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The y radiation produced upon decay of an excited nucleus of the Mossbauer type located in a crystal 
containing the same nuclei, but in the ground state, is considered. The influence of the hyperfine splitting on 
the radiation intensity, both in the emitting nucleus and in the crystal nuclei, is taken into account. The problem 
is solved by means of the reciprocity theorem, which permits the use of results previously obtained for an 
external y quantum source. The influence of the type of nuclear transitions and of the nature of the hyperfine 
splitting on the intensity is considered. Special attention is paid to the suppression of inelastic channels of the 
nuclear reaction in this case. By way of example, the case of a ferromagnet is considered in detail. 

1. INTRODUCTION 

In an earlier study(1) we considered the emission of 
y quanta produced in the decay of an excited nucleus of 
the M6ssbauer type in an ideal crystal consisting of the 
same atoms, but in the ground state. We investigated in 
that study the influence of the effect of suppression of 
the inelastic channels of the nuclear reaction (SE) on 
the angular and frequency distributions of the y quanta 
emitted from the crystal. It turned out that the emission 
from a thick crystal takes place in the presence of the 
SE only along surfaces of cones with axes along the re
ciprocal-lattice vector and with aperture angle 90° - 9B 
(9B is the Bragg angle)o The character of the angular 
distribution of the intensity turns out to differ greatly, 
depending on whether the radiating nucleus is in a site 
or in interstice, and it is this which makes it possible 
to analyze the position of the nucleus in the unit cell. 

The problem was solved by using the solution for an 
external source of photons incident in the form of a 
plane wave on an ideal crystal (see the paper of Kagan 
and Afanas'ev[2]), and also by establishment of a corre
sponding reciprocity theorem that makes it possible to 
connect both solutions. It should be noted that the emis
sion of resonant photons from a crystal was investi
gated also in an earlier paper by the author from the 
point of view of the time dependence of the intensity of 
the radiation emitted from the crystal[31. 

In the foregoing papers it was assumed for sim
plicity in the" analysis of the resonant interaction of the 
protons with the nuclei that there is no hyperfine 
splitting. On the other hand, the hyperfine splitting has 
a strong influence on the SE. The appropriate analysis 
for the scattering of y radiation by a crystal was re
cently carried out by Afanas 'ev and Kagan[4] (see 
also[51). They developed a general dynamic theory of the 
diffraction of )I quanta that interact resonantly with 
crystal nuclei under hyperfine splitting conditions, and 
analyzed the condition for complete realization of the 
SE. 

The present paper is devoted to the emission of 
M6ssbauer y quanta from a crystal with decaying 
nuclei that undergo hyperfine interaction. To this end, 
we first generalize the reciprocity theorem to include 
the case of hyperfine splitting. Then, using the results 
of the earlier studies[4,51, we obtain a general relation 
for the intensity of the radiation from the crystal and 
consider the influence of the SE on the intensity of the 
emitted radiation. 
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2. RECIPROCITY THEOREM 

Assume that radiation sources are located at some 
point r~ in space (~ = 1, 2); then the field E~ produced 
by the action of one of the sources is determined with 
the aid of Maxwell's equation 

(k'-w'/c')E,i (k, w) +k'kE,(k, w) 

= :~iW (~>~ (k,k')E,'(k',w)+I'(k,w»). 

(2.1) 

k' 

Here J~ is the current corresp~mding to the source at 
the point r~, and the quantity aU describes the scatter
ing of the y quanta. We assign the equation with ~ = 1 
to the source (excited nucleus) located inside the 
crystal, and ~ = 2 to the source far enough from the 
crystal. 

Since the current J 1 in (2.1) is determined by the 
current operator averaged over the quantum mechanical 
state and the statistical distribution, we can write 

l,(k, w)=lO/(k, w)exp[-ikr,-Z(k)/2J. (2.2) 

In this expression, exp[-Z(k)/2} characterizes the 
amplitude of the M6ssbauer-effect probability, i.e., the 
emission or absorption of the y quantum without excita
tion of the phonons, while J Ol( k, w) is the current of 
the rigidly secured nucleus. 

The first term in the right-hand side of (2.1) de
scribes the scattering of the )I quanta, and aU can be 
represented in the form 

a~' (k, k')= l>~m(k, k')exp[ -i(k'-k)rmJ. (2.3) 

The summation is carried out here over all the atoms 
in the crystal. aUm is a complex quantity proportional 
to the amplitude for scattering by an individual atom, 
and in the general case it has an arbitrary ratio of the 
imaginary and real parts, in other words, of the absorp
tion and the scattering. ail depends principally on the wm 
hyperfine structure of the ground and excited states of 
the nucleus, a structure due mainly to the magnetic 
dipole and electric quadrupole interactions. Henceforth, 
to simplify the notation, we shall omit the subscript w 
of at}. 

With an aim towards using a quantum mechanical 
relation for the direct and inverse scattering amplitude, 
we make the substitution k - -k in Eq. (2.1) with 
~ = 2 (source outside the crystal), and also reverse the 
signs of the projections of the angular momenta of the 
ground and excited states of the nucleus on the direc-
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tion of the magnetic field (Mo and M, respectively) and 
of the effecti ve magnetic field H that produces the 
hyperfine splitting, i.e., 

iVI-+--iVI, iVIo-+--Mo, H-+--H. (2.4) 

The quantities contained in those Maxwell's equa
tions in which this substitution is made will be desig
nated by a minus sign, while the quantities in the initial 
equations will be marked by a plus sign. We multiply 
Eq. (2.1) with E, = 1, without the indicated substitUtion, 
by Et ( -k, w), apd the equation with i; = 2 with the 
substitution by E~+( k, w). Then, summing over k and 
subtracting one equation from the other, we obtain 

1: [E,_' (-k, (0)0+" (k, k')E\+' (k', (0) -E,+'(k, (0)0-" (-k, k')E,_' (k', (0) 1 
k,k' 

= -1: [J,+(k, oo)E,_(-k, oo)-I,_(-k, oo)E,+(k, (0) 1. (2.5) 
k 

In the second term on the left, we make the substitution 
k' - -k' followed by k ~ k' and i ~ l; we then obtain 

- .EEZ-'(-k, Ctl)o .. :"(-k', -k)Et+'(k', (0). 
It,t" 

We now use the well known relation for the scattering 
amplitudes (see, e.g.,l6]). 

om+il(k, k')=om_"(-k', -k). (2.6) 

Since aM is proportional to the elastic-scattering am
plitude, the initial and final states of the nucleus coin
cide as a result of the interaction with the y quantum; 
thus, we can dispense with the replacement of the final 
state of the nucleus by the initial state, a replacement 
required by the quantum-mechanical reciprocity 
theorem. As a result, the left-hand side of (2.4) 
vanishes. We then obtain 

1: Jt+(k, oo)E,_(-k, (0)'" 1: Jz_(-k, Ctl)E,+(k, Ctl). (2.7) 
• • 

This is the final expression, and now we must change 
from the Fourier components of the field to the coordi
nate representation. We are interested principally in 
the decay of the nucleus in the direction corresponding 
to the Bragg condition. In the problem for the external 
source, the incidence of y quanta with wave vector Ko 

= -ko inside the crystal will correspond to a superposi
tion of two waves with wave vectors Ko and Kl = Ko + K, 
where K is the reciprocal-lattice vector. In this case, 
the transition to the coordinate representation can be 
carried out in exactly the same manner as in (1 J. When 
conSidering an external source with definite polariza
tion s, we must use the solution for Ez- corresponding 
to this polarization s. Omitting the subscript s from 
now on, we obtain directly 

( ) ~ (-Z(xe)-Z(x~) ) '()E' ( )1 .. 1 ko, 00=£ £...J exp 2 Ee- f, ~-' f, e~, 
.,~ 

(2.8) 
1.,"=«/,,'(x., (0» MM. (J,," (x" Ctl»M.M>. 

The symbol (.o.J denotes here the sum over the spin 
state of the ground level and averaging over the spin 
state of the excited level. The indices a, {3 = 0, 1 
(denote the numbers of the wave vectors Ko and K" 

while i; is a constant independent of w. 

It is easy to separate in the current contained in 
(2.8) the resonant factor 

I j'(x)rl2 (2 9) 
I" (x, (0) = oo-Ctl' eM, Mo) -ir/2 . 

Here w' (M, Mo) is a well-known quantity that deter-
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mines the position of the written level as a function of 
the character of the hyperfine splitting. The matrix 
elements of the transition currents for the multipolari
ties E1, Ml and E2 are respectively[5] 

- [ 3 c'r, fI' ~ ( 1, 1 1) 
(j,(k» ... ,.,= 4(21+1)-;;;-j ~(-1)' -M, M D_" (2.10) 

q_O,±t q 

- [ 3 c'r, ] 'I, ~ ( 1. i 1) 
(j,(k»",,,= 4"(21+1)-;;- ~ (-1)' -Mo q M [kxD-.l, 

. ._o.±, (2. 11) 

- [ 5 c'r, ] 'J. ~ ( I. 2 I) (I) 
(j,(k»M.M= "2(21+1)7 ~ (-1)'" -Mo m M. N-m.(2.12) 

m __ 2 

Here 

q = Mo - M, no is the used vector along the magnetic 
field, n±l = +(nx ± iny), and nx,y are two mutually 
perpendicular vectors, both perpendicular to no; the 
remaining symbols are standard. In quadrupole split
ting, no is directed along the axial-symmetry axis of 
the electric-field gradient tensor. 

3. EMISSION FROM CRYSTAL 

The motion of the y quanta in the crystal (in other 
words, the radiation field) is determined by the well 
known system of equations (see[5]) containing the dy-

namic coefficients g~l{3: 

il_ ~ A '( )A /'( ) r/2 
g., --go ~ • p , p 00-00 (M,Mo) +ir/2 . (3.1 ) 

p 

In this expression, p is the aggregate of indices M, Mo 
and J, determining the position of the nucleus in the 
unit cell; 

4nrJ 2/+1 r, 
go = x'Vo 2 (210+1) r ' (3.2) 

2exp[Zj(x.)/2] -
A.(p) c[r,(2I+1) ]', .. O(x.»M •. "exp[ix.RJ]. (3.3) 

Here Rj is a vector describing the pOSition of t~e 
nucleus in the unit cell. Thus, the coefficients gl/~con
tain the same product of tranSition currents as II . 
, a 

To determine the fields that enter in the reciprocity 
theorem, we must ascertain the effect of the substitu
tion (2.4) on the SE. Let.us see first what changes oc
cur in the coefficients g~l{3' We note first that the same 
analysis applies to the transitions El and M1; if we 
make the substitution .E - H, then we can easily show 
that the coefficients g~l{3 in the equations for the elec
tric and magnetic fields respectively, coincide for both 
transitions. Using (2.9), we can easily find in the case 
when exp (iK' Rj) = 1 (see[S]) 

it (I 1 10 )' Tj " (Mi, Moi) [/2 
ga,3 =go2i 2i. _Mi q Moi Ul-00(M\Moj)+i!"/2' (3.4) 

J M6MJ 

T/=6q , ono/no/+ '/26q , 1 (6 11 -no/no/-ie,ilkno/) 
+ 'ho q , -1 (oil-no/no/+ieilhno/). (3.5 ) 

The subscript j takes into account the fact that in the 
general case the hyperfine-splitting field can be differ
ent for different nuclei in the unit cell. 

It is seen immediately from (3.4) and (3.5) that for 
transitions with q = 0, the value of g~l{3 remains un
changed when the signs of no and of the momentum 
projections are reversed. On the other hand, in transi
tions with q = ±1 (if there is no corresponding degen-
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eracy of the levels with respect to the signs of the pro
jections of the angular momenta), the direction of the 
elliptic polarization is reversed. In the case of de
generacy with respect to the times of the angular mo
menta (quadrupole splitting) there are no terms linear 
in no at all, and g~l{3 retains the same form. 

In the case of the E2 tranSition, no terms linear in 
no appear, and the g~lB are invariant to the transforma
tion (2.4). Violation of the invariance is possible in the 
case of interference between the transitions Ml and 
E2, for in this case there appear terms with odd powers 
of no. Usually, however, the admixture of the other 
transition is small, and we shall not consider this ef
fect here. 

So far we have considered only nuclear resonant 
scattering. If elastic scattering by the electrons is 
present simultaneously, then g~li3 acquires an additive 
term (see [5]) connected only with scattering by electrons 0 

Obviously, in this case, under the transformation (2.4), 
the resultant quantity will not change, since the scatter
ing by the electrons does not depend on H, Mo, and M. 

We note that the interference of two inelastic 
processes, the photoeffect and conversion[7] for transi
tions of the El type, which usually appears in the total 
scattering cross section, is reflected also in the ampli
tude of the elast~c scattering of the y quanta, i.e., in 
the coefficient g~l{3 (for details seeP]). However, a 
direct analysis shows that even this part of the scatter
ing amplitude is invariant to the transformation (2.4). 

Thus; the coefficients ~l{3' which determine the 
field inside the crystal, are not altered by the transfor
mations H - -H, M - -M, and Mo - -Mo, except that 
the sign of the elliptic polarization is reversed in the 
cases of El and Ml. 

We can now examine the intensity of the radiation 
from the crystal. Let at first the Bragg conditions not 
be satisfied. In this case the radiation field produced 
by external incidence of y quanta attenuates exponen
tially with increasing depth. For the radiation from the 
crystal, this corresponds, as seen from the reciprocity 
theorem, to .. an intensity proportional to e-IJ.l, where 
Jl = Ko 1m g~~ is the usual absorption coefficient and l 
is the effective depth of the radiating nucleus. In the 
general case, however, a situation is also possible in 
which y quanta of definite polarization do not interact 
at all with the nuclei. This occurs if the vector AQI ( p) 
(see (3.3)) is perpendicular to the corresponding polari
zation vector, as a result of which the nuclei in the 
crystal are not excited by radiation with this polariza
tion. This causes the radiation with this polarization 
not to appear when the nucle.i decay. Indeed, this follows 
directly from the fact that I~k{3 in (2.8) is determined by 
the same product of currents as g;l{3' We note that in 
the case of decay in an arbitrary direction, far from the 
Bragg condition, the pOSition of the radiating nucleus in 
the unit cell does not influence the intensity at all. 

We now consider decay in a direction k for which 
the Bragg condition is exactly satisfied; assume that 
complete SE is realized for external incidence of y 
quanta in the direction -k. As is well known, the SE is 
characterized by the fact that there is produced in the 
crystal a coherent wave superposition for which the 
amplitude for the formation of an excited nucleus 
vanishes at the lattice site, whereas in the interstice 
this amplitude is different from zero. Using the re-
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ciprocity theorem, we can conclude that no non-absorb
ing super-position of the waves will be produced as a 
result of the decay of the nucleus located at the lattice 
site, and the radiation will be exponentially small. At a 
small deviation from the exact Bragg condition, a 
weakly-absorbing superposition of waves begins to be 
generated already with finite intensity, but the absorp
tion is still small and only the indicated wave superpo
sition will emerge from a sufficiently large depth of the 
crystal (for details seeP]). 

We note that if the detector is tuned to one allowed 
hyperfine-structure line, then we have for the intensity 
of the radiation from the crystal the same result, in the 
sense of the angular and frequency distributions, as for 
the unsplit line P ]. 

On the other hand, if the radiating nucleus is located 
at an interstice, then the result is radically altered. 
Since in this case the amplitude for the production of 
the excited nucleus is large precisely for the nonab
sorbed superposition of the wave, the intensity of the 
radiation following decay of interstitial nuclei will be 
maximal when the Bragg condition is exactly satisfied. 
This result is a direct manifestation of the fact that the 
decay of the nucleus is accompanied by generation of a 
superposition of waves for which the SE is effective and 
which is thus weakly absorbed. In the case of deviation 
from the exact Bragg conditions, the intensity decreases 
with increaSing angle to the value characteristic of the 
absence of the SE. 

In the case when the Bragg condition is satisfied, a 
situation is also possible in which there is no interac
tion at all between nuclei and y quanta of definite 
polarization. As a result, radiation with the correspond
ing polarization will not be emitted. It is clear that this 
statement remains valid regardless of the pOSition of 
the nucleus in the unit cell. 

So far we have not spelled out concretely the values 
of the hyperfine splitting in the radiating nucleus and in 
the nuclei of the crystal from which the scattering takes 
place. For a radiating nucleus in the regular pOSition, 
the splitting, naturally, coincides with the splitting in 
the crystal, but for interstitial nuclei, in the general 
case, the hyperfine splitting may turn out to be differ
ent. Assume that the Bragg condition is satisfied and 
the splitting in the crystal is large. If none of the lines 
of the crystal coincides with the lines in the source, 
then we have the interaction of the quanta only with the 
electrons of the atomic shell (the Cossel effect). The 
case when the emission line of the decaying nuclei is 
not split and coincides with one line or with a group of 
two or three lines in the crystal, is the most favorable 
for the observation of the radiation from the crystal, 
for in this case the SE always exists (see[4,5] for de
tails). If, to the contrary, the hyperfine splitting in the 
radiating nucleus is large, and in the crystal the line is 
unsplit and coincides with one of the lines of the source, 
then it can be easily seen that this case reduces to that 
described earlierP ]. 

Let us dwell in greater detail on a ferromagnet with 
one resonant nucleus per unit cell. For Simplicity we 
assume that the hyperfine splitting does not depend on 
the position of the nucleus in the unit cell, and choose a 
reflection with exp (iK. R) = 1. We consider a nuclear 
transition of the El type (it was shown earlier that the 
analysis is similar for Ml transitions). Let at first the 
detector be tuned to a line with M - Mo = O. This 
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transition corresponds to scattering without a change 
of the pola!-"izatiqn of the quantum, and the tensor is 
given by gIL ~ n~nt. This corresponds to a situation in 
which waves with polarization vector eO' .L no do not in
teract at all with the crystal, and complete SE is 
realized for waves of the other polarization. In the case 
of radiation from the crystal, the tensor gil is not 
altered by the transformation (2.4), and noO'!adiation 
will be observed at all in a narrow interval near the 
Bragg angle for a decaying nuc leus at a site. For an 
interstitial nucleus, the y quanta with non-interacting 
polarization will likewise not be emitted, and the y 

quanta of the other polarization will be weakly absorbed 
near the Bragg angle. 

We now consider an E1 transition with M - Mo = ± 1. 
We choose a reflection such that the effective field at 
the nucleus is directed perpendicular to the scattering 
plane-along the z axis. We then have Aa ~ nx.t iny 
(see (3.3)). Waves with polarization eO" (eO" is perpen
dicular to the scattering plane) do not interact at all 
with the nuclei of the crystal, meaning that radiation of 
this polarization is not emitted from the crystal. The 
radiation of the other polarization, eg = eO" x Ko! Ko, 
interact resonantly with the nuclei, but, as shown by 
Kagan and Afanas'ev[5], SE takes place for this polariza
tion. Thus, when the y quanta are incident at the Bragg 
angle, the radiation passes through the crystal without 
absorption. Inasmuch as in this case the scattering 
proceeds with a change of the y-quantum polarization, 
a superposition of the direct and scattered waves pro
duces at the lattice site a field with circular polariza
tion, and at other points of the unit cell the field polari
zation will in general be elliptic and will vary from 
point to point (for more details see[5]), the direction of 
location of the polarization vector being dependent on 
the sign of M - Mo. If we make the substitution (2.12), 
then the direction of the circular polarization of the 
field at the lattice site is reversed, and it can be shown 
that E2- ~ nx 1" iny. Let us determine the current cor
responding to the decay of a radiating nucleus. The 
current of interest to us, obviously, is the complex con
jugate of the current contained in the definition of Aa 
(see (3.3)) and corresponding to excitation of the 
nucleus and J, ~ nx 1" iny. 

We note that it is precisely in transitions with t> M 
= ±1 that the specific features of the influence of SE on 
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the character of the radiation from the crystal become 
most clearly manifest. The amplitude of the radiation 
field of the nucleus (a quantity proportional to J ,) does 
not vanish, since the field from the external source of 
the nucleus is E 2-, but the product J,' E~ is the ampli
tude of the production of a non-absorbed superposition 
of the waves during the decay of the nucleus, and is 
strictly equal to zero for a radiating nucleus at a lattice 
site. Thus, radiation with polarization elf (see (207)) is 
not emitted from the crystal. On the other hand, if the 
radiating nucleus is located at an interstice, then J" 
naturally, retains its form, and E2- varies with the po
sition of the nucleus in the unit cell, so that the product 
J, . E2- does not vanish, i.e., the non-absorbed super
position will be radiated from the crystal with finite 
intensity. 

Thus, in spite of the more complicated situation when 
account is taken of the hyperfine splitting, it can be con
cluded that if the SE is produced when the photons are 
incident from the outSide, then it is realized also in the 
case of radiation from the crystal. 

In conclusion, the author takes the opportunity to 
thank Yu. M. Kagan for suggesting the problem and for 
constant interest in the work. 
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