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General expressions are obtained for the spectra of resonance Raman scattering and resonance 
fluorescence excited by a powerful Lorentz pulse. It is shown that for a short pulse the spectra 
consist of three and four lines, respectively. It is also shown that the well-known Weisskopf-Wigner 
formula for resonance scattering of an electromagnetic pulse with a broad spectrum is the first term 
in the expansion of an oscillating function of the field intensity in a power series. 

The problem of resonant scattering of electromag
netic radiation was investigated by Weisskopf and Wigner 
immediately after the inception of quantum mechanics. 
Their results are very well known.[ll On incidence of an 
electromagnetic pulse with a broad spectrum on a nar
row atomic level, photons chiefly of the characteristic 
atomic frequencies are observed in the scattered radi
ation. But if the atomic level has a large width, the 
spectrum of the scattered radiation is determined by the 
spectrum of the incident radiation. These classical re
sults were reconsidered rather recently after the crea
tion of lasers, when the problem of the scattering of 
very powerful electromagnetic pulses became a timely 
one. The results obtained, especially those of Rautian 
and Sobel'man/2] pertain principally to scattering of 
narrow (in the limit, monoenergetic) fields, and their 
interpretation is based on a representation of the split-
ting of quantum levels in a monoenergetic external 
field. 

is the matrix element of the interaction of the atom, 
which can be regarded as real, 21'2 is the probability 
of spontaneous decay of state 2, the quantity Yl is set 
equal to zero, i.e., it is assumed that level 1 is a ground 
or metastable state; in this study we use a system of 
units in which c =n= 1. 

A solution of Eqs. (2) for t >0 is given in [7]. By con
sidering this set of differential equations as a matrix 
equation, we obtained the following formulas for the 
matrix U of the fundamental solution in [7]: 1) 

U (t) = (a,';:, a,::',) 
a2 a2 

ai" (DO) =B[/,_, (x)/, (x,) +1,-, (x)/_,(x,)], 

a:" (t;;.0) =iBe'" [/,_, (x)lv-< (x,) -1,_, (x) 1,_, (x,) J, 

a~" (t;;'O)=iB[/,(x)Lv(x,)-Lv(x)/v(x,)], 

a,'" (t;;.O) =Be'''[/v (x)/,-v(x,) +L, (x)/v-, (x,) J. 

(3) 

(4) 

Subsequently, the results of [2] have been repeatedly Here 
A+1,t-i6 improved and generalized, in particular, to the case of 

a field with randomly varying parameters, and have also 
been applied to the consideration of several noncoherent 
processes (see [3-6] and the literature cited in them). 

However, even in the case of weak fields, the ques
tion as to the role of the width of the spectrum of the in
cident coherent radiation is decisive. It is therefore of 
interest to clarify this question for strong fields, to which 
the present paper is devoted. The treatment is carried 
through for a pulse with a Lorentzian spectrum; how
ever, the qualitative results that are obtained do not 
depend on the form of the spectrum. 

1. TWO-LEVEL SYSTEM IN THE FIELD OF A 
LORENTZIAN PULSE 

Let a quantum system (in what follows, we shall speak 
of an atom, for brevity) that was in state 1 at t=--oo, in
teract with a field 

E (", t) ~Eoe-";" cos (kr-wl), 

and let there be a state 2 in the atom such that W21 - w. 
In this case, states 1 and 2 will be strongly disturbed 
at a sufficiently large Eo. 

To find the wave function of the atom in the field, it 
is necessary to solve the set of equations 

a,=iV exp{-;" It l-iBt}a" 

a'=-Y2a,+iV' exp{-;,.I t I +i6t}a" 

where a1,2(t) are the probability amplitudes of finding 
the atom in states 1 and 2, 6 == w21- W, V = 1/zEod12 , d12 
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(1 ) 

(2) 

v 
v=---

2;" , x=xo=---:;:, 

mG {1 1 } B=-.--exp --'.ltl--(1,+i6)t ; 
2smnv 2 2 

J lJ is the Bessel function. 

At t = 0 the matrix U becomes unitary and has a 
simple physical meaning: if the values a1(0) and a2(0) 
are known, then 

a(t>O)=U(t)a(O), a= (::) 

(5) 

The latter circumstance is reflected in the notation of 
Eqs. (4): {(t) is the probability amplitude of finding the 

atom in the state k at a time t > 0 if it was in state i 
at t = 0 with unit probability. 

The fundamental solution of (3) for t:S 0 can be ob
tained from (4) by changing the sign of the quantity X: 

a/" (t,,;;0) =B[/.(x)/t-v(x,) +Lv(x)/v-, (x,)], 

a,'" (t,,;;O) =-iBe'''[/,(x)'-.(x,) -'-,(x)/Ax,)], 

a~" (t,,;;O) =-iB[/1-v (x)1 v-t (x,) -/v-, (x)/,-v (x,)], 

a}" (t,,;;O) =Be'''[1 v-' (x)/-v (x,) +I,.·v (x)/v (x,) J. 

(6) 

Formulas (4), (6) will be used below for construction of 
solutions to the set of inhomogeneous equations of the 
type (2). 

The particular solution of (2) which satisfies the ini
tial conditions al(--OO) = 1, ak-«»=0 can be obtained di
rectly. It is easy to prove that at t:S 0 
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(7) 

The solution for t >0 can be obtained with the help of 
(3)-(5) : 

a(t>O)~Br(v) ( ~ ) ,-v 

( -(X.(x)'-,(x')+~'(X)/.(x,») (8) 
x iei.'[(X.(x)/l-Y(x,)+~.(x)/._,(Xi) 1 ' 

(x. (x) ~/.'(x) -!._.'(x), ~. (x) ~!!_. (x)!._, (x) +!. (x)! _. (x). 

Formulas (7), (8) determine the behavior of the atom in 
the field at all t for selected initial conditions. 

2. RESONANT RAMAN SCATTERING 

We now consider the process shown in Fig. 1. The 
strong field (1), which is resonant at the 1-2 transition 
frequency, acts on an atom initially in state 1. A 
transition is possible from state 2 to state 3 with emis
sion of a photon of frequency n. 

The equations describing the kinetics of this system 
have the form 

A,~iV exp{-AI tl-illt}A" 

A'~-Y2A,+iV exp{-AI tl +il5t}A" 
A3~-y,A3+ive-"'A,. 

Here v is the matrix element of the interaction of 

(9) 

the atom with a weak field of frequency n: ~=W23-n; 
the terms which describe the excitation of the atom by 
the weak field are omitted. In contrast to the previous 
section, the probability amplitudes which take the effect 
of the weak field into account are denoted here by capital 
letters. We shall denote by small letters the amplitudes 
found in the zeroth approximation in the weak field. 

Equations (9) can be rewritten in the matrix form in 
the following way: 

A~(L+L')A, 

o iV exp{-Altl-il5t) 

iV exp{-Altl +illt} 

o 

(
0 0 0) 

L'~ 0 0 0 . 
o ive-W 0 

(10) 

Considering the matrix L' as small in comparison 
with L, we obtain in the first order of perturbation 
theory 

, 
A(t)~Ao(t)+Y(t) S Y-'(t')L'(t')Ao(t')dt', (11) 

where y(t) is the fundamental solution of Eq. (10) for 
L ' = 0 and Ao is the particular solution of this equation 
determined by the initial conditions. 

Inasmuch as the matrix L has quasidiagonal form, 
we have 

J 

FIG.l 
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Y(t)~ ( Vet) 0) 
o exp (-y,t) , 

(~I (t) ) 
Ao(t)~ a2~t) , 

where U(t) is determined by Eq. (3) and the quantity 
al,2(t) by Eqs. (7), (8). Substituting (3), (4), and (6) in (11), 
we obtain the following expression for the amplitude 
A3(t) after simple transformations: 

, 
A, (t) ~iv S exp{-y,(t-t') -ill.t')a,(t')dt'. ( 12) 

Generally speaking, the energy of the photon that is 
emitted in the transition 2 - 3 is related to the ener
gies of the photons emitted in other transitions of the 
inCipient cascade (in the general case, the subsequent 
transitions can also be nonelectromagnetic). Inasmuch 
as such cascade transitions are not considered in the 
present study, we neglect the possibility of decay of 
level 3, i.e., we set 1'3=0 in (12). The results thus 
ottained are valid under the condition 1'3« Yz, which 
holds in the majority of cases of practical interest. 

With account of the assumption just made, the prob
ability of emission of a photon of frequency n = W23- ~ is 

W(Ll)~IA3(oo) 12~ 1 v I e-Wa,(t)dtf. 

Substituting Eqs. (7), (8) under the integral, and using 
Eqs. (A.1), (A.3), and (A.4), we obtain 

I v ( x ) 1_, 
W(!l.)~ .;-r(v) '"2 <X·[(v-fl-1)/.(x)s-.-".-,(x) (13) 

-1._, (x)s-.,. (x) 1 +x,-·[ (fl-v-1)/. (x)s._". (x) +/Y-I (x)s._"._, (x)]) t 
where /J.=(A+Yz+2i~-io)/2A, s/J.,v are the Lommel ' 
functions. 

Expression (13), which determines the spectrum of 
the emitted photons, is rather complicated. It is there
fore sensible to consider some limiting cases. 

First of all, we consider the weak-field limit: V« A. 
Expanding the Bessel and Lommel functions in series, 
we obtain 

W() ___ 4J._'....:(_vV~)' __ _ 
Ll ~ (y,'+Ll')[A'+(Il-!l.)'j' 

(14) 

Equation (14) represents the result of ordinary pertur
bation theory for the 1 - 2 - 3 transition probability [8]. 

However, it is characteristic that this result is obtained 
without limitations on the values of Yz and 0 only upon 
the assumption of smallness of the interaction in com
parison with the spectral width of the exciting radiation. 
This becomes understandable if we take into account that 
departures from perturbation theory develop only at long 
times after the beginning of the interaction. But if the 
field has a large spectral width, then its amplitude 
decays before the departures from perturbation theory 
become significant. 

We now consider the case in which the excitation of 
the atom is produced by wide lines: A»Yz, o. In this 
limit, v"=' % and we can use the relation (A.5) for the 
Lommel functions. Also using the known relations for 
the confluent hypergeometric functions, we can obtain 

W(Ll)~ ~ ( : n e",F, ( 1;1-i ~ ; - iX) 

-e-i',F, ( 1; 1-i ~ ; ix ) +e-i"F, (1; Hi ~ ; -ix ) (15) 

Ll ' 
i' F (1'1-1-' ")1 -e 1 I , '~T' LX • 
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The spectrum of the central part of the Raman scat
tering line (a« A) has the form 

v' 2V 
W(A)=-sin'-. 

A' 'i. 
( 16) 

Comparing (16) and (14), we see that for V« A, Eq. 
(16) transforms into the formula of perturbation theory 
if we set h = 15 = 0 and a« A in the latter. 

It is interesting to note the singularities which arise 
in the case of a strong field (V ~ A), when the scattering 
probability becomes an oscillating function of the param
eter V /A. This behavior of the quantitK w(a) is ex
plained in the following fashion (see [9 ). In the limit 
considered ()'2 «A) the exciting pulse passes through a 
region occupied by an atom during a time that is much 
less than the lifetime of level 2. Therefore, during the 
action of the pulse, the atom does not radiate at the fre
quency W2~' and the subsequent radiation at this fre
quency is determined by which of the states 1 and 2 is 
occupied by the atom after departure of the pulse. A 
photon of the combination frequency is not emitted in 
the first case, but is one emitted in the second. In turn, 
as is well known, in a strong external field the two-level 
system oscillates in time between the two states with a 
frequency -V. Therefore, if the action of the field is 
limited in time to an interval -l/A, then the probability 
of observing the system in one of the two states after 
the action of the field is an oscillating function of the 
parameter V /A. 

The considerations that have been given are directly 
confirmed by simple analysis of Eq. (8). The probability 
of findin~ the atom in state 2 after departure of the pulse, 
at t»l/A, is easily obtained from (8) for V=l;;;: 

la,(1~1/'i.) I''''e-''' sin'(2VI'i.). 

The oscillating factor here is the same as in (16). 

Expression (16) has a singularity at a = 0, connected 
with neglect of the quantity )'2. The obvious way of avoid
ing this singularity lies in replacing (16) by the expres
sion 

v' 2V 
W(Il)= 1l'+,/in'T' ( 17) 

In such a form, Eq. (17) is the direct generalization of 
the Weisskopf-Wigner results for resonant scattering 
of an intense pulse with a broad spectrum at a quasi
stationary level. 

We now consider the wing of the Raman scattering 
line, assuming that the external field is strong (a» A, 
V » A). If a ~ V also, we can use the known asymptotic 
form for the confluent hypergeometric function: uOJ 

,F, (a; c; cs) 

=(1-6)-'[1- a(aH) (_6_)' +O(lcl-')]' 
2c 1-6 

1£1<1. 

Substituting this expression in (15), we get 

( 'i.) 'I e" e-" I' W(Il)=v'V' T (V-A)' + (V+I1)' . ( 18) 

As is easy to see, Eq. (18) has two sharp maxima at 
a = ±V. The atom emits at just these frequencies on ex
citation by a monochromatic field of high intensity. [2] 
The radiation in this case is of the same nature. The 
strong field splits level 2 into two sublevels separated 
from each other by an amount -2V and emission of a 
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photon of frequency n = W23 ± V takes place from these 
sublevels with population of level 3. After damping of the 
field, the emission at frequencies n = W23 ± V ceases, 
leaving only radiation at the unperturbed atomic fre
quency about which we spoke above. 

The case of scattering of a narrow line A«)'2 was 
considered in many earlier studies [2-5 J. Here emission 
arises only at the frequencies W23 ± V. 

3. RESONANT FLUORESCENCE 

We now consider the process represented in Fig. 2. 
Photons of a weak field of frequency n are emitted in 
the same transition on which the field acts. The equa
tions describing the kinetics of the system have the 
form 

At=iVe-Altl-ifttA2+ive-iAtA2, 

A,=-y,A,+iVe->III+;o'A" 

where a=W21-n. The component corresponding to 
absorption of the weak field is omitted in these equa
tions, inasmuch as the processes of absorption and 
scattering of the weak field are not considered. 

Proceeding as in the previous section, we get for 
the amplitude Ai in the first approximation in the weak 
field , 

A,(I)=a,(I)+iv S[a~" (t)a~') (I') 

-a/') (t) a/i) (t') ] a, (t') exp{ '2t' -iM' }dt'. 

The spectrum of emitted photons is obviously deter
mined by the equation 

00 I S (') (2). 
W(I1)= v _oo[a, (co)a, (Ii 

2 

_a,<2) (00) a,'!) (t) ]a,(I)expi!,t-iM}dt I. 

Substituting Eqs. (4), (6)-(8) in (19), we get 

I nv f' (v) ( % ) ,-'v . 
W(I1)= --. - - {av(x) [I,_v.v_,(le,x) 

'i. smnv 2 

-Lv,v (-ie, x) 1 +~v (%) [lv-"v-, (ie, x) +Iv.v (-ie, x)]l I ~ 
I •• (a, %)= S x'J,(%x)J,(xx)dx, e= (11-1\)/'i.. , 

( 19) 

(20) 

The integral Ipq with real first argument was en
countered previously in [7 J in a study of stimulated radi
ation and absorption of an exponentially damped pulse. 
The expansion of this integral in a power series in the 
second argument can easily be obtained by power-series 
expansion of the product of the two Bessel functions with 
subsequent term-by-term integration: 

Ipq(a, x) 
(21) 

00 (-1)'f(p+q+2k+1) (xl2)'+'+" 

= ~ k!f(p+q+k+l)f(p+kH)f(q+k+1) (p+q+2kH+a) . 
11=0 
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Using this expression, we can obtain Eq. (14) for the 
spectrum of resonance fluorescence excited by a weak 
field, in which now A = W21-a. 

We now consider the same limiting cases as in Sec. 
2. If the excitation is produced by a wide line (A» Y2, 6; 
v-~), then, proceeding in a fashion similar to that of 
Sec. 2, we can obtain 

W(ti)=, ~[,F, (1; l-i~; -2i>:) -,F,( 1; l-i~; 2i>:) 
4ti P., ')., (22) 

ti ti' +,F, ( 1; HiT; -2i>:) -,F1 ( 1; HiT; 2i>:)] , 

For the intensity of fluorescence at frequencies ly
ing in the center of the line (A « A), we can easily ob
tain the relation (17). The physical nature of the oscil
lations of W( A) in their dependence on V /A is the same 
as in Sec. 2. 

On the wings of the line (A» A), using the asymptotic 
form of the function IF 1 written out in Sec. 2, we get 

( ) _ 2 .(l:_)'J 1 + 1 " W ti -4v V ti (2V+ti) , (2V-ti).· (23) 

The maxima at the frequencies W = W21 ± 2V, in cor
respondence with what was said in Sec. 2, are formed 
when the strong field splits each level into two sublevels 
and the atom emits photons of frequencies a = W21 ± 2V 
in transitions from each sublevel of level 2 to each sub
level of level 1. The transitions with emission of pho
tons of frequency ware found in the center of the line 
and do not differ from the photons of frequency W21 in 
the considered approximation (A» 6). 

We note that resonant fluorescence was studied in a 
recent paper [llJ for a rectangular pulse; the discussion 
was limited to the case of zero detuning. 

Thus, in Raman scattering of intense radiation with a 
broad spectrum, three maxima appear at the frequencies 
a", W23, W23 ± V. The first of these lines corresponds to 
the characteristic atomic frequency and lasts for a time 
-1;"'2, and its intensity is an oscillating function of the 
parameter V /A. The radiation at frequencies W23 ± V is 
connected with the splitting of the atomic levels by the 
fields; its duration is determined by the duration -l/A 
of the exciting pulse. 

The resonant-fluorescence spectrum excited by the 
strong field contains four maxima: at the frequencies 
W21, W, W ± 2V. The photons of frequency w, W ± 2V are 
emitted during a time -l/A, and at A«')'2 the maximum 
at the frequency W is twice as high as the lateral max
ima.[2J The photons at the frequency W21 are emitted 
during a time -1/')'2 and at A »')'2 the number of these 
photons is an oscillating function of the parameter V /A. 

To appraise the possibility of experimental observa
tion of oscillations of the intensity of the central line of 
Raman or unshifted scattering, we shall have in mind a 
molecular gas (dipole moment -1 debye, scattering cross 
section _10- 17 cm2). Narrow lines are observed in such 
systems-for example, in molecular iodine on excitation 
by the second harmonic of a neodymium laser[12 1; the 
excited states have a lifetime of -10- 7 sec U3J 

The period of the oscillations is determined by the 
change in the pump field intensity by an amount AEo 
- 102 V / cm if the pulse length -10-8 sec. Therefore, for 
a "carrier" pump field intensity -103 V / cm at a focal 
area of -0.1 cm2, the necessary energy of radiation of 
the laser in the pulse is -0.1 J. In this case, -1012 
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photons will be scattered in one pulse at a pressure of 
-1 Torr. 

We express our gratitude to N. B. Delone, B. Ya. 
Zel'dovich, L. P. Rapoport, I. L. Fabelinskil and 
I. L. Chistil for useful comments and a discussion of 
the experimental possibilities. 

APPENDIX 

We present here some relations for the Lommel func
tions used in the body of the text. 

A Lommel function is defined by the integral repre
sentation 

s •. v (z) = 2 Si: nv [ Iv (z) j x·, -, (x)dx-Lv (z) j x'l, (x) dx], (A.1) 
o 0 

and the function SjJ.v(z) is related to it by 

2'-' ( tt-V+1) (tt+V+l) S .. (z)=s.,(z)+-.--r --- r ---
smnv 2 2 (A.2) 

[ tt-v /t+v ] . L,(z)cos--n-I,(z)cos--n . 
2 2 

Integrating (A.1) once by parts and USing the relations 

dl,(z) , v 
~= ±-;-',(z)+Jv±'(z), 

we obtain 

(tt+1-v)s,,(z)=--.1t-[/,(z) S' x'+'I,_,(x)dx+L,(z) j x.+1/ ,_,(x)dX]. 
2Sln J'tV 0 0 

(A.3) 
A known indefinite integral for Bessel functions is [6 J 

S x·', (x)dx= (tt +v-l)xl, (x) S._I.,_, (x) -xl, (x)s •. , (x). 

Applying (A.2) and the formula 

2 
I, (z)/,_,(z) +/,-, (z)1 _, (z) = -sin nv 

. nz 

and taking account of the behavior of sjJ.v as z -0: 

s., (z) ~z·+1/[ (tt+1)'-v'], 

we obtain , I x'l, (x)dx= (/l+v-1)zl,(z)s.-I,.-\ (z) -zl,_, (z)s,.,(z), 

Re tt>-1. 
(A.4) 

When the second index of the Lommel functions is 
half-integer, these functions can be related to the con
fluent hypergeometric function, since Bessel functions 
in the integral representation of (A.1) can be expressed 
in terms of elementary functions: 

s.,±'/'(z)= 2::1 [,F,( 1; tt+ ~ ; -iz )+,F,( 1; tt+ ~ ; iZ)]. (A.5) 

l)There is an error in [7]; in all the formulas of that paper one must 
change the common sign of the quantities a/ 2) and a2( I). 
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