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We consider the photon angular correlation, which leads to an angular structure of the light flux in 
a superradiance pulse emitted by a completely excited extended many-atom system. The energy 
distribution for multiphoton rays is obtained in the case of an elongated volume. The angular 
divergence of a multiphoton beam, as a function of the number of photons in the beam, is estimated. 

1. INTRODUCTION 

Under conditions when the emission time of inverted 
polyatomic systems is shorter than the reciprocal level 
width, the spontaneous emission has a collective charac­
ter and is called superradiance. The superradiance of 
extended polyatomic systems was investigated in a 
number of papers[,-g]. Dicke [ll has shown that the spa­
tial coherence of the states of the atoms in superradi­
ance of extended systems leads to an angular correlation 
of the photons. The probability of photon emission in a 
definite direction depends on the directions of the emis­
sion of the preceding photons and is maximal if all the 
photons have identical wave vectors. The explicit form 
of the correlation dependence, which is determined by 
the shape of the volume and can be obtained as a result 
of summation over the positions of the atoms, has not 
been explained to date. Ernst and Stehle [2], in a paper 
devoted to the generalization of the Wigner-Weisskopf 
method to include polyatomic systems, have proposed 
that the entire radiation in the case of total initial in­
version is produced in the form of a single beam with 
diffraction angular dimensions. Averaging over the di­
rections of the beam, Ernst and Stehle obtained a quali­
tatively correct distribution of the average light flux 
for the super radiance of a nonisotropic system. Nonethe­
less, this assumption is not justified, since the proba­
bility of emission of all photons in one beam is vanish­
ingly small, as was demonstrated by one of usCg]. 

We report in this paper a detailed investigation of the 
photon structure of a superradiance pulse for a volume 
of elongated form. We obtained the distribution for the 
number of Z-photon beams in an optical pulse. We re­
fined the angular dimensions of the beam as a function 
of the number of photons in the beam. Interest in this 
question is due, in particular, to the experimental obser­
vation of a grainy structure in the radiation of pulsed 
gas lasers[lO, 11]. 

2. PROBABI LlTY OF EMISSION OF [-PHOTON BEAMS 

Consider a polyatomic system contained in an elon­
gated rectangular volume of length L and transverse 
dimensions D, with L, D» A. (A is the radiation wave­
length). The atoms with resonant frequency Wo are fully 
excited at the initial instant of time. For the employed 
method to be applicable it is necessary to satisfy the 
conditions n0.\3 > 1 and L/c < T, where no = NY-' is the 
density of the number of atoms and T is the time of the 
development of the superradiance pulse. According to[S], 
the photons are emitted in beams with random direc­
tions. The possibility of formation of intense beams in 
the direction k is determined by the collective radiation 
constant y (k) = K (k)lkA. 2y - " where K (k) is the angular 
density of the radiation of one atom and Zk is the average 
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length of the volume in the k direction. The average pho­
ton-number flux n(k) (see[g]) is maximal for directions 
in which the volume has the largest dimensions'} 

x(k) S 
n(k)~ ,(k) {exp(N,(k)-r)-il, n(k)dQ~N, (1) 

where dn is the solid-angle element. It therefore suf­
fices to take into account the radiation into the solid 
angle ;2 0 ~ D2/L2 « 1. We assume that the diffraction 
angle A./D is much smaller than the angular dimensions 
D/L of the light beam. The probability density of photon 
emission in the directions k, ... kN (ki = wo) as the time 
t _00 takes the formeS] 

Wk,kN~ E etI[ x+r.E(5 (Q,-Q,) ] lxQo+(S-l)I']-'}, (2) 
p{k, ... kJII} ~=1 1=1 

where K = K(k) and r = y(k). The angular I)-function 
5(n) has a dispersion X/D. It can be verified that the 
quantity (2) is normalized to unity (under the condition 
that the momenta k" . _ . , kN belong to the solid angle 
no). The probability that Zphotons will be emitted into 
the solid angle E is represented in the form 

WI" ~ I! (N~I)! S dQ,." dQ, S dQ,+"" dQNWk""k N , (3) 
E r.!o-I: 

Assuming that no» E » E(l), where E (Z) is the diver­
gence of the I-photon beam, which is of the order of the 
diffraction divergence, and will be defined below, we 
assume that the variance of the functions 5(n) is equal 
to zero, 5(n) -0(,1). The permuted terms in (2) are 
then equal to each other. Integrating with respect to 
nZ+1 ... nN' we obtain 

N! N-l -1 

WI", ~ I! (N-I)! (II (xQo+s1') ) 
8=.'\'-1 

(4) 

x S dQ"" dQ, {IT (x+r.E o (Qj-Q,) )}, 
f j=1 i=1 

Obviously, the probability of spontaneous (Le., incoher­
ent) emission of Z photons into a solid angle E is propor·· 
tional to EZ . The contribution linear in E to the probabil­
ity WI E is connected with the stimulated emission of 1 
photon's; the general emission direction remains arbi­
trary within the confines of the solid angle E. We shall 
use the term l-photon beam for the process of stimu­
lated emission of Z photons into a solid angle E with 
probability W fr) proportional to Eo It follows from (4) 
that ,E 

N' N-l -1 

w/;'= I! (N~I)! 1"-' [ II (xQo+sr)] S dQ, ... dQ, 
s=N_! e 

I ~ \ N' r N-t _1 

• X II ( , 0 (Qj-Q,) ~ I(N~I)! xef'-' II (xQo+sr) ] . 
]=2 1=1 8=N_l 

(5) 
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It is easy to show that 
N 

\"11W('l=~N. 
i...J '.' Q o 

(6) 
1=1 

The quantity wt~ = E- 'nowt) can be interpreted as the 
probability of erhl~sion of an ,E l-photon beam into a solid 
an~ll no. For the energy contribution of l-photon beams 
lW {r, it follows from the relation 

,HO 

('l ('l ( ~Qo-r) -, 
(1+1) W,+,.o. = lW,.o. 1 + (N-l) r (7) 

(at 1 « N) that 

From (7) and (8) we can draw the following conclusions: 

1) Starting with 1 :;: l, the energy contribution of the 
[-photon beams decreases exponentially with increasing 
number of photons. 

2) At 1 < l, the l-photon beams carry equal numbers 
of photons. 

The total number of beams with less than l photons, 
where 1 < l, is estimated at 

(9) 

Therefore the number of beams in which the number of 
photons is of the same order at l < l is approximately 
equal to (Kno/r) In 10. The total number of ~'bright" 
beams with more than l photons, where [> l, can be 
estimated at 

(10) 

At [> l, the nU'mber of l-photon beams in the pulse de­
creases rapidly, so that [ determines the order of mag­
nitude of the maximum beam intensity. 

3. ANGULAR DIVERGENCE OF BEAM 

The distribution of the photons in an l-photon beam 
is determined by the integrand in formula (5). Since the 
angular divergence of the beam is connected with the un­
certainty of the emitted photon momenta, it is necessary 
to take into account the finite variance of the functions 
5(n). We fix the wave vector k, of the first photon and 
direct the axis 3 of the coordinate system along k, . The 
angular deviations of the photons ki in the beam will 
then be determined by the momentum components 
ki ' ) and ki 2) (ki3 \ = wo). Symmetrizing the distribution 
of the photons in the beam Wk(r) k with respect to the 

l' •• l 
photon momenta, we obtain 

W~~lk,= (1~1)! I: {6(k,) i[( f b(kj-k;) )}, 
p{k:( .•. k:tl 1=2 ,=1 

(11) 

The constant factor is chosen such that the probability of 
emission of 1 photons in the beam is equal to unity 

1 S (q l! dk, ... dk,Wk, ... k,= 1. (12) 

In the case of a volume of elongated form, when the pho­
tons are emitted in a direction close to the direction of 
the larger edge of the volume L, the momentum 15 func­
tion 6(k) takes the form 

- 1 S Ii (k) = (2nD)' exp[ik(r,-r,) jdr, dr" 
D' 

(13) 
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where the integration is carried out over the cross sec­
tion of the volume, and ri = {ril), rf2}}. The photon -num­
ber density fl(k) in an l-photon beam is defined by 

t.(k)=*S dk, ... dk, CE6(k-k;) )W~,'lk" (14) 
i=l 

It is easy to verify that satisfaction of the normalization 
conditions 

S j.(k)dk = S f,(k'O, k'2')dk'O dk'''=l. (15) 

It follows from (11) and (14) that the density of the 
number of photons in the beam satisfies the recurrence 
relation 

f,+, (k) - f,(k) = + S t.(k') 6 (k-k')dk'. (16) 

To estimate the divergence of the beam at large photon 
numbers, l» 1, we change over from the difference 
equation (16) to the differential equation 

a 1 S Ttl,(k)=-i I,(k')b(k-k')dk'. (17) 

USing a Fourier transformation, we obtain a solution 
of this equation 

1 J -I, (k) = (2n) 2 exp (-iks+2nli (s) In l) ds, (18) 

where s = {s(ll, S(2)}; 6(s) is the Fourier transform of 
5(k): 

{ 
(2n)-"'(1+sID), 

6(8)=6'(s'I)6'(s'2». 6'(s)= 0, 

(2n) -'I, (1-sID), 

O>s>-D 

s~D, s~-D. (19) 

D>s>O 

To estimate the angular dimension of the light spot it 
suffices to consider the simultaneous density of the 
number of photons in the beam 

f,(k(1»= J l.(k''',k'2»dk''). (20) 

At 1» 1 we obtain 

D-'Inl 
f, (k'l) '" 

n (k''')'+(D-'lnl)'' 
(21) 

Thus, the main intensity flux in an [-photon beam propo­
gates within the confines of the solid angle E (l) 
~ (AD- 1 In l)2. This angle determines the characteristic 
divergence of the beam. From the condition 
[ ~ Nit 2L 2D-4 assumed by us, it follows that Qo » El, 

i.e., it is possible to obtain angular resolution of light 
spots in the cross section of the light beam. 

We note that a similar method can be used to inves­
tigate also the angular divergence of superradiance of 
atoms excited by a coherent pulse of a plane wave. If 
the relative level of the excitation of the atoms Nexc/N 
is close to unity, then the emission solid angle increases 
in comparison with the diffraction relation of the type 
(13) (cf.[4]) by a factor {In[N/(N -Nexc)]P. This can be 
attributed to a certain "dephasing" of the initially pro­
duced state of the atoms in the course of development 
of the superradiance pulse. 

4. CONCLUSION 

Owing to the angular correlation of the photons in 
superradiance of extended polyatomic systems, the 
brightness distribution in the cross section of the light 
flux is not uniform. The radiation is produced in the form 
of multiphoton beams in random directions. If the volume 
has an elongated form, then the most probable is the pro-
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duction of beams in longitudinal directions for which the 
dimension of the volume is maximal. This leads to an 
angular dependence of the average light flux on the 
shape of the volume. A typical characteristic of the 
photon structure of superradiance of an elongated 
volume l ~ NX2L2D-4 have low probability. Beams with 
a small number of photons (i.e., smaller than l), make 
equal energy contributions and produced the brightness 
background. The most intense beams in the light flux, 
which give rise to the grainy structure, are made up of 
~[ photons. Assuming by way of estimate L = 10 cm, 
D = 0.3 cm, X = 10-4 cm, and NV- l = no = 10'5 cm- 3 , we 
find that the beam with the largest intensity has 
l ~ l = lO" photons. The number of intense beams, ac­
cording to (10), does not exceed D4L-2X- 2 ~ 104 • The an­
gular dimension of an [-photon beam is of the order of 
XD-lln [, i.e., it is determined mainly by the diffraction 
divergence and increases slowly with increaSing number 
of photons. This increase is due to the uncertainty of 
the momentum of each succeeding photon in the beam ,an 
uncertainty caused by the finite dimension of the volume. 

Superradiance, meaning also angular correlation of 
the photons in extended systems, can appear if the dura­
tion of the superradiance pulse is shorter than the trans· 
verse relaxation time. One can expect this to be satis­
fied for pulsed gas lasers at low pressures (p::;' 1 Torr) 
Under optimal conditions, the reciprocal emission time 
agrees well with the reciprocal radiation-coherence 
time and can exceed the Doppler width of the spec-
trum 110,11 J. It was observed that the emission has a 
grainy structure and that spatial coherence takes place 
only within the limits of each grain, while the positions 
of the grains are random. When the temporal coherence 
condition is satisfied, this structure can be regarded 
as a consequence of the angular correlation of the pho-
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tons in the superradiance. Each grain constitutes the 
trail of a multiphoton beam produced by enhancement of 
the initial spontaneous photon. We note that the experi­
mental angular dimensions of the grains agree with our 
estimate (21) of the angular divergence of the beam. 
Additional arguments might be obtained on the basis of 
a more detailed experimental investigation of the grainy 
structure (for example the statistics of the grain bright­
nesses), and also by investigating the probability of the 
transverse relaxation in collisions with electrons or 
atoms in a gas discharge. 

I)We use a system of units in which h = 1 and c = 1. 
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