm of the total density, and is equal to the 
sum of the average logarithms of the densities of each 
of the streams-a quantity that has no clear-cut physical 
meaning. 

3. AVERAGE NUMBER OF BEAM STREAMS 

1. An important physical characteristic of a beam of 
noninteracting particles is the average number of its 
streams. Let us calculate this average value, integrat
ing (2.4) with respect to v, u, p and making the change of 
variable z '" u/(1 - ut) under the integral sign. As a re
sult we get 

<N (x, t) >= S S wo[v, z; x-vt 111 +ztl dv dz, 

where 

Wo[v,u;xl= f wo[v,u,p;xldp 

is the simultaneous single-point distribution of v and u 
at the initial instant of time. In the case when this dis
tribution does not depend on x, the expression for the 
average number of streams becomes even simpler: 

<N(x,t»= SWo[uIIHutldu. (3.1) 

Here 
~ 

wo[ul"" J wo[v,uldv 

is the probability distribution of the function uo(x). 

It follows from (3.1) that although at large time inter
vals the number of streams is described by the asymp
totic formula 

(3.2) 

where 
00 

1"~ S lulwo[uldu 

characterizes the average spread of the velocity grad
ient, which exists at the initial instant of time. Obviously, 
the larger Yu' the more rapidly are spillovers produced 
and the larger, according to (3.2), the rate of growth of 
the number of streams. To better understand the propor
tionality to t, we break up the beam at the initial instant 
of time into parts of length lo equal to the characteristic 
scale of variation of the velocity field vo(x). It is obvious 
that after a sufficiently long time each of these parts of 
the beam will spread out and occupy an interval of length 
L ~ yvt, where Yv is the average velocity spread of the 
beam particles. It is obvious here that N parts of the 
beam will overlap at each point. Their number is ap
proximately equal to 
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Since Yvllo ~ Yu' this formula explains qualitatively the 
relation (302). 

2. So long as the average number of streams is not 
very large, it is possible sometimes to neglect the fact 
that the beam is multiple-stream and ascribe to w the 
meaning of the ordering probability density in a single
stream beam. 

Let us calculate by way of example the average num
ber of streams, assuming wo[u] to be a Gaussian distri
bution. In this case we have on the basis of (3.1) 

.rz1IY'at { 2} .• ;2 { 1} 
(N(x, t» = V 11 ~ exp - ~ dz + at V -;texp - 2a't' . 

o 
(3.3) 

The quantity a = (u~) )112 has here the same meaning and 
the same order of magnitude as Yu' At 0'1 = 1, i.e., over 
times during which the velocity fluctuations of the beam 
particles lead to large changes in the beam density, we 
have < N) "'" 1.17 and in the solution of many problems 
the beams can be regarded as single-stream, while the 
function w can be regarded as the probability density. 
On the other hand, (3.3) goes over into (3.2) at at » 1, 
as it should, 

(N (x, t) > =al'21n t=1"t. 

4. BEAM·PARTICLE DENSITY DISTRIBUTION 

1. Let us find the probability distribution of beam 
particles moving with constant velocity, assuming for 
the sake of argument that at the initial instant of time the 
particle density is known and equal to Po(x). Then the 
simultaneous one-pOint distribution of v, u, and p, which 
takes at t = 0 the form 

w[v, u, p; x, O]=Wo[V, u; x]6[p-po(x)l. 

becomes at t > 0, according to (2.4), 

W=Wo [v,_U_;x-vt] 6 [-I-P-I--po(x-vt)]. (4.1) 
l-ut 1-ut 

integrating this expression with respect to v and u, we 
obtain the sought probability density G[p; x, t]: 

1 S~ { [ 1 (Po (x-vt) ) ] G=--p:t _~,'(x-vt) Wo V't p -1 ;x-vt 
(4.2) 

[ 1 ( po(x-vt») ]} +wo v, -I p +1; x-vt dv. 

As already mentioned, in a Single-stream beam G has 
the meaning of the probability distribution of the density, 
and in a multiple-stream beam it is equal to the weighted 
sum of the corresponding probability distributions. 

2. Let us consider a particular and rather interesting 
case, in which the beam density Po is constant along x at 
the initial instant of time, and the velocity field is statis
tically homogeneous, i.e., wo[v, u; x] == wo[v, u]. In this 
case (4.2) becomes 

G[p;t]= ~t(P:)'{wo[+(~ -l)]+wo[ -+(P; +t~]},(4.3) 
where wo[ u], as before, is the distribution function of 
uo(x). 

We note that expression (4.3) as applied to the propa
gation of light waves behind a phase screen (see Seco 5) 
was obtained earlier in [12 ,13). In these papers, however, 
they did not make clear enough the meaning of this dis
tribution, which is connected with the multiple-stream 
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character of the beam or, in the language of light waves, 
with the fact that at a large distance behind a phase 
screen several quasimonochromatic waves arrive at 
each point at different angles. 

3. Let us investigate in greater detail the distribution 
(4.3). Using this distribution, we can easily show for 
example, that 

~ ~ 

(p(x,t»=S pG[p;t]dp=poS wo[u]du=po, 
o 

i.eo, the average density of a statistically homogeneous 
beam, having the same physical meaning in the single
stream and multiple-stream beams, is conserved, as 
expected, and does not depend on the number of streams 
in the beam. 

Let us ascertain the behavior of G[p; t] as p - 00. 

From (4.3) we get 

2 Po' [ 1] G[p;t]=--wo -- (p~oo). 
p' t t 

(4.4) 

We assume now that at the initial instant of time the 
smoothness at which the particle velocity varies along x 
is limited by the condition wo[u] == 0 at u < -Uo < O. 
Then, over times t < 1/uo, it follows from (4.4) that 
G[ p; t] == 0 as p - 00. The exact formula (4.3) shows 
that this equality is valid for all p > p* = po/(l - uot). 
This means that over these time intervals the particle 
density in the beam remains finite everywhere. We note 
here that the condition t < 1/uo is none other than the 
condition that the beam be single-stream, and tc = 1/uo 
is the time during which caustics are produced in a beam 
that is initially single-stream and the beam becomes 
multiple-stream. Thus, for arbitrary t, the beam density 
does not exceed p* = p*(t). 

Over times t > tc' when the beam ceases to be single
stream, the value of G[p; t] decreases like 11 p3 as 
p - 00, in accordance with (4.4), i.e., so slowly that 
(pn) = 00 at n ~ 2. This result is a consequence of the 
singularities of the beam density on the caustics that ap
pear when spillovers are produced (see, e.go, [3,8). 

So slow a decrease of the probability distribution of 
the particle density as p - 00 can be easily explained by 
assuming that ~, t) is an ergodic function in x, for which 

1 L 

(p"(x,t»=lim-j p"(x,t)dx. (4.5) 
L_~ 2L 

-L 

As is well known (see, e.go, [8), the realizations of the 
beam denSity of the noninteracting particles in the hydro
dynamic approximation have near the caustics singulari
ties of the type p ~ 1/£ Therefore, over times at which 
the probability of the existence of caustics is not equal 
to zero, the integral (4.5) diverges and (pn).= 00, so long 
as n ~ 2. Thus, G[ p; t] decreases as p - 00 like 11p3 
because the realizations of the density have Singularities 
of the type p ~ 1//X near the caustics. 

4. Let us continue the discussion of the distribution 
(4.3). For a Single-stream beam, when the second term 
in the right-hand side of (4.3) vanishes identically, 
G[p; t] takes the form 

po' [1 (Po )] G[p;t]=-wo - --1 . 
tp' t P (4 0 6) 

Let us clarify how the intensity variance 
o = «( p - p 0)2) p~ tends to infinity as t - tc in the simplest 
case when 

[ ] _ {tc/2; 
Wo u-

0; 
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Calculations show that 
te (te+t) 6=-ln -- , 
2t te-t 

(408) 

Leo, when t tends to the time tc during which the caustics 
are produced, the variance of the density tends to infinity 
like -In(tc - t). On the other hand, if we consider the 
quantity X = In(p/po), then we can show with the aid of 
(406) and (4.7) that the mean values <Xn) for arbitrary n 
and t - tc remain finite. Thus, for example, by calculat
ing <X) and <x 2 ) with the aid of (4.6) and (4.7) we obtain 

<x>=~H(1+ :J'[t-In(1+ :Jl-(1- t: H+-,n(1-i )]}, 
(4.9) 

<x'>=<xH :et [(1 +i- )'In (1+-~) - (1- :J 'In( 1- t: n . 
Estimating their value at t = tc ' we find that (X) ~ 0019 
and <x 2 ) ~ 0.290 

5. We note in conclusion that the results have a 
geometrical interpretation. Thus, by virtue of the afore
mentioned analogy we can interpret w in the single
stream case as the probability distributions of the propa
gation angles v, of the curvature of the wave front u, and 
of the intensity p of the light wave at a point with spatial 
coordinates (x, t) in the small-angle approximation of 
two-dimensional geometrical optics. In particular, ex
pression (4.2) describes the probability distribution of 
the intensity of the light wave at the points (x, t) at a 
distance t from a one-dimensional phase screen placed 
in the (x, 0) plane, on which a light beam is perpendicu
larly incident with intensity Po(x). The statistical prop
erties of the phase screen are described by the probabil
ity distribution wo[v, u; x]. 

A more complete and consistent investigation of the 
propagation of the wave in the geometrical-optical ap
proximation with the aid of the equations obtained in this 
paper will be reported elsewhere. We note for the time 
being that expression (4.6) can be regarded as the dis
tribution of the intensity behind a statistically homogene
ous one-dimensional phase screen at distances t < tc 
from the screen, in which there are still no caustics and 
the geometrical-optics approximation is still valid. 

6. Usually the statistical properties of a phase screen 
are so specified (see, e.g. [14:1) that wo[u] is a Gaussian 
distribution and caustics are produced at arbitrary t > O. 
In other words, immediately behind the phase screen, as 
follows from (4.6), we have < p2) = 00. This result is in
correct because the geometrical-optics approximation is 
violated in the vicinity of the caustics and in the calcula
tion of (p2) it is necessary to take the diffraction into 
account. 
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However, as seen from (4.9), unlike the moments of 
the intensity, the moments of the level of the light wave 
are critical to the appearance of causticso It can there
fore be assumed that so long as < N) ~ 1 the light wave 
is practically single-valued and the probability density 
(406) describes adequately the evolution of the moments 
of the level with increasing distance from the phase 
screen. 

As already mentioned, in the concrete case of a 
Gaussian distribution wo[u] at at = 1, i.e., in the region 
of strong fluctuations of the intensity and of the developed 
caustics, we have < N) ~ 1.17, which is close enough to 
unity, so that we can expect at these distances that the 
probability density 

obtained with the aid of (406) makes it possible to deter
mine sufficiently correctly the values of the moments of 
the level of the light wave behind the phase screeno 
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