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The interaction of a two-level atom with a quantized electromagnetic field whose frequency is large 
in comparison with the separation between the levels is investigated. The energy spectrum and the 
eigenstates of the system are derived for a field of arbitrary intensity. The transition to the 
quasic1assical case is considered. The question of oscillations in the intensity of the spontaneous 
emission as a function of the field amplitude is discussed. 

The application of new methods, such as optical pump­
ing with the aid of laser radiation, double resonance, 
the interference of atomic states in an electric field, and 
other methods, [1-5J to atomic investigations has deter­
mined the successes which have been achieved recently 
in atomic spectroscopy and has generated interest in the 
investigation of atomic processes in strong electromag­
netic fields. The nonlinear effects arising in this con­
nection require, for their description, going outside the 
framework of perturbation theory. A review of the funda­
mental directions of theoretical investigations in the 
quantum theory of the interaction of electromagnetic 
fields with atoms is given in article [6J by Stenholm. 

For an atom interacting with a field, whose intensity 
Co is small in comparison with the characteristic atomic 
field Cat ~ 109 V/cm, it often turns out to be possible to 
use the model of a two-level system. In this connection 
the interaction of a specific mode of the field with the 
two-level system is treated exactly, and the influence of 
the other states of the atom and modes of the field may 
be taken into account in perturbation theory. 

The change with time of the state vector 

(1) 

of the system, consisting of a two-level atom interacting 
via its dipole moment with a single mode of a quantized 
electromagnetic field, is determined by the system of 
equations 

a A 
i-If,)~ (H.-B) 1/,>+ i-'(C+ - c) 1/,), at 2 

(2) 
a A 

i-lf,)~(H.+e) If,>+ i-(c+ - c) If,). at 2 

Here <{h,2 and 'f 10 denote the wave functions and energy 
levels of the atom; Hw = (1/2)w(cc' + c+c) is the Hamil­
tonian of the field; If 1 ,2) denotes the state vectors, which 
depend on the field variables; A = d(2w/V)1/2 and 
d = (d . e h2 = (d· e hI is the dipole matrix element. These 
equations, and also the corresponding equations for an 
atom in a classical field, have been investigated by many 
authors (see, for example, the review [6J). The solution 
for the case of the one-photon resonance (w ~ 2(0) is ob­
tained in the article by Jaynes and Cummings [7] in the 
rotating-phase approximation. Multiphoton resonances 
were investigated in [8-10J . The solution for a classical 
field can be expressed in terms of continued frac-
tions. [10J Zaretskil and Kralnov [l1J calculated the 
probability for multiquantum excitation in a classical 
field of low frequency (w «E). Equations (2) have been 
solved exactly for degenerate levels (E = 0). [12J 

The case when the frequency of the field is large in 
comparison with the separation between the levels, 

457 SOy. Phys.-JETP, Vol. 40, No.3 

w »10, and the parameter characterizing the interac­
tion, An1/2/w = dCo/w ~ 1, is investigated in the present 
article. In this connection, in order that it would be pos­
sible to remain within the framework of the two-level 
approximation, it is necessary that w « Wat and Co 
« Cat' that is, the question may involve, for example, 
the interaction of the field with the components of the 
fine structure. 

Equations (2) have the steady-state solutions 

(1') 

The eigenirequencies n determine the energy levels of 
the entire system, i.e., the energy levels of the interact­
ing atom and the field. For what follows it is convenient 
to change to the canonical variables p '" p and q '" id/dp 
according to the usual formulas 

C~2-'i' (q+ip), C+~2-'I' (q-ip) 

and to the functions g! = 2-1/2(gl ± g2), which satisfy the 
system of equations 

[ -- ~~~+~(p+po)'-I1-~] g+~.'!.... g-, 
2 dp' 2 2 W 

[ - -} d~' + +(P-po)'-I1- ~ ] g>= : g+. 

'h A Po=2- -. I1=Q/W+'/,A'/w'-'/,. 
W 

Let us expand g±(p) in terms of the functions 
lPk(P ± Po): 

g+(p)~ ~ahliJ.(p+po), g-(p)= L, b.liJh(P-P,). 

where <Pk{x) '" (2kkh/iT}-1/2 exp (-x2/2)Hk (X) are the 
harmonic oscillator wave functions. 

(3) 

(4) 

We note that relations (4) represent expansions of the 
state vectors Ig.> in terms of generalized coherent 
states. [13J In fact, the function <Pk(P + Po), for example, 
is obtained from <Pk(P) unde~ the action of the displace­
ment operator lPk(P + Po) '" A<Pk(P): 

which, as is well known, generates a generalized coher­
ent state upon operating on a state with a definite num­
ber of photons, IlPk> == Ik). 

After substituting relations (4) into Eqs. (3) we obtain 
a homogeneous system of equations for the determination 
of the coefficients ak, bk and the eigenvalues !J.: 

a.(k-I1)= : ~1.m(Po)bm. b.(k-I1)=: ~:>n.lm.(Po). (5) 
m=O 
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The quantities Jkm(Po) are expressed in terms of 
Laguerre polynomials: 

hm(Po) = S 1jJ.(p+po) 1jJm (p-Po) dp 

(6) 

If E/w « 1, Eqo (5) can be solved according to pertur­
bation theoryo The eigenvalues IJ. are close to integer, 
nonnegative numbers no For k -f n the coefficients ak and 
~ can be expressed in terms of an and bn: 

b. = ~ In.(po) a 
w k-n n, 

k*n, 

and Eqso (5) for k = n then determine the relation be­
tween an and bn and the eigenvalues IJ.: 

(7) 

(8) 

Upon adiabatic switching off of the interaction (,\ 2 - 0) 
Ln(,\2/w 2) - 1 and the eigenvalues 1J.1,2 - n 'f E/W corre­
spond to those states of the system in which the field 
contains n quanta and the atom is found in the lower 
(upper) state. If one formally lets ,\2 - 00, then J nn - 0 
exponentially and IJ. - n, which corresponds to the inter­
action of the field with a degenerate two-level system. 
In virtue of the inequality [14J e-x/2ILn(x)1 :5 1 for 
Laguerre polynomials, the separation between the levels 
satisfies the inequality t..1J.:5 2E/w. Finally, Ln(,\2/w 2) = 0 
at certain values of the field parameters (the polynomial 
Ln(x) has n positive zeros), as a consequence of which 
the terms intersect. Near points of intersection it is 
necessary to take corrections of the next order in dw 
into consideration. One can show that the splitting t..1J. 

~ E3/W 3 at the "intersection" point itselL 

In the quasiclassical case for n » 1 one can use the 
asymptotic expression [l4J for Laguerre polynomials in 
terms of a Bessel function 

e-XI'Ln(x) ""l,,(2( (n-i"/,) x) '/'). 

Then, the eigenvalues IJ. have the following form for 
n »1: 

fl,.,""n'f : l'o(2( :: (n+ ~ ))"')1. (8') 

The argument of the Bessel function 2[,\2(n + 1/2)/w2]1/2 

= 2d tffo/w, where tffo is the amplitude of the classical 
field. Formula (8') is analogous to the result (2, 15J for 
the renormalization of the atomic g-factor in the pres­
ence of a radiofrequency field. For a weak field (,\ - 0) 
one can replace the Bessel function by two terms of its 
series expansion. Then 

88(rJJSO)' /-t",""n'f-±- -- , 
00 00 00 

and the last term in this expression represents the usual 
correction to the energy in second-order perturbation 
theory (under the condition w »E)o 

We present expressions for the normalized functions 
(4): 

(9) 

where 1] = ±sign Jnn(po) = ±sign Ln(,\2/w2) and the signs 
are taken simultaneously with the signs in (8)0 
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In order to change to the occupation number repre­
sentation, we expand g±(p) in terms of the functions 
I/!s(p). The coefficients determine the expansion of the 
state vectors of the field into states containing a definite 
number of photons: 

00 

~ (t,Z) 
Ig,,2)= '-' C, Is), 

(C,(+l ± C',-l ) 
C~I,2) = __ =-__ 

From these expressions, in particular, it follows that, 
for example, for 1] = 1 the coefficient C~I) differs from 
zero for even values of n + s, and C~2) differs from zero 
for odd values. 

The number of photons does not have a definite value 
in the state 1>J!(t) described by Eq. (1). With Eqs. (1') 
and (10) taken into conSideration, the average value and 
the fluctuation in the number of quanta in this state are 
given by 

_ 1 '),' 8 '),' 
.'V=n+---'1- exp (--) 

4 00' 00 200' 

- ')" ( 1 ) e ')" ( '),') (tJ.N)'=- n+- -ll--exp --
200' 2 00 400' 200' 

{ ( '),' ) ')" '),' 
X 3L" 7 -nLn-'(7)+(n+1)Ln+{-;;;,)}. 

These expressions simplify considerably for n » 1 
(,\ 2n /w 2 is bounded): 

-_ '),' ( 1 1 d8 0 2 

(!J.N)'=- n+-)=-(-) , 
200' 2 2 00 

(11) 

(11') 

i.e., in the quasiclassical case the quantum number n 
coincides with the average number of photons, and the 
relative fluctuation 0 ~ d <fo/nw. 

The populations of the atomic levels significantly de­
pend on the magnitude of the field. Thus, for example, 
if prior to switching on the interaction ,\2 - 0 the atom 
is found in the lower level, then in the stationary state 
(1) the probability of observing the atom in the upper 
level is given by 

1 e E' In.'(po) w, =(g,lg,)=-{l-llnn(po) I}-- ---. 
2 00 k-n 

(12) 
• 

In the limiting case of a classical field (n » 1) the sec­
ond term in (12) turns out to be negligible, and the proba­
bility 

(12') 

oscillates as a function of the field intensityo 

Let the pair of levels under consideration correspond 
to the excited state of an atom; the upper level is coupled 
to the ground state by a dipole transition so that the fre­
quency of this transition, Wat, is considerably greater 
than the frequency w of the intense field (wat »w). We 
shall assume that the dipole transition from the lower 
level to the ground state is forbiddeno Then the intensity 
of the spontaneous emission associated with the transi­
tion to the ground state will be proportional to expression 
(12') for the probability W2 of finding the atom in the 
upper level, i.e., it will oscillate as a function of the 
intensity of the strong field 40. The first maximum 
corresponds to the value of the parameter d 4o/w R< 1.2, 
when the Bessel function vanishes. 
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