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A new method for describing acoustic resonance (AR) is proposed, in which the main dynamic 
subsystem consists of resonant (with respect to mechanical vibrations of the system) phonons that are 
coupled to the thermostat (the remaining degrees of freedom) either directly or via another dynamic 
subsystem, the spin subsystem. This approach permits one to calculate in a unified manner the 
nonequilibrium mean values for both the spin and vibrational susbsystems. It also permits AR 
saturation effects to be taken into account and interpreted in a novel way. Coupled kinetic equations 
for the dynamic subsystems are derived by the nonequilibrium-statistical-operator technique. In the 
description of the spin subsystem, allowance is made for the nonequilibrium states of the 
dipole-dipole interaction pool. A solution of the kinetic equations is found under stationary 
conditions. The AR-induced saturation of the paramagnetic contribution to the speed of sound is 
calculated. 

1. CHOICE OF MODEL 

The description of resonant phenomena in condensed 
media is based on separating the dynamic subsystem 
with discrete energy levels, in which the resonance is 
excited, from the remaining degrees of freedom, which 
constitute the thermostat. To take consistent account of 
the external alternating field, it is necessary to intro
duce, in addition to the Hamiltonians of the dynamic sys
tem ,*" s = nE*(s) and of the thermostat Jtt = nE (il) also 
the Hamiltonian of the alternating field of the generator 
£F =1iK(F) (here S, q, and F denote the degrees of 
freedom of the dynamic and dissipative subsystems and 
of the field, respectively). Figure la shows schematic
ally these subsystems and the interactions between them, 
namelyI'lG(8, q) andnfi(s, F). If the processes that occur 
in the subsystems do not influence the generator, then 
the operators F in the interaction fJ.fi(s, F) can be re
placed by their mean values F(t). Then :6(8, F) := fit(s) , 
where fit(s) contains only the operators of the dynamic 
subsystem and of the classical-field intensity, which 
depend explicitly on the time. 

The universally employed acoustic-resonance (AR) 
treatment l1 ' 21 corresponds to the scheme of Fig. la, 
where the dynamic subsystem is the spin system (S 
system), and the alternating-field intensities are the 
components of the deformation field U = U oCos (p . r - wt), 
treated classically. In this approach, however, it becomes 
impossible to represent certain properties of the vibra
tional system, since it is assumed that the acoustic de
formatiOns are determined only by the external generator, 
and no account is taken of the reaction of the substance 
on the deformations. A more complete description makes 
it necessary to regard the vibrational system as a quan
tum system, whose operators can assume different val
ues during the course of the experiment. To observe AR, 
the single crystals are processed in such a way that they 
become a resonant acoustic system, in which it is pos
sible to excite intens e oscillations of only definite modes, 
and only with a discrete set of resonant frequencies 
(.uk = kWr(k is an integer), with the width t,wk of the 
resonan peaks much smaller than wp. ' \ 

One can propose another theoretical description of 
AR, in which the vibrational degrees of freedom (the 
strains Up connected with the set of frequencies wk 
= kWp) are regarded as a dynamic subsystem with a 
discrete spectrum (P system). All the remaining vibra-
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tional degrees of freedom constitute the thermostat. The 
P system is coupled, via the interaCtion£sp, with the 
spin system (the second dynamiC subsystem). Both sub
systems are ~in~ cgntact with~ th~e thermostat via the in
teractions1i.G(p, q) and 1i.G(s , q). Finally, the external 
classical alternating field is the field of the elastic 
stresses a(r, t) = O"ocos (wt -p 'r) produced by the ul
trasonic generator. This model corresponds to the 
scheme of Fig. lb. In contrast to the universally em
ployed approach, in this model the external alternating 
field is different in nature, the deformations are as
sumed to be quantized, and the spin degrees of freedom 
play the role of not the main subsystem but of the sup
plementary subsystem. 

The AR effect is produced when the natural frequen
cies of the spin system coincide with W ~ kWp' and en
ergy is transferred from the generator into tbe spin 
system. Saturation of the AR sets in when the coupling 
£sp is capable of transferring more energy than the 
coupling Jt" sq' and the spin system deviates noticeably 
from equilibrium. In this sense, AR saturation can be 
treated as a "bottleneck," of the spin type in this case. 

The approach proposed here makes it possible to 
obtain in unified manner the nonequilibrium mean val
ues of phYSical quantities of both spin and vibrational 
nature. In addition to determining the acoustic power 
absorbed by the spin system, it is possible, for example, 
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to obtain the AR-induced change in the velocity and ro
tation of the plane of polarization of the sound introduced 
into the sample from the ultrasonic generator. To this 
end it suffices fo calculate the nonequilibrium mean 
values of the creation and annihilation operators ap 
and ap of the resonant phonons, and this is made pos
sible by regarding the resonant oscillations as a quan
tum non-equilibrium system. 

It should be noted that the changes of the speed of 
sound(3-S J and of the rotation of the polarization plane l7-a1, 
due to spin-phonon interaction, have already been calcu
lated earlier. The paramagnetic change of the speed of 
sound near AR was observed by Shiren 141. However, the 
calculation method used in (5-aJ has the following proper
ties: a) it is valid under conditions of thermodynamic 
equilibrium, b)it pertains to thermal phonons, c) it can
not take into account the AR-induced saturation of the 
spin system. By using the proposed approach, we shall 
describe below the paramagnetic change of the speed of 
sound without the indicated limitations. 

In accordance with the scheme of Fig. 1b, the com
plete Hamiltonian of the medium in which the Ar is in
vestigated can be represented in the form 

(1) 

wherei'o is the fundamental Hamiltonian, and Vt is a 
small interaction. The Hamiltonians of the resonant and 
thermal phonons are respectively 

:lep=IIE (p)- nwpo.p +ap, 

where aei and aq are the thermal-phonon creation and 
annihilation operators. 

(2) 

Let the ultrasonic generator produce in a sample in 
the form of a rod of length 1 and cross section B the 
elastic stresses 

o,,(r, t)=-6"Il"o, COS (Ult-p:r) =0., (x, t), (3) 

where p and Ware the wave vector and frequency of the 
ultrasound. In this case the operator of the energy of 
interaction with the external alternating field turns out 
to be 

I 

je'=nD(p)=B Jdxd6'(X), iG'(x)=U,,(x)o,,(x,t), (4) 
• 

where Uxx(x) is a component of the strain tensor and 
is equal to 

Oxx(X) =i(np'/2Mw p) "'(iipe,px-tl,,+e-'p,) , (5) 

and plays the role of the operator of the system, while 
the stress tensor O'ik(r, t) is the classical external force. 

The spin-system Hamiltonian.i's = flE*(8) =i'~ + £'d 
contains a term that describes its spectrum, namely 
£'~ =.fiE (8), and a term £' d that describes the adiabatic 
part of the magnetic dipole-dipole interactions. 

As the concrete spin system we consider paramagnetic 
ions with effective spin S = 1 in a crystal field of axial 
symmetry and in a constant magnetic field Ho parallel to 
this axis (z axis). In this case the operator E (s) takes 
the form 

£ (5) = EQ (8) + £,(s), EQ (8) = '!aDOo, £, (5) = wos" 

where N N 

Qo = I: 0,'. S. = I:§:, 
.11.=1 
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D =.fiwQ is the fine-splitting constant, wo =gll/3sH/l-" 
gil and gl are the principal values of the g-factor, and 
{3 B is the Bohr magneton. Q~ are the irreducible tensor 
operators of second rank for the k-th spin (21, where 
.\ = 0, ±1, ±2. The energy levels and the wave functions 
of such a paramagnetic center are shown in Fig. 2, 
where I Xm) is the eigenstate of the operator Sz. As ex
amples of such states we can cite the ions of trivalent 
vanadium and divalent iron in corundum, in which AR 
was already observed(91. Slight rhombic additions in 
the spin Hamiltonian of these ions can be left out. We 
disregard below also the hyperfine splittings, which 
generally speaking can be clearly seen on the resonance 
lines of these ions. 

The form of the adiabatic part of the dipole-dipole 
interactions Hd depends significantly on the spin -system 
spectrum. In our case we have 

,jed = SA {S~S~ -'/.[PIOP~, + P~,-J)~,o + P~OP;, + P~-,i)~'OJ), (6) 
j, k 

where A = (g 2i3S/r3)(1 - 3 cos 28); r, 8, and <p are the 
spherical coordinates of the vector joining the spins 
j and k. We have used here the projective operators 
Pmn , defined by their matrix elements <Xm,Pmnlx I) 
= lim 'm I3nn I in the basi~ of the eigenfunctions I Xm) gf 
the Hamiltonian.;f'~ = bE (8). 

The interaction of the spin system with the thermal 
phonons is given by(l, 2] 

2 

je'L=nG(s, q) = 11 I: (-1)'F -.(q)Q.(~). (7) 
"-=_2 

The interaction of the spin system with the resonant 
phonons can be obtained from the operator of the dyn
amic spin-phonon coupling, in which, however, the strain 
tensor must be represented in operator form. Assume 
that the elastic stress produces in the medium only lon
gitudinal acoustic waves, so that only one component of 
the strain tensor, Uxx , differs from zero. In this case, 
the resonant transitions between the levels 
( X ± 11 -I X Of 1) are determined by the following terms 
of the dynamiC spin-phonon coupling operator, (see l2 1, 
Sec. 5): 

d6,p=nG I:[ 0,'+0-,"] U,,(x,), G=G,xxx-G"", (8) 

where Gxxxx and Gxxyy are the components of the dyn
amic- coupling tensor. 

Finally, the interaction of the resonant and thermal 
phonons is the result of the crystal-oscillation anhar
monicity due to three-phonon processes, and takes the 
form 

:lePL=ap+Hp++a,,llp, #p=3 I: V(p,k"k,)Ak,A." 
k, k 2'1"=p 

where V (p, k" k 2 ) is the matrix element of the three
phonon interaction [10]. 

FIG 2 
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2. KINETIC EQUATIONS FOR VIBRATIONAL 
SUBSYSTEMS INTERACTING WITH A SPIN 
SUBSYSTEM AND SITUATED IN AN ELASTIC 
STRESS FIELD 

We employ the Zubarev nonequilibrium-statistical
operator method[ll J to obtain the kinetic equations for 
the AR with allowance for the nonequilibrium states of 
the resonant vibrational subsystem. We consider only 
excitations at the fundamental mechanical-resonance 
frequency (wk = wp )' 

We choose first dynamic variables that describe the 
nonequilibrium states of the system. It is known that 
in the presence of a strong interaction Hd a cancella
tion takes place in the description of the spin system, 
and the transverse magnetization components cease to 
describe the system for times t > td = fl (Tr£df 1/2. 
During these times, the system is described by the non
equilibrium averaged operators.i'~ =.flE(s) and.~d['21. 
In the vibrational subsystem, there is no reason for such 
a cancellation. Therefore, to describe the non equilibrium 
behavior of the considered system during times t > td 
we choose the following operators: 

.V N 

u," ae+, "p=a,+ap, ~d. 8,= ~§h' Q,= ,EO':. (10) 
h=l 

The entropy operator Se(t, 0) is equal in this case toll1 I 

Se (1.0) = rl) (I) -\-~, (I) fie, +~" (I) .it" -\- ~Q (I) §tQ 
.- ~p (I) &p + ~p+ (I) up+ -\- ~p- (I) Up + ~L.7tL' (11) 

where ~(t) is the Massieu-Planck functional, i3n (t) are 
the dynamic parameters that are conjugate to the op
erators (10), and i3L is the reciprocal lattice tempera
ture. Following Zubarev [11], we construct a nonequili
brium statistical operator corresponding to the entropy 
operator (11), and obtain in the high-temperature ap
proximation kinetic equations for the operator (10): 

(12) 

fJ(Q,) (Q,)-(12,)' 

Here at To 

~(()=WI--W, Vp=ape iW', Q=2L\wT1" 

For the relaxation times that enter in (12) we obtain 
the expressions 
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where 
<p,(W) = S ei"'(F,(t, q)F_,(q) )dl, 

tmn(Olm,,-Ol) = S exp{i(Wmn-Ol)I}(Pmn(t)P"m)dl; (14) 

fmn(w mn -wi is a function of the shape of the resonance 
line at the frequency "'mn and is determined by the 

broadening interactionfd' Direct calculation of the re
laxation times by formula (13) in the case of phonon 
mechanisms that couple the spins with the lattice can be 
found in [13 l 141. The phonon-lattice relaxation time is 
calculated in lIOJ. The quantities 

(15) 

have the meaning of probabilities of energy exchange 
between th_e dynamic subsystems as a result of the in
teraction Jt" sp' 

From the kinetic equations we obtain an expression 
for the power absorbed under stationary conditions 

[f' = d(~,) 'I + d(~p) I + d<:l6d) 1 
dt T, dl T, dt " 

=1l6),$'CVp+V,+H(np) [ Ii( w; - W,) W.p(S,)- Wdp(iO.)] 

mp[llwp+llw,Z,-WdpTp(~d) ] 
[ (l+Zp)'+Q']Tp 

(16) 

where the symbol I TI indicates that no account is taken 
of the changes connected with the relaxation processes, 
and mp = (2T p~l. 

3. STATIONARY SOLUTION OF KINETIC 
EQUATIONS 

Under stationary conditions, the system (12) makes it 
possible to express all the mean values in terms of 
< IIp>: 

(8,)= (S,)', (~d)= (d€d)', (Vp)= m;!.[HZp-iQ] (17) 
HZ, l+Zd (1+Z,)'+Q' . 

Here mp = (2Tpy'l, n = 2TpA~, and we have introduced 
the nonequilibrium saturation factors: 

Z,=W,pT,<n p), Zd=WdpTd(,;), 

Zp=_I(. W,pT p<8,) =_1/2 W"T ,(S,)' (1 +Z,) -'. 

In particular, the average strain can be obtained by 
substituting solutions of the type < V p > = < ap>eiwt in 
expression (5). After substitutions we have 

U,,(x, I) = [xu' (6) ens (wt-px) +Zu" (<tl) sill (rol-px) la" 

Q 
Xu'(w)=Xu'----

(1+Zp)'+Q' ' 

Zp' 
Z=--

p l+Z.' 

H() , l+Z, 
Xu w =xu (1+Z p)'+Q' 

Tpp' 
,,'=-AU • 

pWp 
(18) 

The average number of resonant phonons is determined 
from the equation 

A (iI.,)O mp 
(n p )= --+ -,----,~,...--:c:-

l+Zp (l+Z p)'+Q' 
(19) 

We see therefore that mp is the number of coherent res
onant phonons that are excited by the acoustic generator 
in the sample in which there is no spin-phonon coupling. 
One can speak of induced acoustic oscillations only if 
mp » < rlp)o. Under this condition, the equation can be 
rewritten in the form 
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Z'+ 2(1+Zp'+Q')-Z,'Z'+ (l+Z.')'-+-Q'-2Z,' Z =~ 
• 1+Q' • 1+Q' '1+Q' ' (20) 

where we have introd.uced the equilibrium saturation 
factors 

and the equilibrium population difference between the 
levels E1 and E-1 

m.=-(SY=2nOOoNI3kT. 

The real positive solutions of Eq. (20), together with 
relations (17), determine all the nonequilibrium average 
characteristics of the system at a given instant of time. 
The analytic form of the solutions of the equations is 
complicated. The dependence of Z~(==x) on Z~(==y) at 
several values of the parameter Z and at Sl = 0 is shown 
in Fig. 3. We note also that at the fimiting values of the 
amplitudes of the elastic stresses we have 

. Z.O 
lim Z,-O, hm Z, =--
0,-0 I-+-Q' 

We now consider several particular cases. 

4. SYSTEM FAR FROM ACOUSTIC RESONANCE 
(wp =1= wmn) 

A function such as f1, -1 (2wo - w) has a sharp maxi
mum at wp - 2wo = 0, and vanishes far from resonance. 
Therefore, in the case of a consideration, the probabil
ities W sp and W dp tend to zero, and the equations break 
up into two uncoupled systems describing non interacting 
dynamic subsystems. All the spin averages turn out to 
be equal to the equilibrium values at the lattice temper
ature, and for the vibrational mean values we obtain 

'n- )=<ii )' -+- mp (2iTT )' 
, P P 1+(2TpAoo)" mp= p, 

(21) 

<a)=2iTTei.' i-2iT.Aoo <a.+)'. 
P p 1+(2T.A",)' (22) 

Expressions (21) and (22) describe the stationary os
cillations at the frequency :.J in a sample with mechani
cal-resonance frequency wp and damping TIt In partic
ular, for the power absorbed by the crystal from an exis
ting generator in the absence of a contact with the spin 
system, we obtain 

(23) 

Inx 

10 
-7 

FIG. 3 
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and the acoustic deformation is equal to 

Uu(x, t) =[X.'(",) cos (Cllt-pX)+Xu" (00) sin (oot-px) )0" 

X:'("')=~X"'''(OO), x: (00) = 2T. ACllXu"(Cll) , (24) 
OOp 

where p is the density of the sample. The quantities 
Xu 9' are the vibrational susceptibilities. Accurate to a 
factor w/wp (which is equal to unity near mechanical 
resonance), the susceptibilities X~ and X9 are equal. 

The results of (23) and (24) correspond to a treat
ment of the resonant oscillations as a dynamic subsys
tem according to the scheme of Fig. 1a. 

5. ACOUSTIC RESONANCE FAR FROM 
SATURATION 

Let us find an expression for the power absorbed in 
the AR under the following conditions: a) the acoustic 
generator excites the resonant mechanical oscillations 
(w = wp); b) there is no saturation (dynamic ordering of 
saturation factors of the dynamic subsystems are Z s, 
Zp « 1); c) the change in the energy of the dipole-di
pole interactions under the influence of the ultrasound 
can be neglected. Taking these conditions into account 
we substitute the relations (17) into the right-hand side 
of (16). After eliminating from ,0/' the power that flows 
out of the P system directly into the thermostat, we 
obtain the power 9'~ that goes to the thermostat via the 
spin system: 

(25) 

Recognizing that (Sz)O = - 2flwoN/3kT == - ms , where 
ms is the population difference between the levels E 1 
and E-1' and also the fact that under the considered con
ditions we have x~(wp)ao = (U)o, we obtain in the case 
of exact mechanical resonance (w= wp) the usual expres
sion for the absorbed power: 

g>,O=2n""m,W, w=8J\G'«U>,)'f.,_.(2ooo-"')' (26) 

where W is the probability of the transition between the 
levels E 1 and E- 1 under the influence of the interaction 
(4), in which Uxx is regarded as a classical force: Uxx 
= (U)ocos (wt -px). 

6. ACOUSTIC SATURATION OF SPIN SYSTEM. 
SPIN "BOTTLENECK" 

Let us estimate the ratios of the equilibrium satu
ration factors that enter in (20). Putting Tp = Q/lJp and 
mp = 107 I/flwpv, we have 

fl'=Z.'IZ,'''''2 ·1O-"No\'pITT,l, 

where No is the number of spins per unit VOlume, I is 
the intensity of sound in W Icm 2, and we use for the Q 
factor of the sample and for the speed of sound v the 
respective values 10 5 and 4.2 x 105 cm/sec. At nuclear 
resonance (No ~ 1022 cm- 3 , IIp ~ 3 x 107l!z) at room 
temperature, typical values are Tz - 10 sec and 
1'/ = 2 X 10-3/1, while at helium temperature Tz > 10 sec 
and 1'/ < 1.5 x 10- 6/1. Consequently, even at slight sound 
intensities we have Zp « Z~. For electron resonance at 
room temperature, a typical value is T z - 10-8 sec and 
TJ ~ 1/I. At liqUid-helium temperature we have T z ~ 10-4 
sec, and TJ ~ 1O-2/I. Thus, a condition Zp « Z~ is easily 
reached also in EPR, although the inverse situation can be 
realized at room temperature, since Tz and I are small. In 
this case, however, there will be no saturation. We consider 
below the easily-realized and therefore important 
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particular case Zp« 1 and Zs» 1. When considering 
two interacting subsystems in accordance with the 
scheme corresponding to Fig. 1b, the case Zs » 1 can 
be called "bottleneck" (spin bottleneck in the present 
problem). 

At Zp « 1 it makes sense to calculate all the mean 
values in the first nonvanishing approximation in Zp' 
In the zeroth approximation we have for the vibrational 
subsystem the result (21) and (22), while the spin main 
values are 

<8,)=<8,)'/ (1 +Z,O), :Md=<:Md)'/ (1 +Z,") , 

ZdO= WdpTamp. 

The power absorbed through the spin system in this 
approximation is equal to 

.9'.=.9',0 [1/ (1 +Z.O) +2Uld (1 +Zd') I Ul,], 

where JI'~ is the power absorbed in the absence of satu
ration and wd = SP£ct/sp(fJ.sd. 

Unlike the previously known expressions for "1' s, such 
as (26), the result (27) describes the saturation connec
ted with the AR when the excitation of the vibrational 
subsystem deviates from resonance, and also takes into 
account the nonequilibrium states of the dipole dipole 
pool DDP. We note that the role of the DDP in the satu
ration, under AR conditions, was investigated earlier by 
the Shutilov groUp[15], but their analysis pertained to a 
spin system with equidistant spectra. 

Measurement of the speed of sound as a result of the 
spin-phonon interaction arises in the first approximation 
in Zp. Using the relation v = - 0 0 / pi;. (~ is the time der
ivative of the amplitude of the vibrational displacements 
in the traveling wave[16]) and determining!;. from the 
strain (18), we obtain the sound velocity with allowance 
for the spin-phonon coupling: 

11, = _1_[ (1+Z p )'+ Q'],,'. 
pTp 

This yields for small Zp 

v/-VZ 2Z p v/-v21 1 ( ) 
-v-'-"" 1+Q'=-v-'- "-c (1+Z p ) (1+Q') . 28 

In the case of mechanical resonance n = 0 and in the 
absence of saturation Zp = 0, and also under the assump
tion Tzg(wp - 2wo), (Wp - 2wof". expression (28) goes 
over into the results of Jacobson and Stevens[3], 
[(v~ - V2)/V 2JJ_S' 

The authors thank S. A. Al'tshuler and B. I. Koche
laev for a discussion of the work, and also I. D. Bukh
binder for valuable advice. 
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I)The oscillations of the sample cease to be critical to high acoustic fre
quencies w ~ 1010 rad/sec. The theory developed below includes also 
this case, which corresponds simply to the condition of exact mechan
ical resonance. 
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