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A quantum-statistical theory of strong saturation of EPR under phonon-bottleneck conditions is 
developed. Time equations for the spin and phonon temperatures are derived and these equations are 
analyzed in various limiting cases. The expression obtained for the stationary value of the spin 
temperature in the rotating coordinate frame goes over into the well-known result of Redfield if it is 
assumed that the resonance phonons are in eqUilibrium with a thermostat. The conditions for the 
appearance of a phonon avalanche in pulsed saturation of EPR in oscillating fields of the order 
of and greater than the local field are discussed. 

1. Discussion of the effects associated with heating 
of phonons in magnetic-resonance saturation and in the 
dynamical polarization of nuclei began long ago(11. Re
cently, interest in these problems has grown in view of 
the successes of the concept of the dipole-dipole reser
voir (DDR) in EPR[2,3]. A systematic theory of the pho
non bottleneck (PB) with the DDR taken into account was 
constructed in the papers[4-S]. In the paper(6] it was 
shown experimentally that for pulsed saturation of an 
EPR with detuning there arises a phonon avalanche 
caused (as follows from the theoretical analysis) by a 
sharp change in the temperature of the DDR. 

In all the above-mentioned papers the oscillating 
field was assumed to be small compared with the local 
field due to the spin-spin interaction (the so-called 
Provotorov case[2]). On the other hand, in experiments 
on strong EPR saturation radio-frequency fields of the 
order of the local fields are used (the so-called Red
field case[3,7,8]). In view of this, it is of interest to in
vestigate the effects of phonon heating and of the forma
tion of a phonon avalanche under conditions of strong 
saturation of the magnetic resonance. 

2. Following the paper[5], we write the Hamiltonian 
of the coupled spin-phonon system in the form (fi = 1) 

. dfJZ=WSS Z1 ;}{;Ph= ,E uhjak.l+akj, (1 ) 
kj 

~',Ph =+,E (Lk/S-+Lkj-S+), 
ki 

where .it' z is the Zeeman energy of the spin system , .it'd 
is the secular part of the dipole-dipole interaction (this 
is not written out explicitly), .it' ph is the Hamiltonian of 
the phonons in the harmonic approximation, .it's h is the 
energy of interaction of the spin system with th~ oscil
lating field h± = w1y- 1e±illt, aiq and akj are the crea
tion and annihilation operators for phonons of the j -th 
branch with wave-vector k and frequency Wkj, and 
.it's ,ph is the spin-phonon interaction energy. 

In accordance with the assumption of Single-phonon 
relaxation, the lattice operators L~j can be represented 
in the form[5,9] 

(2 ) 

where JII is the spin-phonon coupling constant 1). 

We note that up to now we have excluded the thermo
stat from consideration. The relaxation of phonons to 
the thermostat will be taken into account phenomenolog
ically later. 
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To eliminate the explicit time dependence of the 
Hamiltonian we perform the unitary transformation: 

'l"=U'l', U=exP{iQ(S'+ ,Eat/ati)t}. (3) 
tj 

This transformation with respect to the spin system 
represents a change to a coordinate frame rotating with 
frequency n about the direction of the constant magnetic 
field (the z axis). With respect to the phonons, it can be 
regarded as a shift in energy space through a frequency 
n. In the following we shall call the new frame of refer
ence the rotating coordinate frame (RCF). 

It is easy to see that in the RCF the Hamiltonian of 
the spin-phonon system has the form 

J'6'=~:+,E S dkdG,/ +~,E S dk(L,/S-+L,,-S+) , (4) 
i 0 j 0 

where 

i.e., does not depend explicitly on time. Here, inasmuch 
as the oscillating field is not assumed to be small com
pared with the local field, the interaction of the spin 
system with the oscillating field is included in the basic 
Hamiltonian and the role of the small perturbation is 
reserved for the spin-lattice interaction. 

The system under consideration can be described 
statistically by a density matrix p * (t) satisfying the 
Liou ville equation: 

f) • 

i it = [J'6', p' (t) J. (5) 

Since the Hamiltonian of the system does not depend 
explicitly on time, for this description we can use the 
quantum-statistical method proposed by Zubarev[10] for 
constructing a nonequilibrium statistical operator (NSO). 

3. We shall assume that the time for establishment 
of internal equilibrium in the spin system and in pho
nons of specified frequencies is much shorter than the 
time for establishment of the equilibrium (or stationary) 
state in the spin-phonon system under consideration. 
Then in the first (short) stage of the evolution, the spin
phonon system reaches a quasi-equilibrium state in 
which it is a combination of weakly interacting subsys
tems-a spin packet and phonon packets of definite fre
quencieS-in internal equilibrium. This state is de
scribed by a reduced set of thermodynamic parame
ters-the inverse temperatures of the spin subsystem 
(j:l~ ) and phonon subsystems (f3kj)' The subsequent 
evolution of the spin-phonon system in the so-called 
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macroscopic stage reduces to a slow approach to the 
equilibrium (or stationary) state as a result of the in
teraction between the subsystems. At this stage of the 
evolution, the spin-phonon system can be described by 
a NSO having the form 

"l 

p'=Qo exp {-~:J'6;-1: S dk~kj·J'6.;" 
, 0 

+ j dte"(~;.7t"(t)+ L S dk~.;".7tkj·(t)]}, e>O, 
• J 0 

where, as can be seen easily, the operators of the 
fluxes are given by the relations 

.7t'= -~-(S+L-+S-£+) 
• 2 ' 

1 
.7t.;, = 2(S-Lkj++S+L>;-) , 

(6) 

1 
Lkj± = -;-[Lkj±, J'6kj'], 

! 
(7) 

J 0 

and satisfy a condition following from the energy con
servation law: 

.7t:+ L S dk.J{.,·=O. 
J 0 

(8 ) 

Using this relation, confining ourselves to the high
temperature approximation with respect to the spins 
({3~Jt"~ « 1), and also taking into account that the 
thermodynamic fluxes contain the weak interaction, we 
bring the expression (6) for the NSO to the following 
form, convenient for practical calculations: 

P''''PL'{ 1-~:JIe:+ 1: J dk S d)" S dte"eA'(~.;-~;).J{.;(t)e-A'}, (9) 
i 0 0 _<XI 

where 
OJ 

pL'=e-A/Spe- A, A= 1: S dk~.;JIe,;. 
J 0 

Averaging now the Hamiltonians of the subsystems 
under consideration, and the thermodynamic fluxes, 
over the expression (9), using the relation d Jf" m I dt 
= d£m/dt, and taking the condition for the system to be 
quasi-static, we obtain the following system of equations 
for the inverse temperatures 2): 

~= 
dt (w.-Q)':w,'+w/ YdWW (w-Sl) f'(Q-w)L+-(w) p' ~:) (~'(w) -~")' 

dp(w) c, +_ w-Q, ~'(w), , 
--= -n-_-L (w)--/ (Q-w)--(~ (w)-~,). 

dt Cp w ~o 

Here, 

c, = ~ N,w,'S(S+1), 
3w' 

CP=-2 Z:P.21 
:rt c po 

L+-(w)= 3Aw' 
2n2c'po ' 

S±(t) =exp (iJ'6;t')S± exp (-iJ'6,'t) , <A>=Sp A/Sp 1, 

where Ns is the number of paramagnetic ions in the 
sample and c is the sound velocity. 

(10) 

Below it is necessary to transform from the phonon 
temperature in the RCF to the phonon temperature in 
the laboratory frame. 

Starting from the fact that the mean number of pho
nons is the same in the two coordinate frames, we con
clude that 
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w-Q 
~(w)=--~·(w). 

w 
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(11) 

Eliminating {3" (w) (by means of this relation) from the 
system of equations (10), we find 

a~.. :n: 

dt «,),-~l)'+w,'+w/ 

x SaO) (W-Q)'j'(Q-w)£+-(w)~(~p(w)-p,,), 
~(o)l w-~I 

d~(w) c,. w-Q pew) ( '" ) 
--= -:n:-::-L;-«u)--j'(Q-w)-- --p(Ol)-~" 

dt Cp m ~,w-~1 

p(ro) ~(ro)-ilo 
-------

po To 

(12) 

The last term in the right-hand side of the second equa
tion of the system (12) has been added phenomenolog
ically and describes the simplest form of relaxation of 
the phonons to the thermostat, with a frequency-inde
pendent relaxation time To.3) 

The system (12), which describes the rate of change 
of the inverse temperatures (:l~ and i3( w), is the start
ing point. With regard to it, it must be noted that the 
correlator appearing here is a nonsymmetric function 
of the frequency and differs substantially from the cor
relator encountered in the theory of intermediate satu
ration of EPR(2,3,5l. The first and second moments of 
this correlator, which are of interest from the stand
point of the present treatment, respectively have the 
form 

We proceed now to examine different particular 
cases. 

(13) 

4. We assume first that the PB effect is absent and 
the resonance phonons remain in equilibrium with a 
thermostat at temperature (3r/. Then, taking the rela
tions (13) into account, we can bring the first equation 
of the system (12) to the form 

dp: 1 (R' ""'l 
dt=-~~a-t'. , 

"" m,(m,-Sl) 
p. = ( _Q)'+'I '+., ,po, 

w~ zWt ~Wa 

1 (w.-~1)'+'/,m,2+2wi 1 
r:;=--(fL)s-Q):!.+(J)L2+wi T~p' 

(14) 

(15) 

(16) 

where Tsp = lrrL' -( WS)]-l is the ordinary spin-lattice 
relaxation time. 

The expressions (15) and (16) for the stationary value 
of the spin temperature and the spin-lattice relaxation 
time in the RCF were first obtained by Redfield(7l, and 
later by a number of other authors on the basis of semi
phenomenological arguments[3,8l• The appearance of the 
numerical coefficients Y2 and 2 is associated with this 
specific treatment. 

5. We assume now that the PB effect occurs. We 
shall assume that the spectral diffusion in the phonon 
spectrum in the frequency interval of the order of EPR 
linewidth proceeds faster than the exchange between the 
spin system and the phonons. Then we can assign a 
single temperature {3pl to the resonance phonons inter
acting with the spin system, and regard them as a 
thermodynamic subsystem. The remaining phonons 
must be aSSigned to the thermostat. 

The system of equations that describes the time 
evolution of {:)s and {3p can be obtained easily from the 
initial system and has the form 4 ) 
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(17) 

where 1/Tps = (cs/2.:lcp)(1/Tsp), and 2.:l is the 
width of the frequency spectrum of the resonance pho
nons. 

The stationary solution of the system of equations 
(17) is given by the expressions 

(~ ')" _ w,(w.-Q) 
, - (w,-Q)'+(1+o) (,/,w,'+2w1) ~o, 

(~ )"= (w,-Q)'+'/,w,'+2w/ 
p (w,-Q)'+ (1 +0) ('/,w,'+2wl) ~o, 

w here a = To / T ps is the PB coefficient. 

(18) 

In the absence of the PB effect (a « 1), the second of 
these expressions gives (f:ip)st "" 130, while the Redfield 
result (15) follows naturally from the first. The pres
ence of a PB leads to considerable heating of the reso
nance phonons, and also to an increase of the spin tem
perature in the RCF. 

In conclusion, we remark that the relations (18) con
tain, as a particular case, Borghini's result referring 
to intermediate saturation (Wl« wd) under PB condi
tions(4). In fact, for Wl « wd, the temperature (f3~ r l 
simply coincides with the DDR temperatures f3d\ and 
is connected with the Zeeman temperature by the rela
tion 

6. We now consider the case when, under PB condi
tions, there is no spectral diffusion in the phonon spec
trum (the so-called case of weak spectral diffusion). We 
shall assume first that the spin system is excited by a 
sufficiently short UHF pulse, during which it can be 
regarded as isolated from the lattice. Then, on expiry 
of this plate, it reaches a state described in the RCF 
by the inverse temperature 

• w.(w.-Q) 
~, = (w,-Q)'+w,'+wl ~o. (19) 

The behavior of the resonance phonons over short times 
following the end of the pulse can be described by an 
equation for the deviation of the number of resonance 
phonons from the equilibrium value, i.e., for 

Z(w)= n(w)-no "" ~o-p(w) • 
no p(w) 

This equation is of the form 5) 

trw) + Z(w) = _1_~ I' (Q-w) (w,-Q) (w,-w) (Q/w) +w,'+wl 
To Tp,o w,' 1'(0) (w.-Q)'-j-w,'+wl 

+_1_~ I'(Q-w) (w,-Q) (Q-w) Z(w) (20) 
Tp,' w, I' (0) (w,-Q),+w,'+w/ ' 

1 c, 1 
-0 =--::-t(O)-. 
Tps Cp T.p 

It follows from this equation that, under conditions of a 
strong PB effect (ao = To/Tps » 1) for the resonance 
phonons whose frequencies satisfy the inequalities 

(w,-Q) (w,-w) +w', '+w/>O, (w,-Q) (Q-w»O, 

Z (w) increases first linearly, and then exponentially 
with time. In other wordS, in the frequency range indi
cated a phonon avalanche arises. The logarithmic in
crement of the avalanche is determined by the expres
sion 
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1(w)= 2(w) ",,_1_ Iw,-QIIQ-wl t(Q-w) 
Z(w) Tp.o (w,-Q)'+w.'+w/ 1'(0) 
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(21 ) 

In the limit of intermediate saturation (w 1 « wd), 
the result of[S] follows from this. 

We now consider stationary saturation of the EPR 
under conditions of a weak PB effect (ao « 1). In this 
case, we can neglect the effect of heating of the reso
nance phonons on the behavior of the spin system, as a 
result of which the stationary value of the spin tempera
ture in the RCF will be determined by the expression 
(15). As regards the stationary value of Z(w), it can 
be obtained without difficulty from the second equation 
of the system (12), in which the relation (15) must be 
substituted for f3~. As a result, we have 

Z( ) _ {(.Q-w) Q' (w,-Q)(w,-w)+'/,w.'+2w" 
W --00---

frO) w2 (w,-Q)'+'/,w,'+2wl 
(22) 

Hence it follows that, for strong saturation of the 
EPR at the center of the line (ws = 0) under conditions 
of a weak PB effect, Z( w) duplicates the nonsymmetric 
shape of the EPR line. But for saturation with detuning 
(ws ". n), the spectral distribution of the resonance 
phonons has a fairly complicated form. Thus, e.g., for 
Ws > n the resonance phonons from the frequency in
terval 

w<w,+ (w,-Q) -, (,/,·w,'+2w/) 

are heated up, whereas in the opposite wing of the line 
COOling of the resonance phonons occurs[ S). In the limit 
of intermediate saturation the relation (22) goes over, 
naturally, into the result(6). 

7. We proceed now to examine the case of ultra
strong saturation, when Wl» wd. First of all, by the 
unitary transformation 

S'=S' cos O-S' sin 8, SY=S', S'=S' sin 8+S' cos e, (23) 

where 
WI ro,-Q 

sin8=-, cosO=--, w,=f(w,-Q)'+w,', 
w~ w~ 

we go over from the RCF to the so-called effective co
ordinate frame (ECF) in which the axis z is directed 
along the effective magnetic field He = y-l[k(ws - 0) 
+ iw d (k and i are unit vectors directed respectively 
along the z and x axes of the RCF). The Hamiltonian of 
the system under consideration in the ECF can be ob
tained easily from the expression (4) and has the form 

.} 

i&=i&,H(O)i&.+ 1:, S dk:J6.;,+i&,p" (24) 
J 0 

- -z 
wher~ Jt" z = weS is the Zeeman energy in the ECF, 
A( e )Jt"d is the secular part of the dipole-dipole interac
tion in this same coordinate frame, and finally f s ph 
describes the spin-phonon interactionS): ' 

:fe" p,='/,,\+ (0) (£+S-+L-S+) +'/,A_(O) (£+S++L-S-). 

Here, 

1.(0) ='/,(3 cos' 0-1), A± (0) ='/2(COS 0±1), 

Since We » wd in the case conSidered, we must 
represent the spin system in the ECF in the form of a 
combination of two subsystems-the Zeeman subsystem 
and the DDR, aSSigning to each of them its inverse tem
perature (~s and ~d, respectively). As a result, we ob
tain the following expression for the NSO: 

ii""PL' {i-B.J6,-BdY6d 
(25) 

+ j dt. j dte"eA'jP,(t)e-A'·(~,-Bd) + j dt. j dte"eA'JI!'.;(t)e-A'(~k;"-~i)}' 
\1 _30 0 _"C 

L. L. Buishvili et al. 332 



Averaging by means of this expression the flux opera
tors 

je, = w?~ {A+ (e) (L-S+-L+S-) +A_(O) (US+-L-S-)}, -, 
• :it:,= --=- {A+ (9) (L+S-+L-S+) +,L (0) (L+S++L-S-)}, (26) 
2 

- 1 
:J£.;= - - L\+ (e) (L.;+S-+L.;-S+) +A_(6) (L.;+S++L.;-S-)} 

2 

and the Hamiltonians of the different subsystems, and 
also going over, for the phonons, to the laboratory 
frame in accordance with the relation (11), we obtain a 
system of equations describing the change in time of 
the inverse temperatures: 

~ =-S dw{$ (w, w.) +<1> (w, -w.)}, 
dt 

dB. = J {Q+w.-w ffi ( ) Q-w.-w ffi ( _ ) } dw 'V w, We 'V W, We , 
& ~ ~ 

d~(w)=~w'{<D(w w)-<D(w _w)}_~(w) ~(w)-~o 
dt Cp ' w ,e ,Ii ~o TO) 

where 

<D(w, w.) 

(27) 

~o ( Q+w.-w w ) =11A+'(6)f(Q+w,-W)L+-(w)-( -) B.- ~d--~(W) , 
~ W w. w. 

1 OOs ,<S-S+(t» ,-, -
fe w) = - dte'·' S±(t) =e",o''''''S±e-",ol"e,' 

211_
00 

<S-S+) , , 

1 z ) 1 3we2 

c. =:3 N,w. S (S+1, Cp = 211'C3~O' . 

It follows from the structure of the equations ob
tained that the spin system interacts with two groups of 
phonons, having central frequencies n - We and n + We 
and clearly separated by a frequency interval 2we that 
is very much greater than the EPR linewidth. The width 
of each group of resonance phonons is small compared 
with the width of the magnetic-resonance line, since the 
correlator f( w) wntains the factor A( e ) in the outer 
factors of the operator 'S+ (t). The presenc e of the two 
narrow groups of resonance phonons is in accordance 
with the fact that for ultrastrong saturation at frequency 
n resonance interaction with the detecting field occurs 
near the frequencies n ± we[ll], 

We note that the system (27) was obtained by neglect
ing the term SZLz in the Hamiltonian of the spin-pho
non interaction. Allowance for this term would lead to 
excitation of phonons near the frequency We (corre
sponding to the audio range), and this of interest from 
the point of view of rotational saturation, However, in 
the present paper we confine ourselves to treating 
processes associated with excitation of phonons in the 
UHF range. 

In concluSion, we call attention to the fact that each 
different group of resonance phonons has its corre
sponding effective spin temperature. In particular, the 
effective spin temperature corresponding to resonance 
phonons of frequencies n ± we is determined by the 
relation 

Below we shall see that this circumstance predeter
mines the appearance of the phonon avalanche in pulsed 
saturation of the EPR, 

8. We proceed now to analyze the different limiting 
cases. First of all we assume that the spectral-diffu
sion length in the phonon spectrum is of the order of 
the width of the correlator 1 (w). Then to the resonance 
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phonons n ± we we can assign a single temperature 
({3+ and {3- respectively). The sy~tem of equations that 
describes the time evolution of {3s, f3+ and 13- can be 
obtained easily from Eqs. (27) in the standard way and 
has the form 

d~, = __ 1_~(~,_ Q+CIl, ~+) __ 1_~(~.+ ~l-W'~_) 
dt T.p + (0) ~+ w. T.p - (tI) 13- w. 

where 

--1-=nA+2(6)L+-CQ±We), ___ =_c, ___ 1_, 
T,p± (0) - T .. ± (e) c: ·26 T.p'" (e) 

and 20 is the width corresponding to the correlator 
f(w) (Le., the width of the resonance phonon packet). 

(28) 

Hence it is easy to obtain that the stationary regime 
is characterized by the following distribution of tem
peratures: 

w.(w.-Q) 
B. = (w.-Q) '+'/,w,' (1 +d' w,'/4w.') ~o, 

+_ _ _ (w,-Q)'+'/,w,' 
~ -~ - (w.-Q)'+'j,CIl,'(1+cr'w,'/4w.') ~o, 

(29) 

where 

These relations are analogous in many respects to the 
relations (18), if in the latter we put W 1 » Wd. The es
sential point is that both groups of resonance phonons 
are heated equally, 

We shall consider now the pulsed regime of EPR 
saturation, i.e., we shall assume that the spin system 
is excited by a sufficiently short UHF pulse, during 
which the spin system can be regarded as isolated from 
the lattice. Taking into account the fact that, in the 
limit of ultra-strong saturation (W 1 » wd) exchange of 
energy between the Zeeman subsystem and the DDR is 
difficult, we find that by the time the UHF pulse ends 
the state of the spin system will be characterized by the 
temperatures 

w,(w,-Q) D, 
(w,-Q),+w," • 

(30) 

while the deviations in the number of resonance phonons 
from the equilibrium values Z+ and Z- satisfy the 
equations 

2;' + Z= =_1_[ Ol.(Q±W,)+'w.(w.-Q) +' w,(w,-Q) z±]. 
To T.,± w,(Q±w.) w.(Q±w.) 

(31) 

An analysis (which we do not pause to give) of these 
equations under conditions of a strong PB effect shows 
that for Ws - n < 0 the avalanche encompasses the 
resonance phonons of frequency n + We, and for Ws 
- n > 0 encompasses those of frequency n - we. The 
logarithmic increments of the avalanches are deter
mined by the relations 

2;'" 1 w,lw,-QI 
1± =-=------,--. 

Z± T./(6) w,(Q±w,) 
(32) 

The appearance of a phonon avalanche is connected, 
as before, with negative values of the effective spin 
temperature. For Ws - n < 0 the effective spin tempera
ture for the resonance phonons of frequency n + We be
comes negative, while for Ws - n > 0 the spin tempera
ture of the resonance phonons of frequency n - We is 
negative. 

In connection with the results obtained, we must note 
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the following. As has been observed, the appearance of 
a phonon avalanche in the Provotorov case is due to the 
DDR, which plays an active role in the saturation of the 
EPR. It is precisely the sharp increase of the DDR 
temperature that leads to the result that, depending on 
the sign of the detuning, the effective spin temperature 
for part of the resonance phonons takes a negative value. 
In particular, an avalanche develops in the phonons ly
ing in the wing near to n. In strong oscillating fields, 
when Wl» Wd, the Zeeman energy and the DDR defined 
in the ECF are thermodynamically no longer coupled 
with each other. The role of the DDR now reduces to 
that of a source of randomization within the spin system, 
while the DDR temperature is practically unchanged in 
the absence of rotational saturation at the frequency We. 
Nevertheless, the effective spin temperature for the 
group of resonance phonons lying in the wing near to n 
remains, as before, negative, giving rise to the appear
ance of an avalanche. 

Naturally, an avalanche-like increase in the number 
of resonance phonons also occurs in the limit of weak 
spectral diffusion in the system of phonons. The corre
sponding analysis is trivial and leads to the following 
values of the logarithmic increments of the avalanche: 

+() 1 w,lw,-QI l(Q±w,-w) 
,- w ~ Tp,±' -w-,-:-(Q=-±-w-,-'--.) 1(0) 

1 c, 1 
-T ±' ~ -, l(O)-T ± . 

ps Cp ~p 

(33 ) 

In conclusion, we shall dwell briefly on the treatment 
of the stationary regime of saturation in the limit of 
weak spectral diffusion in a system of phonons with a 
weak PB effect (~ = To/T~~ « 1). Neglecting, as we 
did in the Redfield case, the heating of the phonons in 
the calculation of the stationary spin temperature, we 
find 

w.(w,-Q) 
(w,-Q)'+'/,w,' ~o, 

after which, as a result of simple calculations, from the 
third equation of the system (27) we obtain 

Z(w)~cr+l(Q+w,-w) {1- w. w,(w,-Q)} 
1(0) Q+w, (w,-Q)'+'/,w,' 

+cr_[(Q-w,-w) {1+ w. w,(w,-Q)}. 
[(D) Q-w, (w,-Q)'+'/,w.z 

This means that the spectral distribution of the reso
nance phonons in both groups is practically symmetric 
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about the central frequencies W "" n ± we. In this case, 
heating occurs for both groups. 

+ 
I)Here, we have from the outset discarded the second term in Lkj , 

which leads later to terms oscillating with time, and have also taken 
the long-wave approximation (exp (±ik'Tn) '" I), which does not 
limit the generality. 

2)We omit here the details of the calculations, which are analogous in 
many respects to those performed earlier Pl. We note that the high
temperature approximation is also taken with respect to the resonance 
phonons. 

3)The addition of this term is discussed in more detail in [5]. 
4)por this the second equation of the system (12) must be multiplied 

by -3w2dw/21T2c3{J2(w) and integrated over the spectrum of the 
resonance phonons. Here, in both equations, we must put (3{ w) = (30' 

S)To obtain this equation it is necessary, in the second equation of the 
system (12), to go over from (3(w) to Z(w) and to use the expression 
(19) for (3;. 

6)The terms with S zL ± which are of no interest have been discarded. 
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