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The problem of scattering of particles at ultrahigh. energies is considered within the framework of the 
reggeon diagram technique. The problem reduces to the problem of self-interaction of the pomeron 
field. Application of strong-coupling methods and of an E expansion allows one to derive the 
asymptotic behavior of the total cross section and of the amplitude of elastic diffraction scattering. 
The matching of the solutions obtained here with perturbation theory is investigated. The position of 
the bare pole is determined for small coupling constants. The solutions obtained here exhibit scale 
invariance with anomalous dimensions in the ~,p representation, where ~ is the rapidity and p is the 
impact parameter. 

INTRODUCTION 
In high-energy hadron collisions the produced par­

ticles are emitted preferentially in the forward direction. 
The transverse components p 1 of their momenta are 
bounded by a quantity of the order of the particle masses 
)./. ~ 300 MeV/c. This means that the interaction between 
the hadrons occurs at relatively small impact parameters 
p <. 1/)./.. A mechanism for such an interaction is the 
multiperipheral particle generation, for which the sim­
plest model has been proposed and studied in detail by 
Amati, Fubini, and Stanghellini [1]. In this mechanism the 
density p = dN/dy of the produced particles in the space 
of rapidities y = In(PII//-L) "" In(E/)./.) is constant p(y) 
= Po for high energies in the physical region 0 ~ y :S ~ 

and also does not depend on the rapidity ~ = In(Eo//-L) of 
the incident particle. Correspondingly, the average 
particle number, i.e., the average multiplicity, increases 
logarithmically with the energy: N = Po~. 

Physically, multiperipheral production corresponds 
to a process of independent particle production, without 
any correlations between the magnitudes of their mo­
menta for large relative rapidities. The diffraction scat­
tering amplitude in the multiperipheral model is deter­
mined by the Regge formula. It can be considered as a 
good zero-order approximation, but the interaction with 
large relative rapidities becomes more and more im­
portant with increasing energy. This interaction pro­
duces, in particular, non uniformities of the density of 
the produced particles in rapidity space. Thus, two par­
ticles with rapidities Y1 and Y2 and with Y1 -Y2» 1 can 
produce multiperipherally (Y1 - Y2)PO additional particles 
in the rapidity interval Y2 ~ Y ~ Y1. As a result the par­
ticle denSity in this interval is doubled. It is also pos­
Sible that these two particles absorb all other particles 
in the indicated interval of rapidities, and a hole is 
produced in the distribution density p(y). 

The corresponding corrections to the Regge formulas 
are described by the reggeon diagram technique· of 
Gribov[2]. Historically, this technique grew out of an 
analytic continuation to nonintegral j of the t-channel 
unitarity condition [3] and the analysis of asymptotic 
behavior of Feynman diagrams in the s-channel by 
means of the Sudakov method[4]. The mentioned connec­
tion between reggeon diagrams with multiple production 
processes and the s-channel unitarity condition was es­
tablished recently in the interesting paper of Abramov­
sil, Gribov, and Kancheli[5]. 
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The asymptotic behavior of the elastic scattering 
amplitude is determined by the contribution of the so­
called "enhanced" and "unenhanced" 'including "semi­
enhanced") reggeon diagrams. Some of these are illus­
trated in Fig. 1. For ultrahigh energies, when the rapid­
ity of the incident particle is large, ~ = In (E/ )./.)>> 1, the 
principal role is played only by the enhanced diagrams 
which contain powers of the quantity r2~, where r is 
the coupling constant for the decay of one reggeon into 
two others. For r2~ <. 1 the contribution of an infinite 
number of different enhanced diagrams is important 
and the problem of summing these diagrams arises (this 
problem is in itself equivalent to a problem of interac­
tion of a nonrelativistic quantized particle field[e]). This 
problem has been considered by Gribov and one of the 
present authors [&-8], where two versions for its solution 
were proposed, consistent with the t-channel reggeon 
unitarity conditions [3]. 

The first version (strong coupling) corresponds to 
a Significant change of the trajectory and residue of the 
Pomeranchuk pole for r2~ <. 1 on account of pomeron 
interaction. In the second version (weak coupling) the 
effective vertex for the decay of a pomeron into two 
pomerons (the three-pomeron vertex) vanishes like the 
square of the reggeon momenta in the region ki < r2 
as kf - O. The corresponding corrections to the pomeron 
Green's functions and to the scattering amplitude in 
the low-momentum-transfer region turned out to be 
small as ~ - <Xl. Among these versions one was supposed 
to select the one which satisfies the s-channel unitarity 
conditions. 

The weak-coupling version with a three-pomeron 
vertex falling off linearly as ki - 0 seemed at that time 
to be the most attrll-ctive on account of its Simplicity 
(theoretically, in the whole energy region it reduces to 
simple perturbation theory formulas). However, further 
development of the theory·has shown that the weak coup­
ling can be brought into agreement with s unitarity only 
at the price of a whole set of artificial additional selec­
tion rules for vanishing pomeron momenta. It turned out 
that one must forbid the scattering of pomerons on pom­
erons and the decay of a pomeron into three pomerons[6, 7], 

the emission of particles by pomerons[9], the production 
of resonances and particle jets on a pomeron [10], etc. 

Experiment does not confirm these selection rules. 
The cross section for the production of resonances on 
protons at high energies exhibits no tendencies[ll] to 
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vanish at zero momentum transfer, i.e., as -t '" pi ~o. 
The three-pomeron vertex r(piJ which can be de­
rived[12, 13] from the ISR[14] and NAL[ll, 15] data on inclu-
sive spectra also turned out not to decrease with de­
creasing p I of the pomerons. The experimental data indi­
cate more readily that as pi - 0 it tends to the constant value 
r'" lO-lap'!2 (ap is the slope of the vacuum trajectory). 
Thus, experiment reveals no tendencies for the decrease, 
corresponding to the weak coupling hypothesis of the in­
elastic cross sections as pi - O. 

All this gives serious reasons to revise in general 
the problem of pomeron interactions, dispensing with 
the weak coupling hypothesis. 

The experience accumulated over the past few years 
in investigating analogous problems, particularly in 
the theory of phase transitions [16-1S1, shows that in such 
cases strong coupling occurs, accompanied by a screen­
ing phenomenon, i.e., the suppression of the interaction 
amplitudes on account of particle repulsion. It was pos­
sible to obtain a Simple form for the solution of the prob­
lems of phase transitions on the basis of the hypothesis 
of scale-invariance(16, 17] and Wilson's E-expansion 
method[lS]. 

The method of E expansion is applied below to the 
pomeron interaction, and on its basis we have obtained 
a simple solution of the problem corresponding both to 
reggeon strong coupling for r2~ ::: 1, and to the previously 
established (S] scale-invariance condition. In the region 
r2~ S 1 the solution joins smoothly with the perturbation 
theory series and exhibits physically reasonable proper­
ties. We have not been able to find a rigorous proof of 
the s-channel unitarity of this solution, but have con­
vined ourselves that it does not involve those contradic­
tions which, as we have seen, appeared in the weak 
coupling case. 

We shall describe the pomeron interaction below by 
means of a Lagrangian for which the perturbation theory 
reproduces exactly the contribution of all the reggeon 
diagrams of Gribov. We apply the E-expansion method 
to this Lagrangian and in the first part of the paper we 
consider the purely theoretical question: what are the 
consequences of the three-pomeron coupling in the region 
of strong pomeron coupling for r2~ ~ 1 ? 

One should not right away that the dimensionless con­
stant r (we measure all quantities in units of a p or 
Clp'!2) may turn out to be-and indeed seems to De-very 
small; from the experimental data on inclusive 
spectra [11,14,,5] it follows that r "" 1 110. Therefore 
the region r2~ ~ 1, Le., ~ = In(mNEIIl 2 ) ~ 102 is far 
beyond the limits of energies that will ever be reached. 
Nevertheless, for an analysis of the general situation 
it is very important to understand what happens as 
~ _"', Le., what the theoretical asymptotic behavior of 
the solution is. The region of attainable energies where 
the situation may be cardinally different from the region 
r2~ ~ 1 is briefly discussed in the last section. ' 

1. THE REGGEON DIAGRAM TECHNIQUE AND 
PERTURBATION THEORY 

The ref,~eon diagram technique has been formulated 
by Gribov 2 in the w, k representation, where w + 1 = j 
is the complex angular momentum and k is the two-di­
mensional momentum transfer. This representation is 
convenient for analyzing the singularities in the j-plane 
but the general properties of a number of quantities are 
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more easily formulated in the p,~ representation ob­
tained by means of a Fourier-Mellin transform 

\. eikp _. _ ewl;_ • d'k ~. dw 
J 2n t 2ni 

(the integral with the vertical arrow denotes integration 
along a path parallel to the imaginary axis). The two­
dimensional vector p has the meaning of an impact 
parameter, and the rapidity ~ '" In (PII / J..L) of the particle 
corresponds to the imaginary "time" t' = i~. 

At very large energy s = J..L 2e~ and small momentum 
transfers - t == k2 ~ 1I~ the most important contribution 
comes from the so-called "enhanced" diagrams [21 
Fig. la, constructed from reggeon propagator lines. 
They begin and end in the t channel in a one-pomeron 
line and are constructed from three-pomeron vertices. 
The partial wave cp(j, t) of the t-channel is determined 
by the Green's function of the pomeron: cp (j, t) 
== g~G(w, k2), where go is the coupling constant for the 
emission of a pomeron by a particle. The whole scat­
tering amplitude is determined by the well-known Som­
merfeld-Watson representation in the form 

r(s, t)=~+Imr(s, t), 
1 . ,_ d" . d' 
-1m r (s, t) = \ e(J-1l"4' (i, 1)-2'- = \ e'"Pgo'G(t p) 2 P , (1.1) 
s Ji JU J rt 

~ nan rJ 
tJ+=i+tg--""i+--

2 as 2 as ' 
where fj. is a signature factor and 

• dU) d'k 
G (t p) = \. ew;+.kp G (w, k') -2 . -2 = (01 T (1jJ (~, p) 1jJ (a, 0)) 10) (1.2) 

Jt n, n 

is the pomeron Green's function in the ~ ,,) representa­
tion. In this representation the pomeron is described by 
the complex wave field 

1jJ(s, p) = Lakeik'''", 
k 

with a non-Hermitian Lagrangian of the form 

(1.3) 

where r is the three-pomeron vertex and Eo(k2) = ~o +k2 
is the bare pomeron spectrum; its slope (dEo/dk2)k2==0 
is by definition taken to be unity, Le., k = ao' !2pl' where 
p 1 is the transverse momentum in conventional units. 

The Lagrangian (1.3) describes the motion of the 

-' T(stJ==Y+Ig +I+'i~' +".+ 
8:trs J X r 

9 
a x, ~I,N21 + , .. ', r + y + ,~' + , It, + ... "t-

Nz ' ~ . 
b Nz NJ 

+1C+]t+o 
Nz N, 

FIG,I 
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pomeron in the sense that the perturbation theory de­
rived from it for the cubic (anti-Hermitian) interaction 
1/2irl/J + l/J(l/J + l/J+) reproduces exactly the contributions of 
all enhanced Gribov reggeon diagrams to the Green's 
functions. Such quantum-mechanical quantities as the 
energy of the ground state or the l/J function have no 
physical interpretation in this problem. The corrections 
due to unenhanced diagrams can be taken into account by 
introducing correction terms into the definition of the 
partial wave, and will be discussed in the sequel. 

The pomeron energy spectrum w = -E(k2) is deter­
mined by the poles of its exact Green's function 

G(w, k')=1![W+Bo(k')-~(w, k')] (1.4) 

in the w representation (it would be logical to call 
E = - w = 1 - j the pomeron energy; here 

"( k') 1 S dW'Sd'k' ('" ( '( ') ) .:.. W, =--- -. --rG w ,k )G w-w, k-k ' 
2! t 2m n (1.5) 

x r(w,k; w-w',k-k') 

is the pomeron self-energy and r is the three-pomeron 
vertex part. The spectrum determines the position of 
the Pomeranchuk pole: 

a (-k') =1-e (k'). (1.6) 

The parameters r, Eo(O) = ~o of the Lagrangian have to 
be chosen such that there be no gap in the spectrum, i.e. 
that 

1-a(0)=e(0)=0. (1. 7) 

For this it is necessary that the bare spectrum have a 
gap ~o = Eo(O) F 0, depending on the constant r. The free 
Green's function, which is obtained when we set r = 0 
in (1.4), (1.5), corresponds to the contribution of the 
"bare" Pomeranchuk pole, G(w, k2) = (w + Eo(k2)f\ i.e., 
to the Regge scattering amplitude 

1 
-S- TU' (s, -k') "'ig' exp[ -l;eo(k')]. (1.8) 

ITS 

We show that at high energies, i.e., at ~ » 1 and at 
a small coupling constant r, perturbation theory corres­
ponds to a series expansion in the parameter r2~ and 
that the "bare" gap depends on r in the following 
manner 

I" r' 
1'10 = -In-+O(r'). 

4i !, 
(1.9) 

Indeed, the contribution of the Simplest loop diagram 
to ~ (w, k2) is obtained by setting G = Go and r = r in 
(1.5) 

(1.10) 
r2 d2k'/n 

=--"2 S w+eo(k')+eo[(k-k')']' 

and the integration with respect to w' is done by means 
of residues. For low frequencies and small momenta 
w ~ k2 ~ 1/~ « 1 and for ~o« 1; this integral is 
logarithmically large: 

~(t) ( k') _ r' SL dk" 
W, - - 2 w+2t1 +k'!2+2k" 

o 0 

=--In +0 --r' L ( 1 ) 
4 w+2t10+k'/2 In L 

(1.11) 

(L ~ a O/J. 2 ~ 1 is the cutoff radius, corresponding to the 
bound p 1 S /J. on the transverse momenta). This yields 
the pomeron spectrum in the first order of r2: 
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e(I, (k)=eo-~(" (-eo(k), k)=t1o+k' + ~ln __ L __ . (1.12) 
4 t1o-k'l2 

In order that there be no gap in the spectrum one must 
choose 

r' L 
t1o +-ln-=O. 

4 1'10 

To logarithmic accuracy this yields the condition (1.9). 

Substituting these values of Eo(k2) and ~ ~ ~ (I) into 
G(w, k2) we note that allowance for the interaction be­
tween the pomerons in first order of r2 at w ~ k2 leads 
to the appearance in G -l(W, k2) of terms of order r 2/w 
(apart from a logarithmic factor). In the ~, p represen­
tation this yields terms of the order r2 ~ (since w~ ~ 1 
in (1.2». Corrections of the same order are also ob­
tained in the three -pomeron vertex 

r(w', k'; m-ot', k-k') =r(1+0(r'!U'm)), 

by computing the contributions of the two Simplest 
correction diagrams in first order of r2; here w~ is 
the largest among the quantities w', w, w - w' , k , k' 2, 
and (k - k,)2. 

Higher-order diagrams contribute to G-1(w, k2) in 
proportion to higher powers of the parameter r 2/ w[7, 8), 

or to r2~ in the ~ representation. The powers of the 
same parameter r2/wm also appear in the higher-order 
approximations to the quantity r. At r2~ ~ 1 all these 
corrections add up to yield a contribution of order one 
to wG- 1 or r /r, and alter these quantities substantially 
(even at r2« 1). This is the region of strong coupling 
between the pomerons. The magnitude of the gap ~o is 
determined by the value of ~(w, 0) for -w = Eo = ~o 
'" r 2ln r2. Therefore the higher-order corrections to 
~(wo, 0), having the order (r2/w)n ~ (l/ln r2)n for 
In (1/r2) > 1, are small and the magnitude of the bare 
gap which was found above does not change as r2 _ 0 
when all higher order terms are taken into account in G- l • 

Thus, as r2 _ 0 the gap ~o has a nonanalytic depen­
dence on r. As can be seen from (1.9) the gap turns out 
to be negative, i.e., the bare Pomeranchuk pole ao(O) 
= 1 - ~o for t = 0 is situated to the right of 1. Without 
taking into account the interaction of the pomerons this 
would lead to a violation of the unitarity condition in the 
s channel (the Froissart theorem). 

We calculate the scattering amplitude 

T(l;,t)"'(i+tg~~) ImT(l;,t), 
2 ill; 

substituting into (1.2) the Green's function which we 
have determined in first order of r2: 

G("(w k'),., 1 /[W+k2+~ln~] 
, 4 w+k'!2 

r' r'!4 
(1.13) 

,.,-- In---
w+k' 4(w+k')' w+k'l2 . 

Calculating the simple contour integral with respect to 
w we obtain 1 ) 

1 { r' [ 1 S' dv e'-1 ]} -ImT(l;,t)=g' 1+-s In---- (e'-1)-+-- , 
Sns 4 (4r) '''(ol; 0 v Z 

(1.14) 
where z = k2~/2 and Yo = 1.78 is the Euler constant. 

This amplitude corresponds to a slowly increasing 
total cross section 

II ImT(l;,O) ,{ r' C } cr'=---=Sng 1+-l;ln--, 
s 4 r'l;!4 

(1.15) 

where C = elY '" 1. In the region of energies attainable 
at the present time, where ~ = In(S/!l2) ~ 5-10 for 
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r2 ~ 10-2 , the corrections are small, of the order of 
1-2%. Here they are considerably smaller than the cor­
rections due to the unenhanced diagrams of Fig. 1, c, 
which are of the order[l9] of several dozen per cent. 
Corrections of the same order of magnitude as (1.15), 
but that decrease atot as ~ increases, come from vir­
tual lines in the pomeron vertices and correspond to 
the semi-enhanced diagrams of Fig. 1, b. All these 
corrections, except those taken into account in (1.15) 
do not grow with ~, and are therefore unimportant in 
the region r2 ~ - 00; they are discussed in the last sec­
tion of this paper. 

In order to verify the consistency of this theory it is 
important to obtain a theoretical asymptotic expression, 
due to all the approximations, of the amplitude as 
~ _00. In fact, for this it is necessary to obtain a solu­
tion for the Green's functions and vertex parts corres­
ponding to the Lagrangian (1.3) in closed form. We 
begin solving this problem with an investigation of a 
simple model for it, different from the exact problem 
only in the assumption that the impact parameter space 
p is four-dimensional rather than two-dimensional. 

2. THE FOUR·DIMENSIONAL MODEL AND THE 
SCREENING OF THE INTERACTION 

If the space of impact parameters p in the interaction 
Lagrangian (1.3) is four-dimensional (this corresponds 
to a six-dimensional space-time for the original partic­
les), the integrals for the reg:geon diagrams will acquire 
logarithmic divergences as L -"" and the theory exhib­
its renormalizability. At r2« 1 but r 2 l ~ 1 the theory 
has an exact solution, which can be found explicitly by 
summing the contributions of the leading diagrams. 
Here 

'd'k ' dk' 1 
1= J-=f-=In-, 

_ rt2k~ . k't. U)m 
(2.1) 

/-m 

Wm is the largest to the quantities Wi and kf which ara 
important in the problem. 

The first corrections of the renormalizable pertur­
bation theory, corresponding to the contribution of the 
one-loop diagram of Fig. 1, a (or the diagram of Fig. 
2, b) to the Green's function 

r'( k') 1 G-'(ffi,k')=ffi+k'-g ffi+2" In ffi+k'/2 +O(r') (2.2) 

and for the three-pomeron vertex (Fig. 3, b, c) 

r(ro, k,; ro" k,) =r (1- '::'In _1_) 
2 ffim 

(2.3) 

are of order r2[ in the four-dimensional theory. Pertur­
bation theory is valid only for r2[ < 1. In the region 
r2[ <. 1 the solution has the structure 

G(ffi,k')= ffi+~~'(l)' r(ffi"k,'; ffi"k,')=r(l), (2.4) 

if w, "" w2 ~ W = w, + W 2 ~ k~ ~ k~ ~ k2 = (k, + k2)2. 

By means of the equations of the renormalization 
group one can show in a general way[20] that all quan­
tities (3(l), R2(1), r(l) are proportional to powers of the 
invariant charge, the latter having the form 

r'~' r' 
I.(l)=~= Harl' (2.5) 

i.e. , 
~=(A!r')a" R'=(I./r')a" r=r(l./r') a,. 

The coefficient a and the exponents ai are easily deter­
mined by comparing, at r 21 < 1, these general formulas 
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a k-k, c d 
b 
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r= 
w,k w,k 

a b d 

FIG. 3 

with perturbation theory (2.2), (2.3). This yields a = 3/4 
and 

~ (I) = (1 +'/,r'l) '1., R' (I) = (1 +'j,r'l) '1", 

r(l) =r(1+'/,r'l) -'I,. 
(2.6) 

In distinction from the perturbation-theory series 
this solution is also valid for r2 ~ 1, when the invariant 
charge \(1) is small. In other words, at r2 < 1 it is valid 
for any frequency, and at r2 > 1 it is valid only for very 
small wm ' for r 2l» 1, when~\(I) = (4/3)l < 1. In the 
asymptotic region which interests us wm -0, i.e., 
1 _"", it is valid for arbitrary r2. 

We note that if the interaction were Hermitian, i.e., 
if ir = r, were real, the invariant charge :\ (1) would in­
crease with 1 and for values of 1 close to 10 = (4/3)r~ 
the solution would become inapplicable. Apparently 
there are no physical solutions at .all in this case, on 
account of the instability of the vacuum. In our case of 
anti-Hermitian interaction the reggeon repulsion sta­
bilizes the vacuum and no contradictions appear. 

A characteristic trait of the solution found here is 
the screening-a suppression of the pomeron amplitudes 
for wm _0,1 _00 owing to the repulsion of the pomer­
ons. Thus, as [ _00 the three-pomeron vertex r tends 
to zero in (2.6) like 

( 4 ) 'I, 
r"'r -- ... 0. 

3r'l 
(2.7) 

We calculate the vertex r'(w" k, ; w2 , k2) describing 
the emission of a particle by the pomeron (correspon­
ding to the operator rb'// qj for the emission of a particle 
by the pomeron). In first order in r2 this vertex is des­
cribed by the contribution of the single. diagram b in 
Fig. 4, in place of the two analogous diagrams b and c 
in Fig. 3 for the vertex r. Accordingly, in this order it 
is determined by 

r'(ffi" k,; ffi" k,)=r:(1-'/,r'I), (2.8) 

in which the correction term is twice as small as in 
(2.3). The screening factor for this term is obtained by 
means of the renormalization group in the form 

(2.9) 

3. THE E EXPANSION AND SCALE INVARIANCE 

In order to go over from this four-dimensional model 
to the realistic case of a two-dimensional p or k space, 
one must generalize the theory to an arbitrary nonin­
teger dimension d = 4 - E. A detailed discussion of 
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Wz,kz 

r'= + + ., 

b 

FIG. 4 

such an analytic continuation from the integers d = 1, 2, 
3, ... (dimensions of the space) to noninteger values 
can be found in the papers of Wilson [1sJ, who has pro­
posed the method of E expansion. The idea consists in 
retaining for nonintegral d the symmetry property: in­
variance under translations, dilations, and rotations 
of space. These requirements suffice in order to deter­
mine the value of the Feynman integral for noninteger 
d up to a common factor which renormalizes the coup­
ling constant and is therefore inessential. 

For example, the contribution of the simplest pomeron 
loop (Fig. 2, b) to the pomeron self-energy is defined 
as 2 ': 

r' dq r' aq [ k'l 2:'" (~, k')=-~S-exp[ -sq'-s(k-q)'J=--S-' ex!' -2sg,'-s-
2! Nd 2 N. 2 

=- r~ exp (-s ~') (2s) -"" S aq' exp (-g,') =-~ exp (-s ~ ) (26) _a"~, 
- 2 Nd 2 2 (3.1) 

where we have successively performed/the translation 
q = k/2 + ql and the dilation ql = (2~rd 2q2 . Under the 
latter, by the definition of the dimension d of the space, 
the integral acquires a factor (2~)-d/2. The remaining 
integral 

d"q, 
S -exp(-q,') 

N, 

leads to a renormalization of the constant r2. Redefin-
ing Nd, i.e., the units in which the momenta are measured, 
one can normalize this integral as desired. We shall ad­
here to the natural normalization 

(for which the last equality in (3.1) is valid). 

Carrying out a Mellin-Laplace transformation it is 
easy to calculate the singular part of the self-energy as 
W,k2_0: 

~(I)(w k')= S~e-·'~(I)(t k')dt=- r'T(1-dI2) (w+~) "'_'. (3.2) 
d '" b, b 2(Hd12) 2 

For d = 4 - E, E -0, when r(l- d/2) "" -2/E, this ex­
pression becomes 

,,) " r' ( k') (w+k'/2) -"'-1 
~" (w,k-)=- W+- +Reg. 

4 2 e 
(3.3) 

It differs from the four-dimensional case by the substit­
ution 

1= In __ 1_ "" In _1_ ..... .2. (_1_ -1) 
w+k'/2 Wm e w~:" ' (3.4) 

where wm = max(w, k2). In other words, for d f 4 the 
logarithmic integral (2.1) 

S~=S' dk' 
n'k' k' 

should everywhere be replaced by the power-law integral 
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d'k 

S nd/Zf (d12) k' 

I dk' 

S~· 
One can also show [18 J, that for all the other quantities 
one can use for E - 0 the four-dimensional solutions of 
the preceding section, making in them the substitution 
(3.4). 

Thus, the solution with dimensions d = 4 -£ differs 
from (2.5) and (2.6) only by the substitution (3.4). As 
W = wm -0, Le., as l ". 2/EWE/2 -"" it will have the 
following power-law form: 

p= (r'lr,') "'w';:"" +O(e'), 

R'= (r'lr,» ""w';:"" +0 (e'), 

f=r(r'lr,') -·"w:'" +0 (e'); 

f' =f,' (r'lr,') -';'w:':' +O(e'), 

where r~ = 2E/3. From (2.4) it follows that 

w+k'R' ,,12 ( r' )-"'[ k' (r')!1"] G-'(w k')=---=wwm - H---
'~ ro2 (jj(Jle~'l.Io ro2 ' 

( ro' ) 1/16 1/3 

f=ro 7 wm • 

(3.5) 

(3.6) 

(3.7) 

This solution corresponds exactly to the one found 
earlier by Gribov and one of the authors[S] on the basis 
of an analysis of skeleton reggeon diagrams in the fol­
lowing general form: 

(3.8) 

where Zo and R~ are scaling factors (dependent on r2), 
1/, y, 11 are universal numbers, independent of r, related 
by the scaling relation 

2y-31'}+vd/2-2=O, (3.9) 

and f and F are some universal functions of the indicated 
variables, with W = WI + w2 and kl + k2 in (3.8). 

The relation (3.9) is a consequence of the requirement 
that all skeleton diagrams for G, r, and for the other 
quantities have the same homogeneity exponent (of the 
form y or r, or -1-1/ for G). It is easy to see, e.g., by 
comparing r with the contribution from the simplest 
triangular diagram (Fiy' 3, b) that this requirement 
leads to the condition [8 

f'G'wk'-1, (3.10) 

which yields the equality (3.9) upon substituting (3.8) in 
the region W ~ WI ~ w 2 ~ k2 ~ k~ ~ k~ - O. The terms 
which are Singular with respect to the indicated variables 
in the right-hand sides of the Schwinger-Dyson equations 
for G- I and r are all of the same order of magnitude and 
reproduce [8, 17] the left-hand sides of these equations 
(for a definite form of the functions f and F, independent 
of the choice of r2), and the regular terms together with 
the contribution of W + k2 or r cancel in both sides of 
these equations. 

It can be seen that the solution (3.7) has exactly the 
form (3.8), where as E -0 the exponents 1/, y, and 11 

have the value 

l'}=e/12+0 (e'), y=e/3+0(e'), \1=1 +e/24+0(e'), 

and as £ -0 (when d = 4) 

(3.11) 

Z,= (r2/ro') "'= (21"/2e) ''', R,'= (r2/r,') ",,= (3r'/2e) "", 
j(x)=1/(1+x), F",,(2e/3)'I'=const. (3.12) 

For such values of 1/, Y and 11 the scaling relation 
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(3.9) is valid to first order in 10; it must further be 
valid in each successive order. The relation becomes 
particularly clear and intuitive in the p, ~ representa­
tion' where it reduces to the invariance condition for 
the n-point Green's functions with respect to scale 
transformations [17 J of the pomeron field, of the form 

Ijl(p,;) ->-;o-'1Jl(p;;-Y", ;1£0) (3.13) 

with 
!1='/,Vd-'/2T!, (3.14) 

where ~o is an arbitrary parameter. Choosing ~o = ~ 
we note that 1/J has the dimension C~ and the impact 
parameter p has the dimension ~-v /2. Scale invariance 
means that the n-point Green's functions have the dimen­
sion ~-n~, in particular 

G(p, s)=<OIT(1Jl(p, ;)1Jl+(0, 0)) 10)=;-'"g.(p/;"'), 

<OIT(!( 0) ('e) +(00))10>_1 (P p' ;) 
1) p,- Ijl P'b~', -¥g, ~' (;')""r 

A transformation to the w, k representation yields for G 
and r indeed exactly the value (3.8). 

We shall show how the E-expansion method allows one 
to determine not only the exponents TJ, y, v, ~ = 1-10/4 
+ 0(10 2) and all the other dimensionless parameters, but 
also the explicit form of the functions of type f and F 
which enter into the theory. In order to obtain the lat­
ter one must take into account the already mentioned 
universality of these functions, Le., their independence 
of the constant r2 of the "bare" interaction llB1 . 

We pick this constant inthe form r2(E) = aE2 + bE2 + ••• , 
in such a way that in each order in 10 the solution ob­
tained in perturbation theory should have the structure 
(3.8) (by means of the renormalization group method one 
can prove in general form [20] that such a function r2(E) 
exists indeed). In first order in 10 one can consider 
r2 = aE, and the space as four-dimensional. Then the 
perturbation theory corrections (2.2) and (2.3) can be 
regarded as the result of an expansion in powers of 
10 (i.e., a series in r2) of the exponents of the powers in 
(3.8) 

G({J) O)={J)+~{J)ln{J)""{J)t+"'8+·· , 8 ' 

. k' 2 ( k' ) ,'/1'+ ... 
G-' (0 k') =k'+ - r' In - "" k' -. 

' 16 /<' ? ' 

r({J)" 0,00,,0) =r(t +'/,r'ln (0) ""r{J)"'Z+"', 

i.e. , 
r' 

ll=S+O(r"), 

where it has been taken into account that G-l(w, k2) in 
(3.8) can be written in the form 

G-'(w k')=Z -'(k')'I+'''''j -, (~) 
" 'WR/ 

(3.15) 

with fl(l/x) = (R~)(l + TJ)/vf(x). Substituting these values 
into the scaling relation, we find that as 10 = 4 - d - 0 it 
will be satisfied if 

r'=r,'=2e/:3+0 (e'), 

For TJ, y, and v this yields the values which were found 
above. The condition r2= 210/3 can also be understood as 
the requirement that the invariant charge (2.5) for 
l = 2(;v-E/L 1)/10 

(3.16) 

should coincide with its asymptotic value as w _ O. 
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The universal functions f(x) (with x = R~k2/WV) and F 
in (3.8) are also easily constructed for small 10, con­
Sidering their perturbation expansions (2.2) and (2.3) for 
r2 = 210/3 as power series in E. Thus, for G( w, k2) we 
obtain from (2.2) up to 10 2 

+~(1+~)ln(1+~)} , 
122m' 2(J)' 

Comparing this with the general form (3.8) of G- l for 
r2 = 210/3 and choosing at the same time 

Zo=l, Ro=1 +'/"e In 2 (3.17) 

so that f(O) = 1 and e(-l) = 0, we obtain 

r(x)=1+x+l~ [(1++) 
(3.18) 

Xln(2+x) -(x+1) In 2 ], 

At 10 = 0 this function coincides with its zeroth approxi­
mation (3.12), In the same manner one can find the ex­
plicit form of the function F in (3.8), 

Calculating the next approximations of the renormal­
izable perturbation theory in four-dimensional space one 
can find the corrections of order 10 2 , 10 3 , etc. for all the 
quantities. By analogy with the theory of phase transi­
tions one may hope that even at 10 = 2 the succeeding 
terms turn out to be small compared to the first one, 
owing to numerically small coefficients like 10/12 and 
(:/24 in (3.11), (3.12), (3.18). 

Let us analyze in more detail the matching up of the 
solutions (3.7}-(3.8) in the region of strong coupling, 
where w, k2 ~ r2, to the perturbation-theory series, 
which converge for w, k2 > r2. 

The simplest case is that of the function G (:.1, k2) for 
k2 = O. In the weak and strong coupling regions we have 
(cf. (1.13), (3.7), (3.8)) 

r: 4w 

\

1- 4wln7' 00>1" 
[(J)G(w, 0) ]-'= , 4 

(
V (J))" -- 00<1" 3 rZ ! 

(3.19) 

where TJ "'" 1/6 and v2 = r2/r2(4), with r(4) the three-pom­
eron coupling constant for d = 4 (it is convenient to 
choose the constant r dependent on the space dimension 
d). For v2 = 0.11, i.e., for (v 2 /3)l/6 "'" 0.52, both curves 
(3.19) join smoothly in the region w ~ r2 (Fig. 5, a). 

A similar situation holds also for the vertex function 
r(wl' kl' w 2 , k2). The first perturbation theory correc­
tions, corresponding to the diagrams of Fig. 3, b, c, 
yield 

d'k' 
r=r [ l-r' S --;-'""'[:-{J)-, +-:-:-k7:',,-c+-c(,:-{,-_-=-k-::' )"':"':-:j[:-{J)-+-(-k-, -"""'k""""-') ':-:+-(-:-k-, +""'k"""""') 2C::-] 

+(w,k,""'{J),k,) ] 

f=r l--In---ln- , [ r' (J) r' (J) 1 
2C1h ffit 2Wl (t)z 

In the simplest case Wl = W2 = W/2 we obtain from this 
and from (3.8) 

\ 

21n 2 2 
1---, {J»r 

r wlr' 

--;: = (4V' (J)) T , ' 3--;:;- , (J)6;r 

where y "'" 2/3. At the same value v2 = r2(2)/r"(4) 
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o.25(w/rZ)z/J 

0..5 

DF---~~~~--~I{--~--~5 
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I-~ 
lU/r2 

FIG. 5 

lU/r Z 

= r2/r2(4) "" 0.11 (Le., at (4v2/3)2/3 "" 0.23), both func­
tions join smoothly, as can be seen from Fig. 5, b. 

4. THE ASYMPTOTIC BEHAVIOR OF DIFFRACTION 
SCATTERING 

For ultrahigh energies, when ~ = In(s/J.L 2)>> 1, the 
elastic scattering amplitude (1.1) is proportional to the 
pomeron Green's function in the ~ ,k representation: 

T (s, t) ( n {)) ( in ) 
~=g' i+2 {)~ G(~,k')"'ig'G ~-2' k' (4.1) 

and can be expressed, according to (3.8), in terms of a 
function of the single variable T == R~k2~v: 

( k'R' 1 doo Z 6" 
G(tk')= S e"'Zof -)-. _=_o_<p(-r), 

t (f)" 2m 001+, f(l+'l) 
(4.2) 

where 

S ( 1:)1 dy <p(1:)=f(H'l) e'j - -.--
t y" 2m y'+' 

(4.3) 

is some (real) function normalized so that cp (0) = 1. The 
most interesting feature of the amplitude is the growth 
of the corresponding total cross section: 

1 8ngo'Zo 
(J'O' (6) = - 1m T (s, 0) = ---'- 6'-+00, 

s f(H'l) 

where the E-estimate of the exponent 'YJ, as we have 
seen, yields 

1]=8/12+0(8') ""'/,. 

(4.4) 

The angular distribution of the scattering depends on 
the explicit form of the function cp(T): 

d(J = I..!-.I'd'k'" [0'0'(6)]' '(k'R't")d'k (4.5) 
.j 4ns 64n' <p " , 

where k2 "" -a't. Substituting into (4.3) the E-expansion 
of the function f(z) and of the exponents 'YJ and v and cal­
culating the contour integral in the usual manner (cf. 
footnote 1) 

S e"f(2.) ~'" S e,{_1_+ 8 (Y+1:/2)ln(Y+1:/2)-'/,'tin2}.!!!!..­
t y" y'+' t 1:+y 12 (1:+Y) , 2ni' 

we obtain 
(4.6) 

where 
2 'I' d 

X(1:)=e'I'-1+~ln-+(1-2.) S (e'-1)~ 
2 10 2 ° v 
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=(2+1n~)2- '\1 1:/2 (4.7) 
10 2 f:i n(n-l)n! 

is some standard function of T (Yo = 1.78), the graph of 
which is shown in Fig. 6. The same figure also shows the 
graph of the function eT cp(T) for E = 2, as well as the 
graph of the effective slope of the angular distribution 

-In<p(1:) 8 
~'I/(1:)=---= 1--x,(-r). 

1: 121: 
(4.8) 

As can be seen, the corrections to the Regge law {3 = 1 
are of the order of 20% in the interval 0 :s:: T S 5. As the 
energy increases the slope of the diffraction cone in­
creases: {30 = {3eff(O)R~~V, where V"" 1 + E/24 ~ 13/12. 

The total cross section for elastic scattering de­
creases as the energy increases: 

T ' 
(J,,= J 14nsl dk=const·6-·, (4.9) 

where, for the exponent a, which in general equals 

a='/,vd-21], 

we obtain by means of the E-expansion 

a=2-78112""'/ •. 

(4.10) 

We note that the value (4.9) of the elastic cross sec­
tion 

(J'! g' S dk S doo _=_0_ IG(s,k') 1'-= eoIA<"(oo,k')-. 
Bn 2! n t Zot, 

(4.11) 

is determined by the contribution 
, dk'd ' 

A<"(oo)= g2°, S G(oo',k')G(oo-oo',k')- q~. 
. t n "",I 

(4.12) 

of the two-reggeon diagram of Fig. 7 for d = 4 - E = 2. 
It is convenient to estimate the contribution of diagrams 
of this sort by recognizing that in the integrals (4.11) 
and (4.12) the values k,2 ~ W,V, w' ~ w ~ 1/~ are impor­
tant, al)d by replaCing the differentials dk' by k'd 
~ wvd / 2 , and dW' by w' ~ w. Taking into account that 
G ~ w-1-'YJ, we obtain for this contribution the estimate 
A (2) ~ wvd 2 - 2'YJ- 1. From this we again obtain the es­
timate (4.9) and (4.10): 

5. SCATTERING AT ATTAINABLE ENERGIES 

All these estimates are valid only in the theoretical 
region of strong coupling, where r2 In (s/so) <. 1, i.e., 
practically for unattainable energies In(s/so) ~ 102, if 
r2 has a value close to 10-2 (cf. (,2,, 3 1). In an article dedi­
cated to the theory of particle production we shall con­
sider processes of inclusive production taking into ac­
count the pomeron interaction and shall give theoretical 
arguments in favor of such a small value of r2. 

At r2 ~ 10. 2 the pomeron interaction remains weak 
for all practically attainable energies, since r 2ln (s/so) 
« 1 always. Regarding it as a small perturbation, we 
find the elastic scattering amplitude as a series in the 
powers of r2~. Its t-channel partial wave 

t=O 

r;" 

" g g 
"'-

FIG. 6 FIG. 7 
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cp(j, t) = gA(w, k2) gB(w, k2) G(W, k2) was determined 
earlier (cf. (1.13)) in first order in r2/w by taking into 
account the main pole diagram and the simplest one-loop 
enhanced diagram (Fig. 1, a). In practice, corrections 
that are not small (of the order r In ~) also come from 
semi-enhanced and unenhanced diagrams. The semi­
enhanced diagrams of Fig. 1, b yield correction terms 
(corresponding to the pomeron loops indicated in Fig. 8) 
to the vertices gA = gA (w, k2) describing the emission of 
a pomeron by particles, of the following form: 

(k') 0 NArSd'k' 1 
gA ro, =g .. - 21'a' -;:;--ro-+,....,k:-:-.+..,.--,:(k:-----=k--::'):-:-' 

. =gAo[ 1+ ~;r In(ro+ ~)], 
(5.1) 

where in place of k' we have introduced the variable 
q = k/2 + k' and the integration with respect to q2 was 
cut off at q2 "" 1. The quantity f3A = NA/2v'(i'gA, can be 
estimated by using for the two-reggeon emission vertex 
N A the value N A "" C A (gAY, corresponding to the eikonal 
approximation for C A = 1. The constant C A can be ob­
tained[21 1 from the experimental data on diffraction scat­
tering of particles; for protons, i.e., for A = P 

C.'=1.3±0.1. 

Thus, f3A "" CAgA,/2,fa' and we obtain for the partial 
wave amplitude of the t-channel, multiplying the ver­
tices (5.1) and the Green's function (1.12): 

X ~-+ In---{ I r' w+k'/2 } 
w+k' 4(w+k')' r'/4' 

The individual terms in this expression (which are 
of the order rand r2) correspond to the pole pomeron 
contribution, the contribution of the one-loop enhanced 
diagram of Fig. 1, a and the contribution of the three 
"semi-enhanced" diagrams of Fig. 1, b. Substituting 
this expression into the Sommerfeld-Watson integral 
(1.1) and calculating it in the standard fashion (cf. 
footnote 1) we obtain for the total contribution of these 
diagrams A' = 1m T'(s, t)/81TS to the imaginary part of 
the amplitude the following value 

'~ 4 
A' (~, k') =gA (~, k') g. (~, k') e-"'{ 1+ ~ [In -.-

4 "(or'~ 

S' dv e'-l] r' S' !n(vlz) } - (e"-1)-+-- --~A~' e'+'---dv . 
, v z 2 , v+z 

(5.3) 

where z = k2~/2, and 

- • ° { r~A [ 1 S. dv ]} gA(~,k)=gA 1+-,- In--- (e-1)- . 
2 "(o~, v 

(5.4) 

We recall that the amplitude T/81TS itself can be ob­
tained from here[e, 71 by replacing everywhere3 ) 

.~ = In(E//J.) = In(s/2mN/J.) by ~ -i1T/2. 

If f3A = f3B = 0 in (5.4), then (5.3) yields the expres­
sion (1.14) obtained for the amplitude without taking into 
account the semi-enhanced diagrams. Their contribution 
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does not involve the factor ~, but is in practice not very 
small, since it is proportional to r rather than r2, and 
also to the quantities f3,\ and f3B which are not small 
(for NN scattering, e.g. 241, {3A = {3B = 2). The same 
value (5.3-(5.4) for the amplitude 

T/Snl's=A (~-inl2, k') 

is easily obtained directly, developing the perturbation 
theory in ~ -space, starting from the Green's function 
of the free pomeron 

Go(;, k')=oxp [-(k'+L'io)s], (5.5) 

where ilo is the bare shift (1.9) of the Pomeranchuk 
pole (this method allows one to obtain a somewhat more 
accurate formula than (5.3) and (5.4), which also take 
into account the difference of the ranges of various 
pomeron vertices gA, r, NAA)' The equations (5.3) and 
(5.4) for the contribution of the enhanced and semi-en­
hanced diagrams differ from the analogous expression 
obtained by Gribov and one of the present authors [71, 
under the assumption that the vertex r vanishes for 
vanishing pomeron momenta. In particular, at k 2 = 0 
the corrections from these diagrams to (5.3 and (5.4) 
do not vanish (in distinction from(7)) and yield for the 
total cross section 

t t' () 8 '( r~A '1) ( r~. 1) cr" ~ = ngp 1 +--In-- 1 +--In--
2 "(os 2 "(os 

(5.6) 

X [1 +.!':.Sln_4_._]. 
4 ,,(or-s 

The first two factors, which are due to semi-enhanced 
diagrams, lead to a small decrease of ()'tot with the growth 
of the energy, and the last term leads to its increase. For 
very high energies, for ~ » 11 the last term, which leads 
to a logarithmic growth of ()'tOl;, is of fundamental impor­
tance (as we have seen, the logarithmic growth goes over 
in the strong coupling region, for r2~ > 1 into a growth of 
the form ~lIe). However, in the region of attainable 
energies E ~ 10-103 GeV, the effect of the first two 
terms prevails and atot decreases weakly. 

Taking into account the four-pomeron interactions 
A13CPCP'3/3! and A22cp2cp.2/4Ieads to the diagrams of Fig. 4, 
which yield: 

a) additional terms at the vertex (5.4), corresponding 
to the diagrams of Fig. 9, a, b: 

N(3)1; 
L'i (; 0) _ A" 

g. , - - 3·3!a'~ 

where N A = CA,gA, is the vertex describing the emission 
of three pomerons by the particle A; 

b) an addition to the pomeron Green's function 
G(~, 0) of the form 

8 
d 

FIG. 9 
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Au! 
llG(s,O)= 3.31 In los, 

corresponding to the three-pomeron self-energy part 
of Fig. 9, c; 

c) an addition to atot of a term 

llAo"" = NAN. [1-( 1+ Au 'ln~)-'] 
811 4a's 4 So ' 

which determines the total contribution of all the dia­
grams of Fig. 9, d with any number of pomeron scat­
terings on pomerons in the t-channel. Here[22] 
NA = C~WA and ~o is a constant of order unity 
(~o ~ HE "" 20 GeY)). The contribution of the first of 
the diagrams of Fig. 9, d is determined by the same 
expression with the square bracket replaced by 
1/2A22ln(yoV~o). 

Figure 10 illustrates the cross section 

O""(s)=8ngo' [(1 + r~Pln~_ CP'gO'A .. ) , (f +.:lln_4_ 
2 loS f8a's 4 "(or's 

(5.7) 

as a function of the laboratory energy E for pp interac­
tions. In the computation it was assumed that ~I = ~o 
= ~(E = 20 GeY) and ~ = In E + R~/al, where E = Elab 
in GeY, Rg /ap "" 4.2, r = 1/12, Cp = 1.3, and 
gg = 5.2[19]. 

As can be seen, for small AI3 and A22 the quantity 
atot' decreases on account of the growth of the two-pom­
eron corrections to the vertices g(L 0). Only for 
AI2 = .\22 = 0.4 this increase is compensated by the be­
havior of the three-pomeron terms. A rough estimate[l2] 
of the constants .\13 and .\22 yields smaller values for 
them, of the order 0.2. 

This result means, apparently, that the experimen­
tally observed[23] growth of the pp-cross section in the 
region from 70 to 1400 GeY (by approximately 3 mb) is 
due to the contribution t.A(~, k2) of unenhanced diagrams 
of Fig. 1, c, which were not taken into account here. It 
can be represented approximately[24] in the form 

CID N(n) (n) ( 'I) 
llA(s k')= \'1 .. N. exp -k S n (5.8) 

• ~ n·nl ,(-a/s)n-. ' . "" 
where A(~, k2) = A' + M, where A' is the cont~ibution 
(5.3) of the enhanced diagrams. Here Nr), NW}are the 
vertices describing the emission of n particles by the 
colliding particles A and B. For N~t = C AgA [23,24] with 
C A "" 1.3 the contribution of the two-pomeron term is 
large, of the order 2{)--30%. A crude estimate of the other 
terms on the basis of the relation 

(5.9) 

which is difficult to justify theoretically, leads to the 

otot,mb 

'" 

J9 

38. 

10 

FIG. 10 
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"quasi-eikonal model[24]. In the framework of this 
model the total cross section 

oo+llo=8n[go'+llA (s. 0)] (5.10) 

turns out to be rising (even without taking the enhanced 
diagrams into account) on account of the "dying out" of 
the main two-pomeron contribution in (5.8) at ~ -"'. 
For the pp interaction it increases[19, 24] by about 2 mb 
in the indicated region. 

As can be seen from Fig. 10, a similar behaVior is 
exhibited by the total cross section 

o"'(s) =0'''' m+81111A(s. 0), 

obtained by taking into account the contribution (5.7) of 
all the enhanced diagrams (for \1 ='\'2 = 0.4). A small 
change in the contribution of the higher-order branch 
points in (5.8) (e.g., a reduction in the contribution (5.9) 
of the three-pomeron term ~N jCN1r can give an even 
steeper increase of at~ and lead to an enhancement of 
<1><pt for an energy E ~ 2 X 103 GeY (ISR) by 3-5 mb, rath­
er than the 2 mb of Eqs. (5.8)-{5.10), in agreement with 
the experimental data Of[ 23 1. 

I) All integrals required for the calculation reduce to two basic types: 
In(Cd+Cd" dCd 1 ( .... - •• )1 dv 

lt~S exp[(Cd+<O)o)6]----~In-- S (00 -1)-. 
t 00+000 2ni yo~ v 

o 

In'(IIl+IIl.) dill n' I du In u 
I, ~ S exp[ (Ill +Cdo) 6] = 1,' - - - zS exp[ (lIlo-Cd.)G(uH»)--

t 00+000 2ni 6 u+t 
o 

and can be obtained by differentiating these identities with respect to 
Wo and WI' 

2)The differentials ddq, ddpi of the vectors q and PI etc. in a d-dimen­
sional space will be abbreviated everywhere as dq, dPI' 

3)In conventional variables we replace z = k 2V2by API' /2, where 

I.~ (In-'--~) ap'(O)= (In(~) -~) ap'+R'. 
2mNIl Z '0 Z 

So 
R'~a'ln--. 

2mNJl2 

The data on the angular distribution in NN scattering for So = 2mNEo, 
Eo = I GeV yield [19] for R2 a value close to 1.8 (GeV/cf2. 
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