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A new mechanism is established for the generation of a magnetic field in which the energy of 
Langmuir oscillations is transformed into magnetic· field energy. It is based on the fact that the 
oscillations due to the presence of the magnetic field (a pseudovector) are gyrotropic (odd). The 
plasma is assumed to be collisional, and the nonlinear current and its reaction on the field are 
calculated. An approximate criterion (threshold) is found for the instability, and the rate of increase 
in the field is estimated. The latter depends on the initial field becuase the generation equations are 
nonlinear. This effect is discussed for cosmic and laboratory plasmas. 

The interaction between hydrodynamic turbulence and 
the regular component of the magnetic field is now well 
known. In particular, gyrotropic turbulence (noninvariant 
under reflection, odd) can act as a field generator. [lJ In 
hydrodynamics, gyrotropy arises as a result of the pres­
ence of the Coriolis force; in plasma, gyrotropic proper­
ties are exhibited by the magnetic field itself at fre­
quencies in excess of the ion cyclotron frequency. It is 
therefore natural to seek the reaction of the hf oscilla­
tions in a weak magnetic field on the field. In hydro­
dynamics, the field is generated by helical motions, and 
either the right- or left-handed helix should predominate. 
It would appear that helicons can excite the field in this 
way. It is readily verified, however, that the exact non­
linear equation for the magnetic field, from which the 
helicons are obtained in the linear approximation, con­
serves the energy of the field. In this paper, we shall 
consider the reaction of Langmuir oscillations on the 
magnetic field. 

1. FORMULATION OF THE PROBLEM. 
ODD LANGMUIR OSCILLATIONS 

Suppose the plasma lies in a self-consistent magnetic 
field, i.e., this field is excited not by external sources 
but by internal currents. The plasma is collisional, so 
that the electron component of the current obeys Ohm's 
law:* 

j=oE __ O_[jH]. 
nee 

In this expression, (] represents the electron conductivity 
due to collisions of electrons with ions and neutral par­
ticles. We shall neglect the motion of ions, which is pos­
sible if, for example, the neutral-particle density is high, 
or the ions form a crystal lattice (solid). This assump­
tion does not appear to be fundamental (this will be clear 
from the example discussed in Sec. 2). The dynamic 
equation then has the form (displacement currents can 
be neglected): 

aH e2 e 
-= ---rotrotH---rot[rotH,H]. (1) at 4no 4nne 

The fact that the displacement currents are neglected 
means that we are considering quasistationary electro­
magnetic fields. This, in turn, means that the rate of 
decay of the field must be small in comparison with the 
collision frequency. We shall consider the reaction of 
low-frequency oscillations on this quasistationary mag­
netic field. We note that, in contrast to the present work, 
the author of [2J considers the effect of Langmuir oscil­
lations on low-frequency electromagnetic waves in which 
H »E. 
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Suppose that Langmuir oscillations are excited in the 
plasma, so that we must assume that wp > v, where wp 
is the plasma frequency and v is the collision frequency 
between electrons and other particles. If we neglect the 
plasma pressure, the equations for the electron oscilla­
tions in the Fourier representation take the form (the 
wavelength is assumed to be negligible in comparison 
with the size of inhomogeneities in H): 

-iOOV=...!..i<:pk+[voo,], 
m 

-k2<:p=4nne, 

oon=no(kv), ro,=eHlmc. 

(2) 

We shall suppose henceforth that we < wp' and this will 
be the sense in which the magnetic field will be regarded 
as weak. It is readily verified that 

{ (ro,k) 00, } 
V= ook---oo--+i[kro,] .p, (3) 

e <:p e <:p 
.p= - -;; 002-00.' "" - -;:;; oo p 2_ (koo,) 21k' 

When collisions are taken into account in (2), the result 
is that w in (3) must be replaced by w - vI, which is un­
important for our ensuing analYSis since w »v. When 
phase correlation is lost, i.e., in the case of a random 
process, we can introduce the spectral tensor 

<Da (k, (0) Do" (k', 00') >=15 (k-k') 15 (00-00') III (k, (0) {oo2k.k, 

[ ] (W,k,)2 . 
-oo,k j ooak,+oo,ka + ~ ooaoo,+ooootkjt[eajJk,-e,uka] 

(4) 

The angular brackets in this expression represent aver­
aging over a wave ensemble. The quantity w(}' in (4) 
represents the components of the vector we' and !f?(k, w) 
= !f?(-k, -w), c)(k, w) > O. 

The gyrotropy of the oscillations is measured by 
<v 0 curl v>: if we have invariance under reflection, then 
<v· curl v> = O. However, it is readily seen that for (4) 

S (koo,) 
<vrotv>=2 [k2oo.'-(kro,)2]-oo-lll(k,oo)doodk. (5) 

Of course, in the isotropic case, when !f?(k, w) = !f?(lkl, w), 
the expression given by (5) will be equal to zero. If, on 
the other hand, the phase velocity of the waves has a 
special direction, then <v· curl v) f. O. Suppose, for ex­
ample, that the phase velocity of all the waves lies along 
ko, in which case 

Ill(k,oo)= ~' [15(k+ko)ll(oo+oo p )+<'5(k-ko)ll(oo-oo p )] (6) 

(in the dispersion relation for w we have neglected cor­
rections due to the presence of H) and 

(7) 
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We note that (v·curl v) is a pseudoscalar, since ko is a 
vector and we a pseudovector, as indeed should be the 
case. We shall see below that it is precisely pseudo­
scalars such as those given by (5) and (7) that are impor­
tant for field generation. Finally, it is clear from (3) 
that, strictly speaking, the oscillations are nonpotential. 
It is important to know when the nonpotential component 
of the electric field Eb' which unavoidably appears, can 
be neglected. We shall suppose that ck »wp' in which 
case we have the approximate result 

The quantity W elwp is regarded as small but, neverthe­
less, we do take into account second-order terms in this 
parameter in (3). The expression for Eb contains the 
additional small parameter wp/ck. This is why Eb need 
not be taken into account, whilst the nonpotential com­
ponent of the electron velocity is included. Thus, the 
wave vector k lies within the range wp/c ~ k ~ w IvT , 
where vT is the thermal velocity of electrons and !he 
upper limit is associated with Landau damping. 

2. NONLINEAR GENERATION 

We must now calculate the average current due to the 
presence of Langmuir oscillations. We shall use the 
averaged form of the Maxwell equation: 

rotH=~ (crE--4 cr [rotH,HJ+<n,ev,>+noe<v,» +~~, 
c nne c at 

1 aH 
rotE=---

c at 

(8) 

(We recall that e < 0). The expression in parentheses on 
the right-hand side of (8) represents the resultant cur­
rent; the first two terms are the usual ohmic current 
(including the Hall current). Next, it is clear that aver­
aging over a period greater than the time of the oscilla­
tions will ensure that the linear part of the microcurrents 
will not contribute to the oscillations themselves. The 
nonlinear current is therefore introduced into (8). If we 
now write the density and velocity in a form which in­
cludes the quadratic correction, 

it will be clear that, after averaging over the oscilla­
tions, Leo, over a time interval greater than the recipro­
cal of the frequency, the terms (nlevl) and (naev2) will 
remain in the quadratic approximation, and are included 
in (8)0 The displacement current can again be neglected, 
and when (nlevl) + noe(V2) = 0, we come back to (1)0 The 
quantity (V2) represents the nonlinear effect of the os­
cillations on the slow motion of the medium (this is the 
analog of the Miller force). Let us begin by evaluating 
the quantity (nleVl). To do this, we shall express nl and 
Vl in terms of cp, using (2) and (3). The greatest contri­
bution will be given by the first term in (3). However, 
the resulting vector is of no interest because, owing to 
the assumed homogeneity loCk -k') in (4)], this vector 
will be independent of the coordinates. Such a nonlinear 
current will lead to the appearance of a surface charge 
on the boundary of the plasma, and the resulting electric 
field will give rise to the reverse current which will 
compensate the former current. Allowance for the in­
homogeneity in the fluctuations is evidently of no interest 
because these inhomogeneities are transported with the 
group velocity (which appears when the thermal spread 
is taken into account). In the presence of a stationary 
source, for example, two-stream instability, the fluctua­
tions should be more or less homogeneous. The third 
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term on the right-hand side of (3) is equated to zero be­
cause it is an integral of an odd function of k. The second 
term, even though it is odd in k, does not contain w 

either and, therefore, it provides the contribution 

(9) 

The significance of the function <p( k, w) is clear from 
(4). The expression given by (9) resembles (5), as ex­
pected. The essential point is that, here again, we see 
the importance of the existence of a special direction for 
the phase velocity. This situation is, in fact, realized 
during the excitation of Langmuir oscillations: the phase 
velocity is largely parallel to the beam. To estimate the 
quantity given by (9), we shall use (6) for the sake of 
simplicity, and will assume that the energy of the 
Langmuir oscillations is localized near k ~ kd 
(kd = 21Twp /vT ). We then have 

e«Vcp)'> eVT~ 
(n,ev,>=-(xH)H "=-(xH)H-2 ,, (10) 

8JtvT c nom c m 

where «Vcp )2)/81T is the mean square energy density of 
the oscillations, K is the unit vector in the direction of 
the beam, and {3 = «V cp)2) I 41TnomvT. 

We must now evaluate (V2). The problem reduces to 
the evaluation of the correction to Ohm's law due to the 
nonlinear force F = «V· V)v). 

Let us now consider the equation for the second-order 
correction 

In this expression E is the induced regular magnetic 
field (we have neglected thermal corrections; they did 
not contribute to the induced component V2). It is clear 
that aV2/at will vanish in the course of averaging, be­
cause of the quasistationary nature of Ohm's law; the 
quantity (V c(2) will not provide a contribution either. 
The quantity (V· v)v is usually assumed to be small in 
the derivation of this law but, in the present case, this is 
not obvious because this expression includes the deriva­
tive with respect to the pulsation velocity, and the pulsa­
tion scales are small (i.e., the derivative is large). We 
shall use (4) and (6) to calculate F: 

F= ~vT2[koro,J (1- (ro:ko;'). 
(Up W p ko 

Next, using the equation for the second-order correc­
tion' we have (V2) = -Flv. 

Taking the curl of the first equation in (8), we obtain 
the following equation for H instead of (1): 

aH c' c iit= - 4ncr rot rot H- 4nne rot[rotH,HJ-rotccH+rota[xHl, (11) 

(xro,) ( (ro,k) , ) 
CC=~VT~' a=2n~vT 1- w,'k' . 

It is clear from general ideas that this form of (11) is 
possible if (JI is a pseudoscalar; it is precisely for this 
reason that the property of gyrotropy was demanded at 
the beginning of this paper. Equation (11) is, in fact, the 
generation equation and is similar to the equation for H 
in the case of odd hydrodynamic turbulence (see [3J). The 
difference between them is that (JI itself is a function of 
H and, therefore, the equation is nonlinear and the growth 
in the field is not exponential (as in the usual theory of 
the turbulent dynamo). The other difference is that (11) 
contains additionally the second and fourth terms. How­
ever, these terms do not complicate the situation because 
they do not introduce anything basically new: the second 
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term (Hall current) conserves the energy, whilst the 
fourth describes simple field transport in the direction 
of " if we neglect w~ in comparison with w~. It is im­
portant to note that the first term on the right of (3) will 
also contribute to the expression for (nl eVl) when the 
correction for w due to H is taken into account. The non­
linear current will then no longer depend on the coordin­
ate (because H is not uniform). It is possible, however, 
to show that when this contribution is taken into account 
the general form of (11) will not change. Since the exact 
value of the coefficients will be unimportant in the en­
suing analysis (we shall be interested only in the general 
character of the solution), we shall ignore this correc­
tion. 

We shall now show the existence of growing solutions 
of (11). We note that the linear theory of stability is of 
no interest in this context because we shall be concerned 
with the particular growth of the field for which its final 
state will not be very different from the initial state. 

The correct formulation of the problem of field gen­
eration is characterized by the following features: 1) the 
field must be zero at infinity, since vacuum or super­
conducting boundary conditions must be introduced for a 
bounded system (physically, this means that the field is 
not supported by external forces), and 2) we must con­
sider the asymptotic b.ehavior of the field for t - 00, 

since there are trivial mechanisms which may lead to a 
temporary amplification of the field. 

We shall seek solutions of this kind. It will be con­
venient to introduce cylindrical coordinates, and we shall 
assume that a/az = ° and a/aep = 0, in which case H 0 = 00 

Suppose that" lies along the z axis. Equation (11) ~ill 
then assume the form 

OH. = OyH.' +vm~~~rH., 
at Or or r or (12) 

oH, 1 0 1 0 oH, 
Ot = - -----;:a;: FH.,H,+Vm --;:a;: rOr' 

where vm = c 2/41Ta, y = a/Hz, and y is independent of the 
magnetic field. 

It is interesting to note the advantages exhibited by 
this example. The "uninteresting" second and fourth 
terms are automatically equated to zero. All that re­
mains is the first term which describes the usual ohmic 
damping of the field and, as expected, the third term, 
which competes with it and gives rise to the dynamo. 
Moreover, the fact that curl(curl H x H) is zero means 
that the electromagnetic force acting on the ions is po­
tential and can be compensated by ion pressure. This 
justifies the fact that we have neglected the motion of 
ions in this example. 

Next, for the sake of mathematical Simplification, we 
shall consider the following artificial situation. We shall 
be interested only in the fundamental aspects of the prob­
lem, i.e., whether the equation given by (11) will, in gen­
eral, result in generation. Suppose that y is not zero 
and is constant in the region ro:'O r:'O rl, rl - ro « r, 
i.e., the oscillations are excited only for these values of 
r. In that case, l/r «a/or. When r = R > rl, we must 
introduce boundary conditions of the form described 
above. We shall refer to this region as the generation 
region. It is clear that the field may grow when the sec­
ond terms on the right-hand side of (12), which describe 
the attenuation of the field, can be neglected, Le., when 
y is suffiCiently large. Suppose that this is indeed the 
case. The solution in the generation region can then be 
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sought in the form Hep = fep(r)/(l - bt), Hz = fz (r)/(l - bt) 
and we shall consider the solution for t ~ ° where 
t < l/b, since an infinite value is of no physical signifi­
canceo Equation (11) will, in fact, cease to be valid well 
before the condition we « wp is violated. From the re­
sulting system 

bt.=y (/.')', bj,=y (rj.t,) , Ir 

It is clear that if f~, f~ is its solution with b < 0, then 
f~, -f~ will give the solution of the system with b > 0, 

Le., a growing solution for t ~ 0. 

Thus, we need only show the existence of the solution. 
Neglecting l/r in comparison with alar, we can solve our 
set of equations in terms of quadratures. Substituting 
for fep from the first equation into the second, and re­
ducing the order of the resulting second-order equation, 
we obtain 

j,'= (C-j:b'/4y') 'Vj.' 

where C is the constant of integration. The solution of 
the last equation can be expressed in terms of quadra­
tures. We can satisfy all the assumptions made above 
if, in addition, we suppose that C »f~b2/ 4 y2. In that 
case, 

where 6 is a new constant (let us suppose that ° < 6 
« ro). 

In fact, the above solution has no singularities, and 
the assumption that l/r « a/or is satisfied under the 
adopted restrictions on 6 and r - roo The requirement 
that C »f~b2/ 4 y2 is a restriction on C and, finally, the 
fact that we have neglected dissipation amounts to a re­
striction on vm • Only the dissipative terms will remain 
outside the generation region. The dynamo will, as a 
whole, be described by the diffusion equation with a 
source having an increasing strength in the generation 
region. The field outside this region will therefore de­
cay in space over the skin-layer deptho 

Thus, a growing solution characterized by the above 
two generation conditions does, in fact, exist. 

3. DISCUSSION 

The nonlinearity of the generation equation means 
that the growth of the field acquires new features as 
compared with the usual theory of the dynamo. Thus, 
firstly, the field becomes infinite in a finite time to. In 
the figure, curve I shows the growth in the magnetic en­
ergy in the usual theory with the growth rate l/to, 
whereas curve II shows the growth in the present prob­
lem. Thus, if the initial field is weak, then, in the usual 
theory, saturation will set in in a time of the order of a 
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few to. On the other hand, in the present problem, if we 
know that the field does increase, we may conclude that 
it will reach a predetermined value in the time to. Sec­
ondly, the rate of growth itself depends on the initial 
value of the field. This quantity will be estimated below, 

2. Consider the saturation field. From a formal 
standpoint, violation of the condition we < Wp will modify 
much of the foregoing analysis. Thus, the approximate 
equation in (3) will cease to be valid, and if! "" e<p/mw~ 
for we > wp' Moreover, the quantity w~ in the expres-
sion for a will then be present in the denominator, so 
that this important a-term will no longer depend on the 
field energy but only on the ratio H/H. It is clear that 
the growth of the field will terminate. The estimated 
steady field obtained by equating the a-term to the dissi­
pative term yields a field such that wp «we' However, 
it is hardly likely that a field of this order can be real­
ized since, in that case, the assumed uniformity of the 
pulsations becomes physically incorrect. In point of fact, 
the stationary equation for the number nk of plasmons in 
the "T approximation" has the form 

_ Oro on. + ~ on. = _ n.-no' (13) 
Or, ok, ok, or, T' 

where T is the relaxation time and nk is the stationary 
number of plasmons in the absence of the inhomogeneity; 
T "" wp1 when k "" kd and two-stream instability is pres­
ent. So long as we < wp' the left-hand side of (13) is 
small in comparison WIth nk IT. Consequently, ilk "" nk' 
i.e., the pulsations are homogeneous. If, on the other 
hand, we »wP' the conclusion is no longer valid. 

Therefore, the saturation field is determined by the 
quantity we S wp' 

3. If we take the situation opPosite to that illustrated 
in the above example, the electromagnetic force can no 
longer be balanced by the pressure, the ions can no 
longer be regarded as fixed, and this leads to the ap­
pearance of the term curl(v x H) in (11), where v is the 
velocity of the ions (as in the usual induction equation). 
At the same time, the magnetic field energy will be 
transformed into the kinetic energy of the ions, so that 
the energy density of the latter will be ""H2/81T. The 
situation when a large fraction of the magnetic field en­
ergy is irreversibly transformed into kinetic energy, and 
thus the dynamo process is violated, is very artificial. 

4. Finally, let us estimate the characteristic magni­
tudes of the rate of increase in the field and of the insta­
bility threshold. The condition that generation will pre­
dominate over diffusion reduces to a > vm /L, where L 
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is the characteristic field scale l this follows from (11)], 
Le., 

2nLw'Vl ~>c'. (14) 

When f3 = 0.1 and vT = 109 cm/sec (as in thermonuclear 
plasma), it is necessary that HL > 1.5 x 105 (L is in 
centimeters and H in gauss). Thus, when H = 1500 gauss, 
the size of the system should not be less than 1 m, Under 
astrophysical conditions, when v.;r = 108 cm/sec and 
f3 = 0.01, we have HL > 1.5 x 10 , When H = 150 gauss, 
we have L > 105 cm, In these examples, H is interpreted 
as the initial field, 

We now estimate the characteristic time to when (14) 
is satisfied, From (11), it is clear that to = L!a, i.e., 

to=2crLlw,VT~' (15) 

For the first example a = 1016_1017 sec-1 and to 
= 1,3-'13 sec, and for the second example a = 1013 sec-1 

and to = 1,3 X 103 sec, In both cases, the rate of growth 
is very high, 

It is clear from (15) that the situation improves as the 
electrical conductivity decreases, so that with the class­
ical value of a, the estimate given by (15) must be re­
garded as the worst; when collisions of electrons with 
waves are more frequent than with other particles, and 
a decreases, i.e" assumes the turbulent value, the esti­
mate given by (15) will improve, The instability thres­
hold given by (14) is independent of a. 

Finally, we note the following point. In the usual 
theory of the dynamo, the growing solution is equivalent 
to linear instability, i.e" from the existence of the solu­
tion we necessarily conclude its realization in nature, 
since the necessary initial fluctuations are always pres­
ent (at least, thermodynamic fluctuations), Here, on the 
other hand, we have an instability threshold (14) and, in 
each case, we must check whether the necessary initial 
fields of sufficient strength are present, 
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*[jHl =oj X H. 
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