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The dissipation of elastic energy in solid helium on nonuniform time-oscillating deformation of the 
crystal is studied theoretically. Delocalization of point defects due to the quantum nature of the 
helium crystals leads to a significant difference in the temperature dependence of the energy 
absorption coefficient from the corresponding dependence for localized defects in classical crystals. 
The forms of temperature and frequency dependence of the absorption coefficient in various 
temperature ranges are determined by the relation between the temperature and the bandwidth of the 
delocalized defects, by the defecton statistics, and by the magnitude and temperature dependence of 
the defecton-phonon relaxation time. It is shown that an inhomogeneous static deformation applied to 
the crystal gives rise to resonance absorption peaks at frequencies proportional to the gradient of 
static deformation. Expressions for evaluating the quality factor of concrete oscillation systems are 
given for all crystallic modifications of both pure helium isotopes and weak solutions. 

The study of point defects in solid helium has re
cently acquired substantial importance due to quantum 
effects that become appreciable because of the large 
amplitude of zero-point vibrations in the helium lattice. 
At sufficiently low temperatures, the point defects 
(vacancies, impurities) are delocalized and must be re
garded as quantum objects-defectons having a finite 
bandwidth t..Yl 

The parameters of the defecton energy spectrum and 
the relaxation times have hitherto been determined from 
nuclear magnetic resonance experiments[2,3]. The in
formation obtained in such experiments is difficult to 
interpret fully unambiguously because of the complex 
nature of relaxation processes in the diffusion of mag
netic moments. In consequence, many important fea
tures of the defects (e.g., the bandwidths), determined 
from the NMR experiments, are known only qualita
tively. 

Internal friction provides a sensitive tool for study
ing the defect properties and relaxation processes in 
crystals. Such study can contribute substantially to our 
knowledge of the dynamic and kinetic properties of de
fects in solid helium, which are of fundamental interest, 
as well as provide a means for observing various quan
tum processes, such as the Bose condensation. 

In the present paper, formulas are derived to de
scribe the absorption of elastic energy in solid helium. 
The results obtained make it possible to interpret the 
experimental data on internal friction over the whole 
range of temperatures in which the crystalline phase of 
helium exists. Due to the quantum nature of solid 
helium, the temperature dependence of the elastic en
ergy absorption coefficient is essentially different from 
that of a crystal with localized defects. 

In the first section of the paper, the absorption coef
ficient is evaluated for the case when the delocalized 
defects are acted upon by a time-periodic volume force 
f = fosinwt. 

In the second section the corresponding formulas for 
the localized defects are given for comparison. 

In the third section it is shown that if a constant 
force F acts on the defectons along with the oscillating 
force f, then the maximum of the absorption curve at 
W = 0 breaks up into several high-frequency resonance 
peaks. 
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The possibility of creating a space-uniform volume 
force acting on the defects is discussed in the Appendix. 
It also contains formulas relating the value of power ab
sorbed per unit volume to the Q of a particular oscilla
tory system. 

Let us first say a few words about how we propose 
to study internal friction. As is known, a uniform defor
mation does not give rise to dissipation of elastic en
ergy by vacancies and substitutional impurities having 
the same symmetry as the crystal lattice. The absorp
tion of energy, involving diffusion currents of defects, 
comes into play under the action of a volume force pro
portional to the gradient of deformation[4J. 

The study of internal friction is usually concerned 
with observation of an extremum of Q as a function of 
the external-field frequency w. The position of absorp
tion peaks is governed by relations of the type WT* ~ 1, 
where T* is a relaxation time. Examples of such relax
ation times are the time T to establish a diffusive parti
cle current proportional to the disturbing force and the 
time TD, which describes the time required for the 
number of particles throughout the whole sample to 
reach equilibrium. ConSidering that vacancies and im
purities can appear and disappear only on the crystal 
surface, TD is related to the diffusion coefficient D and 
the typical linear dimension of the sample L by the re
lation TD ~ L 2/D. For thin samples the position of the 
absorption maximum wTD ~ 1 is in a reasonable fre
quency range. It is this dimensional extremum of Q 
that is usually studied in Gorsky-effect experiments[ 5]. 

The time T is determined by the relation T ~ l2/D, 
where l is the mean free path of the defects. In classi
cal crystals the mean free path l is equal to the inter
atomic distance a and the diffusion coefficient has 
typically the value D ~ 10-4_10- 6 cm 2/sec, so one ob
tains an estimate of T ~ 10- 1°_10- 12 sec. In consequence 
of this the resonance peak at frequencies WT ~ 1 is 
practically unobservable in classical crystals. 

The situation is different in quantum crystals. Ac
cording to Andreev and Lifshitz(l], as the temperature 
T decreases, the defecton mean free path starts to ex
ceed the interatomic distance and T increases as T-9• 

Experimental observation of the absorption maximum 
at the frequencies WT ~ 1 becomes possible in the new 
situation. Due to the large value of the defecton mean 
free path in the helium crystal, the structure of the ab-
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sorption peak at WTD ~ 1 is sensitive to the details of 
sample surface structure and shape. The picture of in
ternal friction becomes more complicated, and at I ~ L 
a kind of size effect may appear. In the present work 
we studied, for the sake of simplicity, purely volume 
internal friction under the conditions WT ~ 1 and WTD 

»1. 

In order to meet the last condition the inequality 
wTL2/l2» 1 must be satisfied. On the other hand, the 
oscillation wavelength must be assumed to be much 
larger than the sample size L to avoid spatial disper
sion of the volume force acting upon the defect. Both 
inequalities hold consistently if 

L~ I:>'a'(~)' ~~w~ I:>'a' (~). 
IicS T 'L L'lie T ' 

where ® is the Debye temperature of solid helium, A 
is the defecton bandwidth, and c is the propagation 
velocity of the corresponding elastic vibrations, which 
is of the same order of magnitude as the sound velocity. 
In what follows we shall assume that the above condi
tions are satisfied. 

1. In order to evaluate the internal friction it is 
necessary to solve the kinetic equation for the defecton 
density matrix n. Because of the spatial uniformity of 
the external force f, the classical kinetic equation gives 
exactly the same result for the distribution function n 
as the corresponding quantum equation. It is permissible 
to use the T-approximation in our problem. This ap
proximation is justified for defecton-phonon scattering 
provided the bandwidth A is much smaller than the 
characteristic phonon energy T. It holds also in the 
opposite limiting case, since for A » T the defecton 
energy spectrum can be conSidered isotropic, as will 
be shown below. 

On the basis of the previous discussion the starting 
kinetic equation can be written in the form: 

on on OE (p) On. n-no 
-+---+-fosmwt+--= 0 
ot or ifp op , 

(1) 

where no is the equilibrium defecton energy distribu
tion function, E( p) is the defecton energy spectrum, and 
p is the quasimomentum. The power W absorbed per 
unit volume is given by the ensemble-and-time average 
of the expression (~[ + [V)/2 (~ ;: eE/ep is the velocity 
operator). In our case 

< S d'p . OE) 
W= (2nli)' nfosmwt-ap , 

where the angle brackets denote time averaging, and 
integration is performed over the reciprocal lattice 
cell. 

(2) 

In solving (1) for a small value of the external force 
fo« fiw/a (or fo« fiwT/aA if A « T), we can use an 
approximation linear in fa. Let n = no + nl + o(t), where 

uno OE sin wt-w, cos wt 
n,=---foT----

OE op l+w',' 

and o( t) tends to zero as exp ( -tIT). Then (2) assumes 
the form 

, S d'p ono ( 0&)' 
W=- 2(Hw',') (2nli)'a;- foap . (3) 

We shall first determine the absorption coefficient 
W in the temperature range where the condition T» A 
holds. In this case the band is populated uniformly, and 
the shape of the energy spectrum E( p) can be deter
mined by USing the tight-binding approximation. There 
are three possible types of crystal lattice for both He 4 
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and He" (the phase diagrams of both isotopes are given, 
for instance, in the review[6 J): body-centered cubic 
(bcc), face-centered cubic (fcc), and hexagonal close
packed (hcp). The energy spectra for these three 
phases in the tight-binding approximation are of the 
form: 

I:> I:> pia p,p. p,a ) 
&(p)=&o+T-2"casTcosTcosT (4a 

for the bcc lattice with translation vectors (-a, a, a), 
(a, -a, a), and (a, a, -ali 

3 I:> { pia p,p. p,a p,a pia p,a } 
&(p)=Eo+-/j.-- cos-cas-+cos-cos-+cos-cos-

4 4 Ii Ii Ii Ii Ii Ii 

for the fcc lattice with translation vectors (0, a, a), 
(a, 0, a), and (a, a, 0); and 

3 /j. {Pia pia i3p,a 
& (p) =&, +"41:> -""8 COST + 2 cos 2h" cos -y;-

1'2 p,a [ Pia Pia ig p,a ] 'I.} 
± cos -=- 2cos - + 4cas - cos --+ 3 

1'3 Ii Ii 21i 2Ii 

(4b) 

(4c) 

for the hcp lattice with translation vectors (a, 0, 0), 
(a/2, -I3a/2, 0), and (0,0, ..f8a/-I3), and two sublattices 
separated by the vector (0, -a/f3, .f2a/(3). 

The constants in (4) are chosen so as to make the 
bandwidth for each lattice equal to A and the energy 
gap to Eo. It might be well to emphasize that in the hcp 
case both branches of the spectrum (4c) should be taken 
into account in the integration over the momenta. The 
method of evaluating the spectrum in the tight-binding 
approximation, as usually described in the literature, 
is often based on the book by Sommerfeld and Bethe l7J . 
However, one has to realize that the relevant expres
sion ([7 J, p. 397) describing the energy spectrum for a 
crystal with several atoms per unit cell (e.g. the hcp 
lattice) does not allow for energy degeneracy, and 
therefore yields an incorrect spectrum that has only one 
branch and is aperiodic in the reciprocal lattice trans
lation vectors. The review by Reitz(BJ also contains a 
spectrum which is aperiodic in the reciprocal lattice of 
an hcp crystal. The energy spectrum of the hcp lattice 
(4C) can be obtained, for instance, but solving the secu
lar equation for an energy matrix whose elements are 
the three- or two-center integrals listed in[9J. 

The power W absorbed per unit volume is given by 
(3). Using the spectra (4), W can be readily evaluated. 
For both cubic phases we obtain 

(5a) 

where N is the number of defects per unit volume, v is 
the atomic concentration of the defects (number of parti
cles per atom), and the + and - signs refer to the cases 
of Bose and Fermi statistics, respectively. The absorp
tion coefficient in the hcp lattice is equal to 

i /j.' a' T 31'3 
W=-N--(af.l.'+fu')--[t+v], a=l--, (5b) 

64 T Ii' i +w',' iBn 

where fll and fl are, respectively, the projections of 
the force fa on the hexagonal axis (0,0,1) and on a 
plane perpendicular to it. The defecton concentration is 
usually assumed to be small, and the term in the square 
brackets in (5) can be neglected unless the effects 
quadratic in concentration are taken into account. 

The condition T» A can hold for both vacancies and 
impurities. In the case of impurities the concentration 
N can be regarded as a constant independent of tem
perature. Therefore, the temperature dependence of 
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the absorption coefficient for impuritons is given by the 
factor T/T( 1 + W 2 T2). For WT « 1 the magnitude of W 
behaves like W ~ T/T ~ T- lO• If we fix the frequency W 

and lower the temperature, then the condition 

l/olT"" (Tie) 9 (claw) «1 

will hold for sufficiently low temperatures, and the be
havior of W will be given by W ~ 1/TT ~ Ta• Thus, 
with temperature descreasing in the region T» A, the 
absorption coefficient first increases as T- 10 and then, 
starting from a certain temperature, decreases as Ta• 
The maximum of the absorption curve as a function of 
temperature at a fixed frequency corresponds to the 
value of T at which WT "" 1. This temperature behavior 
of the absorption curve is essentially distinct from the 
classical-diffusion behavior of W, in which W tends 
exponentially to zero as the temperature decreases. 1n 
the case of vacancions with a comparatively large en
ergy gap Eo (which corresponds to the activation energy 
of vacancies in the classical case), the concentration N 
depends on T as exp(~Eo/T), and the behavior of the 
W( T) curve differs by this exponential factor from the 
corresponding dependence for impuritons. 

Now let us investigate the reverse limiting case, 
T « t:.. We note that under this condition it is reasonable 
to consider only the vacancions with t:. ~ 1K (t:. ~ 10-6 K 
for the case of impuritons). The inequality T « t:. 
means that all the particles are near the bottom of the 
band. 1n this case it suffices to assume a quadratic de
pendence of the energy on the quasimomentum in the 
vicinity of the minimum of E(p): 

e (p) =e.+p'!2m, (6a) 

and to extend the integration in (3) to the whole momen
tum space. The effective-mass tensor in (6a) is iso
tropic due to the spherical symmetry of the minima of 
the functions E( p) in (4). The spectra (4), obtained in 
the tight-binding approximation, cannot, in general, 
guarantee an accurate description of the behavior of 
E( p) near its extrema. Nevertheless, on comparing (4) 
and (6a) one can infer with a certain accuracy that for 
all three lattice types 

m""2ft'la'l'!.. 

If the possibility of existence of zero-energy 
vacancions is neglected, then one can assume that Eo 

(6b) 

» T for the whole temperature range T« t:. for 
vacancies. 1n this case the equilibrium distribution 
function takes the Boltzmann form no = exp{ -E( p)/T} 
with the energy spectrum E( p) determined by the rela
tions (6). A calculation yields 

W=--1-e-'o/TT'I'/o'm'I'_' __ =N~_'__ (7a) 
2 (2"ft') 'I, 1 +w',' 2m 1 +w',' 

or, employing (6b), 

Io'a' -r 
W=NI'!.t;Fl+w'" ' (7b) 

In all of the above it was assumed that the equili
brium defecton concentration in the absence of the ex
ternal force f was determined by minimizing the en
ergy as a function of the number of particles. This con
dition is equivalent to requiring the chemical potential 
to be zero. However, it was mentioned in the beginning 
of the article that the defectons can appear and disap
pear only on the sample surface, and hence the time 
required to establish the equilibrium with respect to 
the number of particles is macroscopically large. It is 
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therefore interesting to study the behavior of the ab
sorption coefficient not only under the above assump
tion that the vacancy concentration N is defined from 
the conditions of thermal equilibrium with respect to 
the number of particles, but also for the case when the 
concentration N is given by a constant independent of 
temperature. 1n this case the behavior of W( T) depends 
essentially on the type of statistics for vacancions. 

For the case of Fermi statistics (e.g., the vacancies 
in He 3 ), provided the number of particles is small, 
(Na 3 )2/3 « 1 (this condition can always be assumed 
satisfied), the Fermi energy EF lies near the bottom 
of the band and (E F - Eo)/ A <c<c 1. As a result for A» T 
the equilibrium distribution function is of the form 
ano/OE = -6( EF - E) and the spectrum (6) can be em
ployed as E( p). As a result we obtain the following 
value for W: 

10', Io'a', 
W=N---=Nil---. 

2m 1 +w',' 4ft' 1 +w',' 

For bosons (the vacancies in He') at temperatures 
below the Bose-condensation temperature 

1 { 4,,' } 'f, 
TO=T r('!,)~('!,) (Na')'f'il, 

the absorption coefficient is of the form: 

I" ( T ) ~', Io'a' ( T ) " , 
W=N 2m To l+w',' =Nilt;F To l+w'-r" 

In this case the absorption curve W( T)has a kink at 
T = To. 

(8 ) 

(9 ) 

The discussion of (5) can be applied with practically 
no modification to the temperature dependence W( T) in 
the case A » To As T - 0, the coefficient W given by 
(7) tends exponentially to zero. The W( T) curves given 
by (8) and (9) have their maxima at WT "" 1 for a fixed 
frequency w. The relations (5) and (7)-(9) describe the 
behavior of W( T) for delocalized defects in the whole 
temperature range. It might be well to note that for 
T = const the W( w) curve has a maximum at W "" O. 

2. In this section we shall consider the absorption of 
elastic energy in the case when the force f acts upon 
localized defects. 

As the temperature increases, the defect-phonon re
laxation time T becomes shorter than the time that a 
defect spends at a lattice site. As a consequence the 
point defects become localized and perform diffusive 
random walks over the lattice sites. The kinetic equa
tion (1), which proves inapplicable in this case, must be 
replaced bya system of equations in ni(t) (the probabil
ity for a localized defect to be at the i-th lattice site at 
the time t): 

~:' = ~ (q"n.-q"n,). 
• 

The matrix element qik depends on the force applied to 
the defect, and defines the probability per unit time for 
the defect to migrate from site k to site i. It is suffic
ient to confine the summation over k to the nearest 
neighbors of i. 1n the approximation linear in the force, 
the coefficients qik can be expanded in a series in f, 
taking only the first terms; 

q,,=q::l + (Ilq,,) f, 

where qik is the hopping probability in the unperturbed 
lattice. 

The above expressions conform to the usual relation 
between the particle current and the external force 
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j=NBf, 

where we have introduced the mobility tensor B and the 
defect number density N. If the force f is constant in 
time, the corresponding tensor Bc is then related to the 
usual diffusion tensor b by the Einstein formula Bc 
" biT. The relation between the mobility tensor Bs for 
a time-oscillating force and the tensor Bc for a con
~tant fo~ce. is ~overned by the relation betwe~n (Oqik) s 
m a perlOdlc field and (Oqik).c in a constant field. 

As is known, the relaxation process in a stochastic 
system is described by the Fokker-Planck equation. On 
averaging over energy, the Fokker-Planck equation 
transforms in the hydrodynamic limit into the well
known Langevin equation (see, e.gYOl). The velocity of 
a Brownian particle, given by the Langevin equation, in 
our case corresponds precisely to the transition proba
bility qik. It readily follows from the Langevin equation 
that 

Re iJ.=B~! (1 +"h:') =D/T (1 +uh:'). 

The power absorbed per unit volume is given by the 
time average of f· j. For an oscillating force 
f " focos wt we get 

W = <I"> = N «fB f) = N (foDfo) 
J '2T 1 + (O't"' 

If the diffusion coefficient is isotropic, then 

W=NDf.'/2T(1+(O'1:') . 

(lOa) 

(lOb) 

For localized defects the quasiequilibrium condition 
WT « 1 is usually assumed to be satisfied and the dis
perSion factor (W 2 T2 + 1f' is disregarded. 

The temperature dependence of the absorption coef
ficient is determined by the expression ND/T. As in 
(5), N is assumed to be temperature-independent for 
impurities, and for vacancies with temperature de
creaSing the density falls off exponentially. In the high
temperature region the diffusion coefficient obeys the 
exponential Arrhenius law D ~ exp ( - U/T), where the 
potential U corresponds to the height of the barrier 
which a particle has to overcome in order to make a 
transition to a neighboring site. Thus, for large T the 
quantity WiN behaves like exp( -U/T)/T. 

As the temperature decreases, the probability of 
thermally activated hopping in quantum crystals be
comes smaller than the probability of quantum tunneling 
(for more details see [lll. Quantum diffusion of delocal
ized defects occurs at such temperatures. In this case 
the coefficient D does not depend on temperature, and 
W /N behaves as l/T. Introducing a quantum tunneling 
probability 1ho related to D by D ~ a2~ 2To/n2, we can 
write expression (lOb) in a form similar to (5): 

.1.' fo'a' 1:. 
W=N---

T Ii' 1 +(0'1:' . 
(11 ) 

Formulas (10) and (11) determine the energy absorp
tion in the whole range of temperatures above the de
localization temperature T ~ Gl(~/®)'/9. 

3. It was pointed out above that the absorption coef
ficient W is a monotonic function of the external-field 
frequency w. The reason for this is that we have chosen 
a defecton with a quasiclassical spectrum E(p) as the 
unperturbed particle, and the disturbing force was spa
tially uniform. If the defecton had a discrete spectrum 
the absorption would then have maxima at the transition 
frequencies. Such absorption peaks can be obtained ex
perimentally as follow s. 
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Indeed, if even a very weak constant force F (e.g., 
a nonuniform static strain) is applied to a delocalized 
particle with the spectrum E( p), then, due to the finite 
bandwidth ~, the particle is bound by this potential, be
comes localized, and acquires discrete energy levels. 
Such a localized state extends over a distance of order 
~/ F, and the transition frequencies between the levels 
of the discrete energy spectrum w "" Fa/n. As a conse
quence, the energy absorption that occurs when an oscil
lating force fo cos wt acts upon the particles along with 
the constant force F must have extrema at the frequen
cies of order Fa/Ii. The corresponding W will be eval
uated below. 

Consider an unperturbed Hamiltonian of the form: 

(12 ) 

For simplicity we shall restrict ourselves to the 
bcc lattice. According to (4a), the spectrum E(p) can 
be written in the form 

(13 ) 

where summation is performed over the four positions 
of the vector 1, namely (1, 1, 1), (-1, 1, 1), (1, -1, 1), 
and (1, 1, -1). The Schrodinger equation with the 
Hamiltonian (12) and (13) and periodic boundary condi
tions in the reciprocal lattice for the wave function l/J 
in p-representation can be readily solved. We obtain 
the following results for the eigenvalues and eigenfunc
tions of energy: 

Fa 
(On=TnYt, Y,=(1lt,112,1,,), 

(14) 

I/ln(P) = (2:1i ) •. exp { - ;Ii J e(p)d(p'U+ ~ pn}. 

The vector n here stands for the three quantum num
bers (n, n2, and ns); the direction of ~ 1 is chosen along 
the force vector F. The matrix )3ik relates the coordi
nates Xi (in which the bcc translation vectors are of the 
form (4a)) to the system of coordinates ~i by the ex
pression ~i "f:likxk. Any two mutually perpendicular 
axes in the plane normal to F can be chosen as ~ 2 and 
.; 3. Let us also introduce the matrix rik inverse to f3 ik. 
In the following we shall be interested in the region of 
weak external fields Fa« T. 

Let us now place the particles described by the 
Hamiltonian (12) in a time-oscillating external field 
II " -fo ' r cos wt. To determine the absorption coef
ficient we must solve the kinetic equation for the density 
matrix n: 

an i ~ ~ ~ ii-no 
_+-[H.+H"nj+--=O, 
at Ii 1: 

(15 ) 

where no is the equilibrium density matrix which is 
diagonal in the states (14) of Ho. The kinetic equation 
(15) can be linearized in f provided either of the follow
ing two systems of inequalities holds: 

Fa«lilT, .1. I.a 1 « 1 
T lilT (l+co't"') , 

Fa>h/1:, 1i(O; 1./F«T/.1.. 

We then obtain 

(16 ) 
( ~ ) _ (n.'-n.) (e.'-e.-ih/1:) (f~) 
nl Jr' II: - r Jr.' k. 

, [e.'-e.-ilil1: ],-(0' ' 

The matrix elements in (16) are evaluated with the wave 
functions (14), nk being the eigenvalues of the equili
brium density matrix no in the states (14). 
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The matrix elements of the operator r in the right
hand side of (16) are equal to 

(;k.=ift (~) =aM.,. -~~ ~ -l-Io.".+,+o",t_,}, 
rip k',' 32 F 4 (i,,(,) 

where 15 nm is Kroneker's delta-function of the vector 
arguments n = (nl' n2, n3) and m = (ml' m2, m3). 

The time-average power absorbed per unit volume is 
determined by the exp!'ession W = ( Tr (nf' v), where 
the velocity operator v is given by its matrix elements 

~) t ~ 
(v",, = T(ek'-ek) (rlo',t, 

After straightforward but rather lengthy calculations we 
obtain the following value for the absorption coefficient: 

W=N ~~ ~ (fol)' Cil,'+Cil'+l/t-' 
2:56T ft'.l... , [(Cill-Cil)'+,-'j[ (Cil'+Cil)'+,-')' (17) 

I 

It is apparent that W has its maxima at the frequencies 
w ~ w 1 ~ Fa/Ii with the peak width ow ~ 1/7. As F - 0, 
the expression (17) coincides with (5a). 

On examination of (17), the following remarks can be 
made. First, all the results obtained in the first section 
suggest that the value of W as a function of the external
field frequency is maximal at w = O. However, as is ap
parent from (17), any occasional nonuniform deforma
tion of the crystal leads to a smearing and substantial 
anisotropy of such an absorption maximum. This at
tests to the fact that the precision of measurement of 
the internal friction increases with an increase of the 
oscillation frequency. 

Secondly, as was pointed out above, the maximal ab
sorption of elastic energy in the absence of the external 
force F occurs when w - 0, whereas at high frequen
cies W behaves as 1/ w 2. Still, it is often more con ven
ient to carry out the measurements at high frequencies. 
The expression (17) shows that one can shift the absorp
tion peak into a higher frequency domain by creating a 
permanent nonuniform deformation of the crystal. 

All the results obtained in this section refer, of 
course, to the temperature range in which the defects 
are delocalized. It makes sense to talk about bound 
states of the defectons in the field -F· r only provided 
the mean free path l ~ Aadli greatly exceeds the ex
tension of the bound state A/ F. 

In conclUSion, we note that the expressions for the 
value of power absorbed per unit volume obtained in the 
present study (Eqs. (5), (7), (11), and (17)) enable us to 
interpret unambiguously the experimental results on the 
internal friction in solid helium for a wide temperature 
range. Study of the frequency dependence W (w) at dif
ferent temperatures makes it possible to determine the 
temperature dependence of relaxation parameter T( T). 
Knowing the behavior of T( T) and the defect concentra
tion N, one can easily determine the bandwidth A and 
the diffusion coefficient D. 

The exponent in the W( T) dependence for vacancions 
defines the energy gap Eo. 

It might be well to emphasize again that the tempera
ture dependences of W differ essentially for localized 
and de localized defects. For the de localized defects, 
moreover, the function W( T) behaves differently in the 
regions A » T and A « T. 

The author thanks A. F. Andreev for suggesting the 
problem and supervising the work; he also thanks I. M. 

372 SOY, Phys,·JETP, Vol. 40, No, 2 

Lifshitz, V. L. Indenbom, and M. 1. Kaganov for useful 
discussions. 

APPENDIX 

A volume elastic force acting on the defects arises 
only on a nonuniform deformation of the crystal. Ac
cording to l11 ], 

f=KQ"vu", 

where uik is the deformation tensor, K- l is the bulk 
modulus, and nik is a tensor having the dimensions of 
volume and characterizing the anisotropies of both the 
lattice and the defect. The convolution nll/3 is equal to 
the change of the crystal volume brought about by intro
ducing a defect; this quantity may be referred to as the 
volume per one defect n. For vacancies and substitu
tional impurities in high-symmetry crystals one can 
assume with some accuracy that 

QiA=Qo, •. 

The force f proves to be spatially uniform if the ele
ments of the deformation tensor are linear functions of 
the coordinates. The deformation tensor is known to 
have this form for bending vibrations of a rod. Expres
sions will be derived below which relate the values of 
the absorption coefficient W to the quality factor Q-l of 
such vibrations. 

Let us direct the axis ~l along the bending direction 
of the rod, b along the rod's axis, and b so as to 
complete the Cartesian frame h. The transformation 
from the coordinates ~i to the coordinates Xi connected 
with the symmetry axes of the crystal lattice is per
formed by the matrix Yik: Xi = Yik~k. 

The deformation tensor in the case of bending vibra
tions of a rod is defined as (seeP2]): 

E 
UiPt = Ii ~iAlm"(lz1m2"tplXp, 

where E is the elastic modulus of solid helium along 
~2, R is the radius of curvature for bending, and {3iklm 
is the tensor inverse to the usual elastic tensor Aiklm 
and evaluated in the frame Xi. 

As the radius of curvature of the rod varies propor
tionally to cos wt from the value l/Ro to l/R = 0, the 
force f acting on the defects is equal to 

(A.1 ) 

For a crystal of cubic symmetry with three nonzero 
elements of the elastic tensor Cl = Aiiii, C2 = Aiikk, and 
C3 = Aikik(i "" k), we have (see l12J ): 

1 c,+c, ( 1 2) 
-E = ( - ) ( +2 ) + ---- (n,'n,'+n,'n,'+n,'n.'), 

Cl C2 C1 C2 Cz Cl-C2 

and the nonvanishing components of the tensor {:Jiklm 
are equal to 

c,+c, 
~iiii= , 

(c,-c,) (c,+2c,) 

1 
~ik",=-' 

4c, 
~iiU = - C2 t 

(c,-c,) (c,+2c,) 

where i "" k; ni are the direction cosines of the b axis 
in the Xi frame. 

The above relations show the difficulties involved in 
employing the expression (A.1) even for a cubic crystal. 
Neglecting the anisotropy of the crystal, (A.1) can be 
rewritten in the form 

(A.2) 
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Here E is the ordinary elastic modulus for an isotropic 
body. 

The internal friction is usually studied by measuring 
the quality factor Q-l rather than the magnitude of the 
power absorbed. For bending vibrations of a rod 

Q-' = (~ s / ze;,,) W, (A.3) 

where S is the cross-sectional area of the rod and I is 
its moment of inertia about the ~ 3 axis. As one would 
expect, Q-l does not depend on the vibration amplitude 
liRa, since W is quadratic in f. 

Formulas (A.1)-(A.3), along with the formulas ob
tained for W in the present work, express Q-l in terms 
of the properties of the defects, the elastic constants of 
solid helium, and the geometry of the sample. Values of 
the elastic constants of solid helium are given in the 
review[ 13J. 
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