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The effect of the surface normal component on oscillations of superfluid-solution films is investigated. 
It is shown that two types of oscillations exist, third sound and second surface sound. The dispersion 
and damping of third sound due to the surface normal component are determined. 

Distinct oscillations, called third sound, exist in 
superfluid films (1]. In third sound, the superfluid com
ponent oscillates under the influence of a Van der Waals 
force, while the normal component is immobile. These 
oscillations, at relatively high temperatures, experience 
a damping connected with evaporation and condensation 
of vapor, since third sound is accompanied also by tem
perature oscillations. The process of establishment of 
equilibrium with the vapor is slow, and its time increases 
rapidly with decreasing temperature, owing to the ex
ponential decrease of the vapor density. Therefore, at 
not too low frequencies, the influence of the vapor can be 
neglected. The third sound then attenuates weakly, and 
its velocity U3 is given by 

u"=~fd(1+y), 
P 

where Ps and p are respectively the superfluid and total 
density of the liquid, f is the Van der Waals constant, 
d is the equilibrium thickness of the film, and y is a 
correction connected with thermal effects. At a tempera
ture T = 10 K we have y = 10-2 and it decreases with tem
perature. Thus, thermal effects do not play an essential 
role in third sound. 

On the free surface of a solution of He 3 in He4 there 
are surface impurity levels of He3(2], the presence of 
which leads in the hydrodynamics of superfluid solutions 
to the existence Qf a surface normal denSity [3]. In weak 
solutions at low temperatures, a situation is possible 
when the vQlume normal component can generally be 
neglected and one can consider a superfluid liquid in 
which the normal component exists only on the surface. 

In this paper we study the influence of a surface 
normal component on the oscillations of superfluid films. 
We consider a film at temperatures when the contribu
tion of the phonons and rotons is inessential. If the con
centration of the solution is low and the mean free path 
of the volume impurity excitation is l > d, then the im
purities are not transported over the volume of the film. 
In the case of low-frequency oscillations, there is time 
for equilibrium with respect to the momentum and the 
number of impurity particles to be established between 
the surface and volume excitations. These times were 
determined experimentally in [4J, and it was found that 
the momentum relaxation time is shorter by three orders 
of magnitude than the particle-number relaxation time. 
At high frequencies, the surface impurities oscillate 
independently of the immobile volume impurities. 

Let us find the system of equations of motion of a film 
with allowance for the presence of the surface normal 
component. In the derivation of the equations we shall 
assume, for SimpliCity, that there are no impurities at 
all in the volume. Since we are interested in the problem 
of small oscillations, we seek the equations in an ap
proximation linear in the velocities. 
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Let the liquid occupy a layer of thickness d + (; on the 
(x, y) plane, where t = !;(x, y, t) is the deviation of the 
surface from the equilibrium value and is of the same 
order of smallness as the velocity. We define the sur
face of the film (just as in [3J) by the condition that there 
be no total surface mass, i.e., by the condition that the 
total mass M of the liq uid in the film be equal to 

"+t 

M= S S pdzds 

where ds is the area element of the (x, y) surface. We 
assume the liquid to be incompressible, and therefore 

S at 
patds=O. 

In differential form, this expression can be rewritten as 

p~+~=O (1) 
ijt ax. ' 

where x is a component of the two-dimensional vector 
r, and J~ is a two-dimensional vector with the meaning 
of the mass flux density over the film. In the view of 
Galilean invariance, this quantity is equal to the momen
tum per unit area of film, which consists of two terms, 
the momentum per unit volume, equal to dpvsO!' and the 
momentum per unit surface i, which according to our 
definition of !; is equal to 

ia,=vn,(V lla.-V,a) , 

where vn is the surface normal density while vnO! and 
v SO! are the normal and superfluid velocities. 

We can write down analogously an equation expressing 
the conservation of the momentum 

iji. av.. a 
-at+dP-at+ ax, 1[.,=0 (2) 

where 11 is the tensor of the momentum flux density, 

the valu~~f which is to be determined. 

The transport equations for the heat and for the sur
face impurities take the same form as in the case of an 
infinite volume [3J 

(3) 

ijcr + au •• _ 0 
- cro--, at ax. 

(4) 

where v and (J are the deviations of the number of sur
face impurities and of the entropy from their equilibrium 
values Va and (J a • 

It is necessary to add to these equations the equations 
for the superfluid velocity 

av··+~=O 
at ax. ' 

(5) 

where fJ. is the chemical potential of He 4 • 
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The deviation op of the pressure from equilibrium is 
connected with the deviation of the surface by the condi
tion op = pf!;. Since the liquid is incompressible, Eq. 
(5), with allowance for the foregoing, takes the form 

av,. a~ 6) 
-+1-=0. ( at ax. 

The momentum flux density can be obtained from the 
condition that the hydrodynamic equations should iden
tically satisfy the energy conservation law, which in the 
presence of Van der Waals forces in differential form is 
given by 

aE as. a~ 
-+-+p/-=O at ax. at ' (7) 

where () 0' is the flux of the energy over the film and its 
explicit form is determined together with 11 0'(3' while E 
is the energy of the element of film area and is equal to 
the sum of the volume energy pv~ /2 and the surface 
ent:rgy Eo 

The thermodynamic identity for the differential dEo 
(EO is the energy in the rest system vs ' which is connec
ted with E by the relation E = Eo + i . v s)' takes the fol
lowing form: 

deo=Tdcr+Il,dv+ (v~-v •• l di" 

where /l3 is the chemical potential of the impurities. By 
obtaining the derivative of this expression with respect 
to time and using Eqs. (1)-(4), (6), and (7), we get 

It.,=- (ci.+pf~d) Ii." 
where 0' = Eo - Ts - /l3V is the surface tension of the 
film. 

Thus, Eq. (2) assumes the simple form 

ai. _~=o. 
at ax. 

(8) 

We note that the obtained equations differ from the 
equations of surface hydrodynamics [3J . In the case of 
infinite helium thickness, the surface flow enter in the 
equations in a spatial derivative higher by one degree 
than the volume currents. In Eq. (1), they are contained 
in derivatives of equal degree. Therefore allowance for 
the surface normal component in the absence of momen
tum and impurity exchange with the volume leads not to 
a dispersion or damping of the sound, but to a decrease 
of its velocity and to the addition of a new solution. 

The presence of impurities in the volume causes /l to 
start to depend on the impurity concentration. Since 
there is no impurity transport over the volume, it is 
easy to obtain the equation for the deviation of the con
centration n in the volume from the equilibrium value no: 

~+~~=o. (9) at d at 

Equation (6) is rewritten with allowance for the vol
ume impurities in the form 

av,. +f!l+~~=O. 
at ax. an ox. (10) 

We note that owing to the absence of equilibrium with 
the vapor, the surface tension of the film cannot be con
sidered on the equilibrium curve, and it must be regar
ded as a function of the pressure. However, since ac
tually 0' = O'{p(p)}, in the case of an incompressible 
liquid this dependence is inessential. The surface ten
sion does not depend on the impurity concentration in the 
volume because there is no exchange of impurity parti
cles. 
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Let us find the spectrum of the oscillations of the 
film with the aid of the obtained equations. Let the x axis 
coincide with the direction of the wave vector k. The 
system of equations is written in the form 

-iwp~+ik (pd-vnl v. +ikvnvn =0, -iwcr+ikcrovn=O, 

( aa aa) -iwvn (vn-v.l -ik - v + - cr = 0, 
av acr 

-iwv+ikv,vn=O, 

-iwv. +ikf~+ik ~ n=O, iwn+iwno~ d = 0, 
on 

where w is the oscillation frequency. 

Equating the determinant of this system to zero, we 
obtain 

[c'-u,'(1-xll (c'-u,')- Iv. (1-xl u,'=0, 
p 

(11) 

where c 2 = w2/k2, X = no/fd (a/l/an), and Ua is the velocity 
of the second surface sound (3J, equal to 

u,'=-~{(~) vo+(~) cro}. 
'V n UV (I f}o 'Y 

According to (6J, the derivative of the chemical poten
tial of a weak solution with respect to the impurity con
centration is equal to -kT/m4' where m4 is the mass of 
the He4 atom and k is the Boltzmann constant. 

The second term in (11) is of relative order ao/d, 
where ao is the interatomic distance. Therefore it can 
be neglected at lu~ - u~l/u~ « 1, and Eq. (11) has then the 
following two solutions: one is third sound, and the other 
is second surface sound, in which oscillations of the sur
face normal component take place while the surface re
mains immobile. 

Let us examine the dependence of the sound velocities 
on the film thickness. The velocity of the second surface 
sound at a given surface density does not depend on the 
thickness. The third-sound velocity is U3 ~ d-3 [lJ. There 
exists therefore a critical thickness do at which U3 = Ua 
= u. Under these conditions, the second term in (11) 
cannot be neglected. The solution in the vicinity of the 
intersection point is of the form 

c'=u'±u 'I Iv.Jp. 

This means that in a film of variable thickness, for 
example in a gravitational field, a third-sound wave of 
wavelength small enough to be able to neglect the change 
of the film thickness over a distance on the order of the 
wavelength goes over into a second-surface-sound wave, 
and vice versa at d R< do. When measuring the depend
ence of the third-sound velocity on the thickness of the 
solution film at this ~oint, a jump in the velocity of rela
tive order of (ao/d)l a should be observed. At T ~ 0.5 D K 
and no ~ 10-3 we have Ua R< 104 m/sec [3J and do is of the 
order of several dozen Angstrom units. 

At lower frequencies, account must be taken of the 
momentum relaxation between the surface and the vol
ume. This means that it is necessary to substitute in the 
right-hand side of (8) the force of friction between the 
surface impurity excitations and the volume excitations. 
At low velocities, this force is obviously proportional to 
v n' We denote it by AV n' The condition for the existence 
of second surface sound is w » A/vn• In the opposite 
limiting case w ,,« A/vn, the determinant of the system is 
given by 

v 'I 
w'-u,'(1-xlk' +-n-iwk'=O, 

AP 

where ;:n = u~ - vrI-/P. 
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Thus, the friction between the impurities and the sur
face leads to the appearance of damping proportional to 
the power of the wave vector of the same order as the 
"slipping" of the volume normal component in the region 
of applicability of the hydrodynamic theory for volume 
excitations [5J • 

Let us estimate the value of A. It is proportional to 
the number of collisions between the volume impurities 
and the surface, to their mass, and to the surface diffuse
ness coefficient f*. This coefficient was measured in [4J 

by means of the integral effect of flow of He3 over a sur
face of a superfluid film. They obtained the value f* 
"'" T/0.8k in the temperature range from 0,01 to 0,2°K, 
Since the number of collisions is N "'" nov'T/m3 [6J , then 

f...""nom,'I. T'''(1° K)-', 

where m3 is the effective mass of the impurities in the 
volume, 

On going to a region of still lower frequencies, ac
count must be taken of the possible exchange of particles 
between the volume and the surface. Inasmuch as total 
momentum equilibrium sets in at these frequencies, we 
have vn = O. Let us rewrite Eqs. (3) and (9) with the 
foregoing taken into account. The point of a surface with 
impurity concentration II + lIo(no) relaxes to the equili
brium state with volume lIo(no + n). Therefore Eq. (3) 
will now take the form 

av v avo n 
-+----~o. at T an T 

(12) 

Since the number of particles that leave the surface 
is equal to the number of particles that enter the volume, 
we have 

an ~ at v a~ n 
-+----+--~o. at d at T an '[ 

Equating to zero the determinant of the system of 
equations (1), (4), (8), (10), (12), and (13), we obtain 
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(13) 

, _ 'k' + XOO' m -U3 0, 
1-x-,,/ (iOOT-1) 

(14) 

where K = (oll%n)d-1• This quantity is of the order of the 
ratio of the number of impurity particles on the surface 
to the number of impurities in the volume, and is of the 
order of unity in thin films. 

In the region WT » 1, expression (14) leads to the 
following equation for the spectrum: 

• -, (1 ) k' . X" 1 0 W-- U 3 -x -too t=X~ = , 

i.e., the imaginary increment to the frequency is ~ 117. 
At WT « 1 we have 

00' _ 1-x+" ii,'k'-iook'r: "Xii,' ~ 0, 
1 +x (1-x+") (1+x) 

i.e., 1m W ~ k2, In the region WT ~ 1, a strong dispersion 
and damping of the third sound should be observed, 

In conclusion, I am grateful to A, F. Andreev for 
directing the work, I am also grateful to Messrs. Crum, 
Edwards, and Sarwinski for a preprint of their paper. 
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