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A microscopic theory of the electromagnetic radiation emitted by a highly excited nucleus is 
developed on the basis of the Landau theory of a Fermi liquid. Closed formulas are obtained for the 
mean radiative width and its mean square fluctuation from level to level. The temperatures of many 
nuclei are found from the observed widths. The relaxation (i.e., the thermal equilibrium 
establishment) time is estimated from the experimental data on the radiative-width fluctuations. The 
regions of applicability of the various types of relations between the relaxation time and the lifetime 
of the compound nucleus, as well as the relevant physical consequences, are discussed. 

1. INTRODUCTION 

That there will be a gradual unification of the mech
anisms underlying the emission of electromagnetic ra
diation by a not too light nucleus as the excitation energy 
of the nucleus increases is practically beyond question. 
Roughly speaking, if an infinite number of the levels of 
the nucleus as a whole lie below the initial excitation 
energy, then the system will itself find and prefer the 
easiest effective way of emitting y quanta. In particular, 
there is below the initial excited level an abundance of 
levels y transitions to which satisfy the most favorable 
"selection rules," so that from this point of view the 
process is, in the limit under conSideration, practically 
one with an infinite number of channels, Analysis shows 
(see also[! J) that the electric-dipole radiation due to 
collisions between the (proton and neutron) quasipar
ticles and the "wall" of the nucleus predominates. The 
ideas of the Landau theory of the Fermi fluid [2,31 allow 
us to compute in closed form the radiative width f y 
and its fluctuations from level to level. 

Besides, in a specific sense of the word, spherical 
nuclei are rather exotic objects: the application to them 
of the Fermi-fluid concepts requires in each specific 
case certain precautions. The fact that the spherical 
configuration is stable is in itself an indication of the 
essential role played by the "residual interaction" be
tween the quasiparticles, an interaction which blurs the 
Fermi level: it can be shown that in the scheme without 
interaction the sphere is absolutely unstable (see [4 I). 
Furthermore, analysis of the data on the shell and 
magic oscillations in the masses of spherical nuclei 
allows the establishment of the macroscopically or
dered structure that this residual interaction possesses 
in the space of the values of the orbital momentum l of 
the individual quasiparticles[S]. twe shall again touch 
upon specifically spherical nuclei when we compare 
below the theoretical results with the experimental 
data.) Nonspherical nuclei, on the other hand, are easy 
to investigate, it being apparently necessary to regard 
their shape as a perfectly natural consequence of the 
properties of the "normal," disordered nuclear phase, 
in which the quasiparticles situated near the limit of 
the Fermi distribution move, in the main, independently 
of each other. 

However, for the theory of radiative widths expounded 
below the "shape effects," as such, are of no indepen
dent importance, and a special allowance for them is 
not necessary. Indeed, the equilibrium deformation a 
of a nonspherical nucleus is equal in order of magnitude 
to p? (Le., a ~ p?), where 

(1) 
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(kf is the limiting momentum of the quaSiparticle dis
tribution and R is the radius of the nucleus) is an im
portant dimensionless parameter that arises in the 
most diverse investigations that have as their aim the 
treatment of the nucleus as a macroscopic body. In 
view of the scalar nature of the quantity r y to be com
puted, only the squared deformation can enter, so that 
the relative magnitude a 2 ~ p'l « 1 of the correspon
ding corrections is negligibly small and falls outside 
the limits of accuracy of the theory. In other words, 
only the possibility of conSidering the quasiparticles 
individually is important for what follows, it still being 
possible in actually occurring deformations to treat the 
geometry of the motion of each of the quasiparticles as 
spherically symmetric. 

2. THE RADIATIVE WIDTH OF A HIGHLY 
EXCITED NUCLEUS 

We shall derive the expressions, referred to one 
quasiparticle, on the basis of the correspondence prin
ciple. As applied to radiation processes, this principle 
asserts total analogy between the formulas of the clas
sical and quantum theories (see, for example, [6]). The 
classical intensity I (i.e., the energy emitted per unit 
time) needs only to be divided by E = flW to be converted 
into the quantity of real interest-the probability of 
emission of individual y quanta. The only remaining 
difference consists in the following: the spectral com
ponent of the multipole moment, which varies according 
to a classical law, should, generally speaking, be re
placed by the corresponding matrix element of its op
erator. They, however, coincide in the quasiclassical 
limit (see (1»)[71. Consequently, we can speak of a 
quasiparticle trajectory: it is in this case a straight 
line joining two opposite points on the surface of the 
nucleus, Le., a chord. 

The basic formula of the classical theory of the elec
tric dipole radiation has the form 

I=(2el/3c');', (2) 

where ed is the charge of the radiating particle (the 
radiating quaSiparticle, in the general case; see below) 
and r is its acceleration vector, Before proceeding to 
the spectral decomposition of I, let us note that in the 
thermal-equilibrium state the quasiparticle motion 
inside the nucleus does not vary its qualitative charac
ter in time. Therefore, let us formally carry out the 
Fourier expansion over an arbitrary, but sufficiently 
long interval of time t and then take the limit as 
t _ 00 (see [8 I): 

Copyright © 1975 American Institute of Physics 219 



_ 1 00 t 2 r'=-J I J r(t)ei·'dt I w'dw. (3) 
nt 0 0 

In view of the independence of the different chords 
traced by the quasiparticles in their wall-to-wall mo
tion, we have 

, " ',-,---
I~ rei .. , dt r = I) rei""dt I' n;;;;l~ r (t) dtr n, (4) 
o 0 0 

where tl = l/Vf is the time it takes to travel from one 
end of a chord to the other, l = UR2 _p2 is the length of 
the chord, and n is the number of chords. Here we have 
taken into account the fact that in the region of the radia
tion energy spectrum of interest to us 

(5) 

(we shall return to the criterion (5) later). Furthermore, 
here and below the quasiparticle velocity v is replaced 
everywhere by its limiting value vf. The point is that 
because of the Pauli principle only those "elementary 
emitters" (Le., quasiparticles) that are situated in the 
immediate neighborhood of the Fermi level playa role 
(see below). 

The distribution of the chords over the impact para
meters p is easily found from considerations of isotropy 
and homogeneity of nuclear matter: 

3 R 

w(p)dp=Fl'R'-p'pdp; J w(p)dp=1. (6) 

Averaging, in accordance with (4) and (6), the square of 
the integral over the radius vector, we also express 
the number n of quasiparticle-nuclear wall collision 
events in terms of the physical time t spent in them: 

T--

/ \" r (t) dt /2 = i,. '(R2 _ ') = ~ R4 J v,p P 3tlv 2 .' 
o I I 

V, 2 V, 
n=t-=-=--t. 

I 3 R 

Taking into consideration the relations (2)-(7) and the 
re levan t considerations, we obtain 

32 e' R' 
f(e)de =--_. _d ___ e'de. 

105n h'c' Vj 

(7) 

(8) 

This expression gives the probability per unit time of 
emission by one quasiparticle of a y quantum in the in
terval dE of its energy values. 

According to the theory of the Fermi fluid[2,3], the 
mean occupation numbers of the individual quantum 
states are given by the standard Fermi distribution 

(9) 

where 10' is the quasiparticle energy measured relative 
to the chemical potential and T is the temperature. On 
the other hand, the number of actual single-quasipar
ticle states in the volume V = 4/31TR3 is equal to 

dN=~~d '", 4R' ~ , 
n'h' de'ldp e 3nh' Vj de 

(10) 

(Pf = flkf is the limiting momentum in standard units), 
where allowance has been made for the additional spin 
doubling. In fact, even in the quasiclassical limiting 
case, (1) remains an important quantum effect due to 
the identity, the indistinguishability of identical fer
mions [71: the above-described classical picture of the 
process is actually realizable only in the case of radia
tive transitions that are compatible with the Pauli prin
ciple. Therefore, the product of the expressions (8), 
(9), and (10) should be supplemented by the factor 

1-n(e'-e), 
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which determines the fraction of the transitions admis
sible by this principle. Then integration over the ener
gies 10' of the radiating quasiparticles will reduce to 

J n(e')[ 1-n(e' -e) lde' = eOj: -1 . (11) 

Integration over the boson energies yields 

S~ £' de , {1 1 
7"-1 =24~(5)T, ~(z)=.l...J-;'-' (12) 

o n_t 

where l: is the Riemann zeta function. Finally, the 
y-quantum emission probability per unit time, appro
priately summed over the entire set of quasiparticles 
of the same sort will be given by 

(13) 

where m* = Pf/Vf is the effective mass of the quasipar
ticle. 

Above, as the coordinate origin convenient for the 
calculations, we used the geometrical center of the 
nucleus. However, the role of the total charge Ze of 
the whole system in processes induced by the oscilla
tions of the radius vector of the individual nucleons 
(quasiparticles) is well known. Because of recoil, even 
the electrically neutral quasiparticles (Le., the neu
tronic quasiparticles) will appear to emit radiation 
during their motirn relative to the center of the nuc
leus. The corresponding, well-known, "charge-renorm
alization" formulas have the form 

(14) 

(the "effective charges," (14), of the two components 
are correct only for processes induced by the oscilla
tions of the electric dipole moment of the nuclear sys
tem (see, for example,'[7J)). Summing, with allowance 
for (14), the expressions (13) or the proton and neu
tron components of the nuclear matter, and multiplying 
them byi\. in order to convert them into the energy 
widths of interest to us, we finally obtain 

- 1024 e'm" [ Z Z rT=-~(5)-- 1-2-(1--)]R'T' 
105n' h7c' A A 

(15) 

(notice that the numerical factor (1024/1051T2 )1: (5) ~ 1 is 
very close to unity). The law ry cc T 5 was given in the 
preceding paper (see[lJ, formula (4)), where it was mo
tivated by semiphenomenological considerations. 

To what extent can the result (15) be identified with 
the radiative widths of the individual resonance levels 
of a compound nucleus that is excited, say, in a reac
tion involving slow-neutron capture? It follows from 
its derivation that the formula (15) corresponds to a 
state in which at the temperature T the quasiparticles 
of the nuclear Fermi liquid are in thermal equilibrium 
with each other. On the other hand, the width r y of a 
specific level can, reasoning abstractly, be conceived 
to have been computed from some very complicated, 
unknown (to us) wave function of the corresponding 
state of the nucleus as a whole. According to the fun
damental principles of statistics, the two approaches 
lead to results that coincide to within the values of the 
fluctuations (see, for example, [3 J). 

Let us now rewrite the condition (5) of applicability 
of the theory in a more concrete form. Owing to the 
thermal nature of the radiation, the inequality (5) is 
equivalent to the following inequality: 

(16 ) 
where 
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8o=liv/2R-5 MJ6 (17) 

is the characteristic energy corresponding to the recip
rocal of the time it takes a quasiparticle to cross the 
nucleus along a diameter. 

It is worth noting that in the opposite limiting case 

(18) 

because of the oscillations of the exponent eiwt along 
the chord traced by the quasiparticle (see (3) and (4)), 
the energy distribution of the y-quantum emission 
probability acquires the form of the well-known Planck 
black-body radiation spectrum [3]. The radiation width 
would, accordingly, become proportional to the cube 
of the temperature in the case of a sufficiently strict 
fulfilment of the condition (18). However, this "black
body radiation limit" defined by (18) is, in practice, 
hardly attainable in nuclear phySics. At least the tem
perature of the compound nucleus should not exceed 
the nucleon binding elergy, which is ~8 MeV-other
wise the neutrons would fly out of the nucleus "instant
ly," escaping the thermal-equilibrium establishment 
phase!) . 

3. THE MEAN-SQUARE FLUCTUATION IN THE 
RADIATION WIDTH. THE ROLE OF THE 
RELAXATION TIME 

The direct, quantum-mechanical computation of the 
characteristics of the individual states of the nucleus 
is inexpedient and practically impossible. Furthermore, 
as applied to macroscopic bodies (see the criterion 
(1)), this l as a rule, borders on the theoretical impos
sibility[3 . Therefore, we are obliged here to treat the 
state of the occupation of the individual quantum states 
of the quasiparticles of the Fermi liquid as a randomly 
varying function of the time. We shall calculate the in
stantaneous "emissive power" i"y of the nucleus in a 
manner completely similar to the computations of the 
preceding section. The "one-component" variant of 
the corresponding formula can be represented in the 
form 

• 32 e.' R' foo 1: (') [ (' ) 1 1', =----- de,' e/ n e 1-n e -€, . 
105n Ii'e' VJ 

o " 

(19) 

Here we have, for simplicity and convenience, written 
the discrete sum 6 E' over the fermion states. In case 
of need the transition to integration can easily be ac
complished with the aid of (10). 

The "instantaneous," physically realizable values 

n,,=O,1 (20) 

of the fermion occupation numbers differ from the mean 
occupation numbers (9). This circumstance is the ob
vious cause of fluctuations in Fermi systems. It is con
venient to consider them with the aid of the simple re
lation (see [3]) 

Iln'lln"=n'(1-n')/l". ,", (21) 

Let us find the mean-square fluctuation of the expres
sion (19Hhe number of summations and integrations 
doubles upon squaring. One summation over the quasi
particle states is trivial owing to the presence of the 
o symbol on the right-hand side of (21); the subsequent 
integration is elementary, although somewhat tedious. 
Adding, in accordance with (14), the squares of the 
fluctuations in the proton and neutron components and 
introducing the dimensionless variables X,,2 = El,dT 
in place of the y-quantum energies, we obtain 
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(M" ). 0= 8192J e'm·3 [(1 - ZjA)' _ (ZIA)'J R'OT" 
y 33075n3 !i"e' P,z f- Pt ., 

The details of the integration over the boson energies 
are given in the Appendix. The final result has the form 

848 1:00 1 1:00 k-n J=--n'+576 - --, 
1575 n' k' 

(23) 
n=i k=n+1 

Notice that the term with the double sum is about half 
percent of the value of the integral, so that in practice 
we can restrict ourselves to the consideration of only 
the first term on the right-hand side of (23). 

The problems pertaining to the fluctuations are rela
tively subtle and require a more careful physical treat
ment. In particular, there is no reason to equate 
-~2 2 

(tlry) to the mean square (tlr y) of the actually obser-
vable, physical fluctuatio.1 in the radiative widths of 
ma.1y close reSOlance levels. This becomes especially 
apparent when we consider the most important and in
teresting case in which thermal equilibrium in the nuc
leus is established long before the "decay" of the 
nucleus: 

f·tlli«:1. (24) 

Here T is the relaxation time (see below) and r is the 
total width of the initial state of the nucleus. Taking 
into account the fact that this quasistationary state de
cays according to the law e-rti'n, we express the number 
II of emitted quanta and its fluctuation in terms of the 
instantaneous emissive power r y: 

1 00 

v = It f [,(t) e-rtlt, dt, 
o 

(Ilv)' = ~, f1 Ilr,(t)Ili\(t')exp[ - : (t+t') ] dtdt', (25) 
o 

Ilf,(t) =f, (t) -I\" 
Further, it is convenient to introduce the notation 
t' = t + T. According to the thermodynamiC theory of 
nonequilibrium processes (and of the corresponding 
fluctuations in the thermal-equilibrium state; see, for 
example,[3]), the mean value of the time correlation of 
the fluctuations is given by the relation 

lli\(t)lli\ (t + 't) = (!ll\), exp(-I'til'r), (26) 

where'f is the relaxation time (Le., the thermal-equili
brium establishment time). With allowance for (24), the 
substitution of (26) into (25) yields 

(Ill' )2f (21' ) f (11'1) (Ill' ). (Ilv)2~+Jdtexp ~Tt, J exp -T dT= Ii; T, (27) 
o -00 

Let us now consider the ensemble of the large number 
of close levels of a compound nucleus of radiative width 
r: owing to the fact that the levels decay according to 
the single law e-rtlfl., the equilibrium in the ensemble 
(the equipopulation of the levels) is not destroyed in 
time. The number of y quanta 

1 ~ 1', 
v=-f f,e-rt/'dt=_ 

Ii 0 r 
has been pre averaged over a group conSisting of many 
levels with practically the same r y' In the final aver
aging of the square of the fluctuations (tlll)2 over the 
entire ensemble of the groups differing in their radia
tive widths r y' each group is taken into account with a 
weight proportional to the number of levels in it: 

(!l.v) '= (Ill',) 'If', (28) 
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Equating the right-hand sides of the formulas (27) and 
(28), we finally obtain 

(~r.)2= (r'dll) (~rv) " (29) 

(we shall no longer write the averaging sign over the 
relaxation time T). A striking feature of the relation 
(29) consists in the following: It turns out that the fluc
tuations in the probability of decay of the compound 
nucleus via the radiative channel depend on the total 
decay probability r, including all the generally pos
sible decay channels. The physical meaning of the for
mula (29) is simple: In the time picture the deviation 
of Ary(t), the emissive power, from its mean value has 
time to average out to some extent provided the decay
ing exponential function varies sufficiently slowly (see 
the criterion (24)). The small factor rT /li on the right
hand side of (29) is precisely the quantity that deter
mines the fraction of the phYSical, actually observable 
effect that remains after such a partial averaging. 

4. COMPARISON WITH EXPERIMENT 

With the aid of the formula (15) we determined the 
temperatures of compound nuclei from the observed 
radiative widths of their resonance levels [9,10]. The 
results of such an analysis for two well-known regions 
of nonspherical nuclei are given in the table. We as
sumed in the computations that 

R=L2·1O- 13A'I, [cm] (30) 

and m* = mn , where mn is the mass of the free nucleon. 
It is noteworthy that the temperature in the case of the 
actinide nuclei turns out conSistently to be ~ 100 keY 
lower than the characteristic temperature for the lan
thanide region. This may be due to both the decrease 
of the neutron attachment energy twoard the end of the 
Mendeleev periodic table and the difference in the at
omic weight A. A similar temperature decrease appar-

Compound Emax. ry. I T. MeV Compound Emax, i\, 
I T,MeV 

nucleus MeV 10-3 eV nucleus MeV to-:!eV 

Nonsphericallanthanides 

62Sm~:8 8.14 52 0.42 67Ho~:8 6.33 91 O,-4:'"i 

62Sm!~ 7.98 64 O . .'J.'t 68Er~:7 6.44 97 0,46 

62Sm!~3 5,89 71 0.45 6tlEri~ 7.77 96 0.110 

68Eu~~2 6,29 89 0.1.7 69Tm~~~ 6.38 86 0.44 

63Eu~i4 6.:39 102 0.48 7oYbi~~ 8.14 74 0.4:, 

64Gd~~6 8.53 110 0.48 70 Ybi~! 7.44 7fJ o .4~~ 
6"Gd~~7 6.35 110 0.48 i2Hf~~~ 7.62 64 0.41 

64Gdt:8 7.93 89 0.46 73Tai~~ 6.06 54 0.39 

G4Gd~~9 6'()3 105 0.48 74 \Vi~: 6.19 58 1l.4U 

6sTb;:O 6.'.0 90 0.47 i4\Vi~~ 7 42 74 0.42 

66Dy~:2 8.20 122 0.49 i4Wi~~ 5.75 64 0.41 

66Dy;~ 6.25 175 0.52 74Wi~i 5.46 62 0.40 

6sDy!:t 7.66 10:1 0.47 75Rei~~ 6.24 55 0.39 

66Dy!:S 5.64 166 0.51 75Rei~: 5.73 55 0.39 

Nonspherical actinides 

90Thi:: 4,96 21 0.30 94Puf: 6.46 40 0.33 

91Pai:f 5.52 44 0.33 9.lPui!~ 5.41 31 0.32 

91Pai:: 5.12 48 0.35 94PUi!: 6.22 37 0.:13 

92Ui~ 6.78 40 0.34 9aAm~:; 5.48 42 0.:33 

1I2Ui~~ 5.27 25 0.31 9aAmi!: 5.29 50 0.35 

nCi:: 6./!7 40 0.33 96Cmi!: 6,72 37 0.:13 

92U~:; 5.30 29 0.31 96Cmi:~ 5.70 39 0.:33 

92lJi:~ 4.78 23 0.30 96 Cmi!{ 5.21 35 0.:32 

93Npi:~ 5.1.3 ~H. 0.32 

222 Sov. Phys.-JETP, Vol. 40, No.2 

ently occurs only within the nO(lspherical-lanthanide 
region. 

Spherical nuclei possess a number of unique features 
that must be taken into consideration (see the Introduc
tion). However, the question of the applicability to them 
of the formula (15) is at present difficult to answer 
categorically. Indeed, nuclei of this sort apparently 
undergo a phase transition to the "normal;" nonspher
ical state at temperatures 

T~~e', 

where A€ I is some characteristic width of the diffuse 
zone of the Fermi distribution, a zone which owes its 
existence to the residual interaction. Meanwhile, the 
spectrum of the emitted quanta (it is given by the inte
grand on the left-hand side of (12)) is such that the 
energy averaged over it is equal to 

e""5T 

(see also[1], formulas (5} and (6)). Thus, many of the 
radiative transitions can, roughly speaking, elude that 
region of the statistical distribution of the quasiparticles 
where the distribution differs significantly from (9). 
Therefore, the attempts to apply the formula (15) also 
to spherical nuclei, though not rigorous, is nevertheless 
of some interest. It is natural to suppose that spherical 
nuclei have higher temperatures (and, consequently, 
relatively low entropies; see also[1]). Comparison with 
the data on the radiative widths apparently corroborates 
this trend. For example, for the compound nucleus 
7~Um we obtain T = 0.45 MeV, in the case of BoHgm 
we have T = 0.56 MeV, and, finally, T = 0.62 MeV for 
81Tl;gt 

The experimental study of radiative-width fluctua
tions became possible only recently as a result of an 
increase in the accuracy of their measurement, and 
comparison of the theoretical formulas with experiment 
meets for the present with certain practical difficulties. 
Let us discuss three specific nuclei, for which a selec
tion of resonance levels with accurately measured radi
ative widths nevertheless allowed the estimation of the 
relaxation time T from the formula (29) (see also (22) 
and \23)). Data on two gadolinium isotopes are given 
in Lll ; we took into consideration only the leve ls for 
which the error in the radiative width is :s 10- 2 eV. In 
the case of 84Gd~~6 (10 levels) ry = 0.11 eV, [(Ary)2]'/2 

= 0.016 eV, and niT = 26 eV. For 64Gd~~8 (11 levels) we 
have 1'y = 0.089 eV, [(Ary )2]112 = 0.0087 eV, and fliT = 52 
eV. Let us also give the results of a similar analysis 
of the data on holmium [12]: 67Ho~~6 (21 levels) fy = 0.091 
eV, [(Ary)2]'/2 = 0.0099 eV, and niT = 39 eV. Thus, as 
far as we can judge, niT ~ 50 e V and T ~ 10- 17 sec, which 
is a remarkably long time on the nuclear scale. We must, 
however, not forget that the longest of the relaxation 
times T of the system enters into the thermodynamic 
theory (see formula (26)). The "particle equilibrium" 
at each moment of time was understood to have been 
established over the significantly shorter relaxation 
times 2 '. 

5. DISCUSSION. IS THERE ENOUGH TIME FOR THE 
ESTABLISHMENT OF THERMAL EQUILIBRIUM 
IN A NUCLEUS? 

The question of relaxation in nuclear matter is of 
considerable interest. Thus far, as far as we know, it 
has not been possible to estimate the characteristic 
time of this process on the basis of any direct analysis 
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of the experimental data. Therefore, the observed fluc
tuations in the radiative widths can be a valuable source 
of such information, and even the preliminary, tentative 
figures (T ~ to- 17 sec; see the preceding section) need 
to be discussed. For the above-mentioned particular 
cases of resonance excitatio:1 by neutrons of energy 
'S 1 keY, the condition (24) was satisfied with three 
orders of magnitude to spare-in other words, total 
thermal equilibrium was attained in the nucleus. The 
situation can, however, change when we go over to higher 
kinetic energies of the bombarding particles (see below). 

It would, apparently, be somewhat naive to regard the 
time b = h/Eo ~ 10-22 sec of transit of a quasiparticle 
through the nucleus as an estimate for the relaxation 
time. Indeed, for example, the system is not in the least 
drawn nearer to the state of thermal equilibrium by a 
coherent, reverSible, purely elastic act of collision be
tween a quasiparticle and the surface of the nucleus3 ). 

On the other hand, interquasiparticle collisions appear 
to be quite an effective relaxation mechanism; it may 
well turn out to be the dominant mechanism. 

For obvious reasons, the thermal-radiation data used 
in the present paper actually pertained to an extremely 
narrow part of the energy spectrum of the system. Let 
us now qualitatively consider how the real conditions 
under which the relaxation process proceeds in the 
nucleus should change upon further increase in the exci
tation energy of the nucleus. The neutronic width rn 
increases first in proportion to the square root of the 
distance from the neutron-detachment threshold; then 
there sets in a phase of much more rapid exponential 
growth. It is well known that owing to this phenomenon 
the resonance levels merge, forming a continuous spec
trum. But then whether the lifetime h/r of the compound 
nucleus will be long enough for the establishment of 
total thermal equilibrium in the nucleus may become 
doubtful, beginning from 4 ) 

r",r.~100 eV 

In this connection, it is desirable to try and critically 
reinterpret the method, based on the neutron "evapora
tion" process, for determining nuclear temperatures. It 
is difficult for the present to judge how the fact that the 
state of the neutron-emitting nucleus is not a totally 
equilibrium state will influence such an analysis. Not 
much doubt has thus far been expressed about the evapo
ration temperatures probably because their order of 
magnitude is quite plausible (and, in so far as we can 
judge, indeed correct). However, as the experimental 
investigation of the reactions (n, n'l goes on, attention 
will have to be paid not only to the absolute figures, 
but also to the behavior of the relevant quantities. Of 
special interest, in particular, is the case when the 
temperature of the compound nucleus as a function of its 
excitation energy is an almost horizontal, non monotonic 
in detail, and often simply a decreasing function. Unfor
tunately, the authors of the corresponding publications 
give this remarkable circumstance comparatively little 
consideration (see, for example /15J). We could have 
attempted to interpret the decrease of the temperature 
with increasing excitation energy as some giant random 
fluctuation, but it would have been difficult to conceive 
it as a phenomenon that would occur with any degree of 
consistency. On the average, however, negative specific 
heat is impossible for the nucleus. A state with negative, 
specific heat is totally unstable, and cannot be realized 
in nature [3 1• 
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APPENDIX 

Let us expound in some detail the integration over the 
boson energies in the formula (22). The terms of the 
integral J are identical in form, but individually each of 
them contains a pole at Xl = X2. Therefore, it is suffi
cient to evaluate any of these integrals in the prinCipal 
value sense: 

00 Xi 00 X23dx2 
J~2Sdx,.x,·ex'cth-f . (A.l) 

" 2 " (eX'-e") (e"-e- X,) 

Let us transform the inner integral with the aid of the 
substitution y = e-X2 , representing it as a derivative 
with respect to some parameter: 

r. x,'dx, f' (lny)'dy 
J e-X 

" (e"'-e") (e"'-e-"') " (y-e X ) (y_e- x ) 

(A.2) 
I)' f- y'dy 

~e-X iJv'" (y_e X ) (y-e- X ) ' v ~ 0 

(x = Xl)' In the decomposition 

1 
--. -U,+(x)-J,-(x)} , 
2 shx 

(A.3) 

in which the integrand is expressed in partial fractions, 
the integrals 

, y'dy f' y' dy J,+(x)~ f---, J,-(x)~ --
o y-eX 0 y_e- X 

(A.4) 

can conveniently be expressed as series. For this pur
pose, let us represent the fractions by the corresponding 
geometriC progressions, and let us also take into con
sideration the formula 

We then have 

~ -1_~nctgnv. 
....... n+v 

Taking the limit in accordance with (A.2), we obtain 

(A.5) 

S'x. (£8 n;2 31 4 '\ d~ n 1 S ~~p_n~ 
J~192 t-----s'--~' -+6 ,---- --ds. (A.6) 

" 3 3 90 sh'£ f.=i n'" sh'~ 
2 

It is easy to see that the integral standing under the 
summation sign 

~ s"e-n, '(lny),yn ()' ft yn+'dy 
J_. -ds~4J--dY~4- , V~O 
" sh' -.L n (y-1)' 8v' 0 (y-ex ) (y_e- x ) (A.7) 

2 

is essentially of the same type as (A.2), except that it is 
differentiated once more with respect to v and that the 
additional passage to the limit x - 0 will also be neces
sary. The subsequent simple computations, besides the 
passages to the limit, also include convenient redesig
nations of the indices of the double summation. As a 
result, we obtain the formula (27). 

llNotice that the radiation due to collisions between the quasiparticles 
would then become dominant only at T »ViifE". 

V. G. Nosov and A. M. Kamchatnov 223 



2)From the data of the recent paper [13) we find that hiT ~ 20 eV for 
the compound nuclei Th233 and U239. 

3)Besides, a characteristic time ~ t 1 is quite capable of playing an impor
tant role at the earliest stage of the development of the nuclear re
action. Here, however, we are discussing only the late, final phase of 
the thermal-equilibrium establishment process-see the end of the pre
ceding section. in particular, it is extremely doubtful that there will, 
at such times, remain reasonable physical criteria for distinguishing 
the initial bombarding particle (or the corresponding quasiparticle). 

4)1t is possible that the so-called Erickson fluctuations in the nucleon
nucleus interaction cross sections [14) are also due to this circumstance. 
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