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Propagation of fourth sound in solutions of two superfluid liquids is investigated on the basis of the 
hydrodynamic equations for such solutions. The existence of two fourth sounds is demonstrated. The 
possibility of exciting fourth sounds by means of vibrations of a wall in a direction perpendicular to 
its plane is studied. Hydrodynamic equations for solutions of two superfluid liquids with dissipative 
terms are derived. These equations contain ten independent kinetic coefficients: one for the first 
viscosity, six for the second viscosity, and one each for diffusion, thermodiffusion, and thermal 
conductivity. 

1. INTRODUCTION 

The possibility of the existence of solutions of two 
superfluid liquids appeared with the discovery of the A 
transition in liquid 3He at a temperature of the order of 
a few millidegrees Kelvin. [ll Since the solution of liquid 
3He in superfluid 4He does not separate into the pure 
components even at absolute zero temperature, up to 
concentrations of about 6% (see (2), it is then evident 
that upon lowering of the temperature the 3He in such 
a solution will also undergo a transition to the super­
fluid state and a solution of two superfluid liquids will 
be obtained. The equations of the hydrodynamics of such 
solutions were first obtained in Khalatnikov's paper (3), 
and the propagation of sound in them was studied in (4), 

In this paper, we consider certain problems in the 
hydrodynamics of solutions of two superfluid liquids: 
fourth sound in such solutions, the excitation of fourth 
sound, and the set of hydrodynamic equations of solu­
tions of two superfluid liquids with dissipative terms.!) 

Before proceeding to the exposition of these prob­
lems, we write down several formulas which we shall 
need below, namely: the hydrodynamic equations of so­
lutions of two superfluid liquids and expressions for the 
velocities of sound in such solutions (see [3,4). There 
are six equations in all: two equations of continuity for 
each of the components of the solution 

p,+div (p"v.,+p",v") =0, 
(1.1 ) 

here P is the density, c the concentration, VSl and VS2 
the superfluid velocities, PSl and PS2 the superfluid 
densities, and Pnl and Pru the normal densities of the 
first and second components, respectively; Vn the 
velocity of normal motion; 

1" =pc=p.,+p." 1',=1' (1. -c) =1'.'+1',,2; 

two equations of superfluid motion 

~.,+ V (!l,-'i2vn'+v"v.,=O, 

~'2+ V (!l,-'i2Vn'+VnV'2) =0, 

where III and J.i.2 are the chemical potentials, which 
are defined by the identity for the energy E: 

de =TdS+!l,dp,+!l,dp,+p" (v,,-v") d (v .. -vn) 
+p .. (v.2-v")d(v.,-vn) ; 

the equation of conservation of the total momentum 
j=p.,v"+p.,V.2+pnV ,,, 

j,+&IIu./&x.=o, 

here IIik is the momentum flux tensor 
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( 1.2) 

( 1.3) 

( 1.4) 

( 1.5) 

(1.6) 

IIil!. =P~1 V .sliU 3th +pS2V s2iV s2/i. +PnV lIiV nil + pbih , 

and the pressure is determined by the expression 
p=-e+TS+!l,p,+!l,p2; 

and the equation of continuity for the entropy 

S+div Sv.=O. 

( 1.7) 

(1.8) 

( 1.9) 

Khalatnikov[4) has shown that three different sounds 
can propagate in solutions of two superfluid liquids 
representing coupled oscillations of pressure, temper­
ature and concentration. We write down the velocities 
of these sounds, assuming that ul » U2 »U3 and c« 1: 

op 
U 12 =ap' 

2_ p. ,oT 
U2 --0-, 

pn flcr 
, 1'''1'.' o~ 

U 3 =----; 
p.p oc 

(1.10) 

2. FOURTH SOUND IN SOLUTIONS OF TWO 
SUPERFLUID LIQUIDS 

Fourth sound in an ordinary superfluid liquid is the 
oscillation of the superfluid component in narrow capil­
laries when the free path of the excitations exceeds the 
diameter of the tube and the normal component is im­
mobile (see [5). Since the transition of 3He to the super­
fluid state in solutions of 3He in superfluid 4He will take 
place at much lower temperatures than for 4He , the ex­
periment might be performed more conveniently by 
measuring precisely the fourth sound in the solutions. 
Thus, we need to consider the linearized hydrodynamic 
equations (1.1), (1.3) and (1.9) at Vn=O: 

p,+P., div v., =0, P2+p.2 div V'2=0, 

v.,+V!l,=o, V'2+V!l'=0, 8=0. 
(2.1) 

It is convenient to replace Ill' 112 by new chemical 
potentials J.I. = c III + (1- c) 112 and 1: = III - 1l2; we then get 
the following from (1.8) and (1.7) (a =S/p) 

p-tdp=crdT+d!l-~dc. (2.2) 

Using this notation and also (1.2), we rewrite the set 
(2.1) in the form 

pc+cp+p., div v,,=o, p(1-c) -"1'+1"2 div V'2=0, 

. "Vp. Vp 
v .. +(l-c) V~-crVT +-= 0, v'2-cV~-crVT +~= 0, (2.3) 

P I' 
iYp+crp=O. 

We now consider a plane sound wave in which all the 
variable quantities are proportional to exp{iw(t-x/u}. 
Denoting the variable parts of the corresponding quan­
tities by primes, we get the following set of algebraic 
equations from (2.3): 
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up' e+ue'p-p"v,,=O, up' (1-e) -ue'p-p"v,,=O, 

uv,,+(e-l)i;'+oT' -L=o, 
p 

uv,,+ei;'+oT' _L= 0, 
p 

(2.4) 

op'+po'=O. 

We convert to the variables p, c, Tin (2.4) by means of 
the formulas 

P' =~p' +~e' 0' =~T' +~e' 
flp dc' aT ae' 

r=-~~p'-.!.:!...T'+~c'. 
p' ae fie fie 

(2.5) 

In (2.5), we have used the smallness of the coefficient 
of thermal expansion 8p/8T 2) and also the relations 
that follow from identity (2.2) for the derivatives of the 
thermodynamic quantities. 

With (2.5), the conditions for the compatibility of 
Eqs. (2.4) give the equation for the sound velocity: 

u'-u'!.!..{[ e'~+(l-e)'.£.::..] [~~+~(~)'!.! ap p p p ae a p fie fio 

+~!l] +2 [(l-e)~-e~] [o.!.£..!.:!...!.!+~~] 
dp ae p p ap ae ocr p fie 

+(P"+P")(~0'~+1)}+~~{0,~!l~ 
pap ocr p' a p fI p Dc ao 

+cr' ~[~~ + ~~l' +!l} =0. acr cr Dc p ae j ae 

(2.6) 

This equation can be solved by using the fact that one 
root is much smaller than the other in the concentration 
parameter c« 1. It is also necessary to take into ac­
count that terms of the order Pn/ P are small at the 
temperatures considered, at least as small as c. With 
the foregoing, we obtain 

(u.')'=~!!'!!"'-
p flp' 

(U,")2=~~. 
P fie 

(2.7) 

We can also rewrite Eq. (2.7) in the form (see (1.10» 

(a'-')' =~a,'. (2.8) 
P·2 

Thus, two "fourth sounds" can propagate in capillaries 
with a solution of two superfluid liquids, representing 
coupled oscillations of denSity and concentration. 

3. EXCITATION OF FOURTH SOUNDS IN SOLUTIONS 
OF TWO SUPERFLUID LIQUIDS 

As has been made clear in (4l, a distinguishing prop­
erty of solutions of two superfluid liquids is the possi­
bility of propagation of a third type of sound wave in 
which concentration is the main oscillating property. 
Under conditions in which the free path length of the 
excitations are greater than the dimensions of the 
vessel, this sound corresponds to the second of the 
fourth sounds. It is interesting to establish how intense 
this specific sound will be under the usual method of 
excitation-by means of oscillations of the wall in the 
direction perpendicular to its plane. It is more con­
venient to carry out the treatment precisely for the 
fourth sound by virtue of its greater simplicity. The 
answer for third sound should not differ greatly from 
that obtained here. We shall proceed in the same fashion 
as in the investigation of the question of radiation of 
sound in an ordinary superfluid liquid (see (5l). Let the 
wall oscillate in the direction perpendicular to its plane 
with a velocity voe- iwt . The velocities of the first 
superfluid component in the first and second of the ra­
diated fourth sounds will be 
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while the velocities of the second component will be, 
respectively, 

Here 

(3.1) 

(3.3) 

The quantities VSl and VS2 should coincide with the 
surface velocity on a solid surface: Al +A2=vo, Alal 
+A2a2=vo, whence A2/Al=(1-al)/(1-a2)' The mean 
energy density radiated in each of the sounds is obtained 
by means of (3.1) and (3.2): 

E=P."V,l'+p.,V.,'=" I,A' (P.l+p.,a'), 

and the intensity ratio of the radiated waves of first and 
second fourth sounds has the form 

(3.4) 

Thus, to find the final answer, it is necessary to find 
al and a2 (see (3.3». From (2.4) and (2.5), we can obtain 

v., { { ,[( 1 ap)' fip (fiO)'iJT ap 8i;) 
-= -P.l (1-e) -- +- - -+--
v" p ae a p ae 80 fi p 8e 

[ 8p 8cr 8T 1 fiP] 8p 8T } 8p} 
+2{1-e) --0---- +cr'--+1 +u'p-

ap ae acr p ae fip 80· fip. 

{ { [ ( 1 fIp)' do ( dcr )' aT ap fi~] 
x -p" c(1-c) pdc + ii~ Tc a;; + a;; a;; 

+2e[~!.:!..0..?!..-~!£..1-~~~!!.. 
fi p oe ao p 8e p fie fi p flo 

+..!..~_0'~!£_1}}-1 
p 8e 8p fio 

Keeping only the principal terms in the concentration, 
we have 

a1 = u,,: = (a:)'p~/ p,,( 1-~!.£.), 
V. 1 ap p fie 

a,=v,,::={_p,,[ op !l.+(1-~!£..)'] 
v" a p oe p fie 

( ")' OP}! (. 1 flP) + a, p- p" 1--- . 
iJp P iJc 

Using (2.7), we can rewrite these expressions in the form 

a,= (1-~~) _1, 
P ric 

a,= _.£.::..( 1-..!..~). 
p.,. p iJe 

(3.5) 

We substitute (3.5) in (3.4). Using (2.7), we obtain, to the 
prinCipal order in the concentration, 

!!..= (~!.£.)'/2 (.£.::..' ./. (~~)'. 
/1 iJc rip p" P Oe (3.6) 

Thus the ratio of the intensities of the second to the 
first of the fourth sounds in the radiation of a wall vi­
brating in a direction perpendicular to its plane contains 
the concentration parameter to the 3/2 power. This 
quantity may also prove to be not so small, which allows 
both sounds to be excited in this fashion. 

4. HYDRODYNAMIC EQUATIONS OF A SOLUTION 
OF TWO SUPERFLUID LIQUIDS WITH DISSIPATIVE 
TERMS 

In order to obtain the equations of hydrodynamics of 
a solution of two superfluid liquids with account of dis­
sipation, in complete analogy to what was done for pure 
helium (see (5 l ), we introduce additional terms in Eqs. 
(1.1), (1.3) and (1.6): 
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p,+div( p"v ,'+Pn'V n +g,) =0, 

. 'Vn' ) 
v,,+V fL'-T+Vnv,,+h, =0. 

. + a (Il .. +rik) _ 0 
" ax, -. 

( 4.1) 

IIik is given by Eq. (1.7), and gl+g2=0, since the con­
tinuity equation p + div j = 0 holds for the entire liquid. 
We then have g2 =-gl everywhere below. The total en­
ergy in the coordinates bound to the normal motion has 
the form 

E='l2pvn'+ (p,+p,) Vn +8. (4.2) 

Here t is determined by expression (1.4), and Pl and 
P2 are the momenta of the two superfluid motions, taken 
in the coordinates in which the normal component is at 
rest (see (31): 

p,=p .. (V,,-vn), p,=p,,(v,,-Vn). (4.3) 

Differentiating (4.2) with respect to time and apply­
ing (1.1)-(1.9), (4.2), and (4.3), we can establish (see (3 1) 

the law of energy conservation in the form 3) 

aEIDt+div Q=O, ( 4.4) 
where 

Q=(p,+p,vn) (fL,-'/2vn') + (p,+p,vn) (fL,-1/2vn') (4.5) 
+Vn (jvn) +p, (vnv .. ) +p, (VnV,,) +TSvn• 

The same calculations, carried out with the equations 
of hydrodynamics with the additional terms of (4.1), give 

DEIDt+div(Q+Q') =0. 

Here Q is determined from formula (4.5), 

Q'=q+h,p,+h,p,+(Vn'f). 

(4.6) 

( 4.7) 

In this case, the rate of change of entropy can be writ­
ten in the form 

T{ S+div [SVn + ~ - g~~]} =-h, divp, 

avn , ~ VT 
-h,divp,-... --- g,TV --q--. 

ax, T T' 

(4.8) 

In the expressions for the energy flux and entropy 
fluxes, we have inserted the additional unknown term q. 
The right side of Eq. (4.8) determines the dissipative 
function R. From its positiveness condition we have 

h,=-~, div p,-~, div P'-~3 div Vm (4.9) 
h,=-~, div p,-~; div p,-~, div Vn, (4.10) 

( aVn' au.. 2 aVn,) 
... =-1'] --+----6 .. -

ax, ax, 3 ax, 
-6"(~7 div P'+~8 div P'+~9 div vn), (4.11) 

~ VT 
g,=-aV r- ~T" (4.12) 

~ VT 
q=-,V T- 6 p ' (4.13) 

By virtue of the Onsager symmetry principle, we 
have the following relations for the kinetic coefficients: 

(4.14) 

In order to introduce the diffusion, thermal-diffusion, 
and thermal-conductivity coeffiCients, we shall proceed 
in the same fashion as in the case of ordinary helium 
with a nonsuperconducting impurity (see [51). We ex­
press the heat flux q in terms of the diffusion flux gl 
and Y'T. We get from (4.12) and (4.13) 

_q= _lg,+ (6 _11) VT. 
a a T' 

The coefficient of thermal conductivity K is defined in 
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such a way that at zero flux gl the heat flux would be 
equal to -KY'T, i.e., 

x=(6 _!L) _1 . 
a T' 

( 4.15) 

We now transform, as usual, to the variables p, T, c 
and introduce the notation 

a a ~ a ~ ~ 
D=-PJcr' DpkT=aTaT'r+r' 

k =p~~/~l.. 
P fip T fie T 

( 4.16) 

In this notation, the fluxes (4.12) and (4.13) take on the 
form 

( VT VP) -g,=pD Ve+kTr+kpp , 

-q=T' [~~_~~..t] g,+xVT. 
aT l' T fie T ' 

(4.17) 

The quantity D is the diffusion coefficient, kTD is the 
coefficient of thermal diffusion and kp the coefficient 
of pressure diffusion. The pressure diffusion coefficient 
is not a kinetic coefficient, since it is completely ex­
pressed in terms of derivatives of thermodynamic quan­
tities. 

We can now write down the hydrodynamic equations 
of the solution of two superfluid liquids with dissipative 
terms in their final form: 

p+divj=O, 

[' ( kT kp )] p,+div(p"v,,+Pn,vn)=div pD Ve+rVT+pVp , 

;"+ V ().I'-'/2Vn'+VnV,,) = V [~, div p" (v,,-vn) 
+~, div P,,(V,2-Vn) +~3 div Vn], 

,,:,,+v (fL'-'/2Vn'+VnV,,) =V [~, div p., (v,,-vn) 
(4.18) 

+~5 div p.,(v,,-vn) +~. div Vn], 

: flIl.. a { (aVn, , av n, 2. aVn,) 
,,+---=-- '1 --+----Uik--. • ax, ax, ax, fix, 3 fix, 

+6"(~7 divp" (V.'-Vn)+~' divp.,(v,,-vn) +~9 divVnl}. 

The equation for increase in entropy takes the form 

T{S+diV[SVn + ; -g, ; ]}=R, (4.19) 

The fluxes q and gl are determined by the expressions 
(4.17) 

R=~, (div Pol (v,,-vn) )'+~5(div P.,(v.,-vn) )'+~9(div vn)' 

+2~, div p" (v,,-vn)div p,,(v'2-vn)+2~3 divp,,(v,,-vn)divvn 

( flvn. avn, 2 aVn')' (4.20) 
+2~8divp,,(v,,-vn)divvn+'1 -fl-+-a---3 6 .. ~ 

Xit Xl uX, 

+pD a~ (Ve+ kT VT+~VP)' +x (VT1')' . 
Dc T p 

The coefficients 6i (i=1, 2, ... ,9) have the meaning 
of second-viscosity coefficients. Because of the Onsager 
symmetry relations, only six of these are independent. 
The second-viscosity coefficient 62 is specifiC for the 
solution of two superfluid liquids. It corresponds to the 
friction between the two superfluid components. The 
quantity 1) is the coefficient of first viscosity, which is 
essentially connected with the normal motion. Just as 
in the case of ordinary superfluidity, the coefficient that 
is analogous to the first viscosity does not appear in 
superfluid motions. Thus, there are in all ten indepen­
dent kinetic coefficients for a solution of two superfluid 
liquids: one first viscosity, six second viscosity and one 
each of diffusion, thermal diffusion and thermal conduc­
tivity. 
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In conclusion, the author expresses his deep gratitude 
to I. M. Khalatnikov for useful discussions. 

l)Just as in [3,4J, we shall ignore the possible anisotropy arising because 
of the anistropy of the gap in the 3He spectrum, and study the case of 
isotropic superfluidity. 

2) As is well known, the coefficient of thermal expansion in solutions of 
3He in superfluid 4He is not small, This is because there is always a 
finite amount of the normal component in such solutions above the A 
point of 3 He-all 3He atoms are in the normal component. But in the 
case considered, both 4He and 3 He are in the superfluid state and there­
fore, just as in the case of the pure superfluid 4He, Pn ~ Ps and the 
coefficient of thermal expansion of the solution of the two superfluid 
liquids should be a small quantity. 

3) An error was made in the calculations in [3j-the last term in the 
expression for the energy flux (4.5) was omitted. 
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