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Hierarchical Dyson models, which have properties resembling those of ferromagnetic spin systems 
with a power interaction potential, are considered. The calculation of the critical indices for such 
systems is reduced to the determination and investigation of the solutions of certain nonlinear 
integral equations. The results obtained by this approach are described. 

The semi-phenomenological theory of phase transi­
tions starts from the assumption that the ther.modynamic 
potentials, as functions of the dimensionless temperature 
E = (T - Tcr)/Tcr or of the external field h - hcr' have 
power singularities in the vicinity of the critical tem­
perature T = T r. The exponents in the corresponding 
powers are calIed critical indices. For ferromagnetic 
systems the most important critical indices are the in­
dices 0', (3, y, 0, 1) and II, in terms of which the asymp­
totic forms of the following quantities are expressed: 

CH-e-", M-(-e)', XT-e-', H-IMI'sgn(M), 
f(r) -I r I-(d-'+·), s-e-'. 

Here CH is the specific heat in constant magnetic field, 
M is the spontaneous magnetization in zero field, H is 
the critical isotherm, r(r) is the pair correlation func­
tion (at T = Tcr)' and ~ is the correlation length. Scaling 
arguments are invoked to explain the power singulari­
ties, it being assumed that each system possesses cer­
tain self-similarity properties in the vicinity of the 
critical temperature (cf. [1J ). The problem of the theory 
is to determine the values of the critical indices from 
the form of the interaction Hamiltonian. 

It has become clear recently that the study of the 
critical region for classical lattice models with a slowly 
decaying potential is considerably simpler than for 
short-range potentials. The reason lies in the fact that 
a Hamiltonian constructed with a potential U(r) decaying 
like 1/ru at infinity (d < u < 2d, d is the geometrical 
dimensionality of the model) possesses the scaling prop­
erty from the outset; if V' and V" are two volume sand 
the distance R between them is large compared with 
their dimensions, the interaction energy Hint between 
them is equal to S(V/)S(V")/Ru in leading order. Conven­
tionally, we can call the quantity S(V) the total spin in 
the volume V. For classicallaUice models in which an 
individual variable s(x) (x E Zd) takes the values ± 1, 

S(V)= L,s(x). 

Indeed, in general one can also construct other slowly 
decaying potentials, in which other additive quantities 
appear. Applying the scaling transformation to Hint, one 
can obtain immediately that, at the critical temperature 
T = Tcr' in typical configurations the t9tal spin S(V) 
should take values of the order of IVlu/ 2d, where IVI is 
the number of lattice points situated in V. This immed­
iately gives the critical-index value 1) '" 0, if we take for 
the dimensionality the anomalous dimension da 
'" 2d/(u - d). 

A complete mathematical investigation of mOdels with 
a power potential has not yet been carried out, although 
particular physically convincing results have been ob-
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tained (cf. [2 J ). The mathematical difficulty lies in the 
fact that, when the chain of recursion equations for the 
distribution of the total spin is set up, additional terms 
arise because of the interaction at the boundary, and it 
is not entirely simple to take accurate account of these 
terms. 

In this paper we consider the so-called hierarchical 
models introduced by Dyson [3J , which, in many respects, 
simulate systems with a power potential, but which, be­
cause of the absence in them of the above-mentioned 
boundary terms, are somewhat simpler to analyze. At 
the same time, there are reasons to suppose that the be­
havior of hierarchical models and models with a power 
interaction potential are, in principle, the same in the 
vicinity of the critical point. 

In the hierarchical models the interaction potential is 
not translationally invariant but, essentially, it also falls 
off in a power fashion. Because of the special form of 
the Hamiltonian, the recursion equations for the proba­
bility distribution of the total spin take a rather simple 
form and permit a detailed mathematical investigation. 
The expressions which then arise for the critical indices 
can be regarded as a confirmation of the Wilson 
formulas (cf. [4J). At the end of the article we indicate 
the analog for the hierarchical models of Wilson's 
E-expansion, in which, instead of the expansion in the 
dimensionality parameter E, expansions in a parameter 
associated with the power exponent in the long-range po­
tential appear. 

The Hamiltonians in the hierarchical models are con­
structed for volumes V n consisting of kn points (k = 2d, 
d is the geometrical dimensionality of the model), each 
volume V n being divided into k equal sub-volumes 
Vn-1 i (i1'" 1, ... , k); each of these subvolumes is 
divided\nto k equal sub-volumes Vn -2,i1,ia' and so on. 
The set of sub-volumes 

forms the hierarchical structure of the volume V n. The 
Hamiltonian Hn(Vn) in the volume Vn' for the ferromag­
netic case, is determined by means of the recursion re­
lation 

• 
Hn(Vn)= L,Hn-t(Vn-t,,)-lVnl-e[S(Vn)J', (1) 

1=1 

where?; is a parameter of the model and the S(Vn) is the 
total spin in the volume V n. It is clear that (1) describes 
a pair interaction, which, however, is not translationally 
invariant. The potential corresponding to (1) falls off 
like 1/ru (u '" d?;) at large distances r. For this reason 
it makes sense to consider ?; > 1; otherwise, the free 
energy will increase more rapidly than the first power 
of the volume. In addition, for?; > 2, phase transitions 
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are completely absent in the system (cf. [3J ). Thus, there 
remains 1 < f; < 2. 

The critical temperature Tcr is uniquely determined 
by the fact that, for it, 

H'n'=_1 V" I-'[S(V,,) J' 

takes values of order 1 in typical configurations. This 
means that the critical index 71 = 0, if for the anomalous 
dimension da we take the value 2d/(u - d). 

We introduce the probability distribution for the total 
spin: 

/,(t; ~)=Pl'Ob (S(l'n)=t; ~) 

in the volume -V n' for inverse temperature {3 and zero 
external field. From the form of the Hamiltonian (1), the 
chain of recursion relations 

f ( . R)_ g,~,(~) {" 'IV I-'} ~/ ( .) (.) (2) n+, t, ~ - gn(~) exp ~t n '-" ' t" ~ ... 1" t., ~ , 

easily follows, the summation being performed with the 
condition Lti = t. We now turn to the distribution for the 
normalized average spin, putting 

h,,(z; p)I\"=/,,(ziV,,I"'; ~), 1\,,=21 V"I-'I'. 

Then from (2) we have 

h,+,(z; ~)=L"e'" ~h,,(z,; ~) ... h,,(z.; ~)I\~-'. 

with 

For n - 00 the functions hn(z; (3cr) converge to the func­
tion h(z; (3cr)' which is the solution of the nonlinear in­
tegral equation 

• • • 
h(z; ~,,) =Le·"'·S··· S II h(z,; ~,,)6 (~z,-yz ) II dz,. 

i_I {_I (_I 

where y = k-t;2 • 

In[7J and[8J the Gaussian solution of Eq. (3): 

h(z; M =[a,(~)lnl'" exp (-a,(~)z'). 
a,(p) =~ k'-t/(k-k'-') 

(3) 

was investigated and it was shown that this solution is 
stable for f; < 3/2 and gives the indices predicted by the 
Landau theory. The stability is to be understood in the 
sense that the convergence to the Gaussian solution is 
conserved in the presence of a small perturbation of the 
bare interaction. 

For f; > 3/2 the Gaussian solution is certainly un­
stable. It turns out that for such f; non-Gaussian stable 
solutions of (3) arise. 

By means of the replacement 

h(z; ~) =exp(-a,(p)z')g(z; p) 

Eq. (3) is brought to the form 
• • • 

g(z; p)=L S .. · S exp{-pQ(z ...... z.)} IIg(z,; M6 (~z,-1Z) II dz" 
1=1 i=l i=1 

(4) 
[ i k'-C 

Q(z" ...• z.)= z,'+ ... +z.'--(z,+ ... +z.),]---. 
k k-k'-' 

The expression 

g("(z; p)=sconsl=[a,(p)lnl"'. 

corresponds to the Gaussian solution. The spectrum of 
the linearized problem has in this case the form k, k/c, 
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k/c2 , "', where c = k2- f:. According to the general 
theory of bifurcations, for Honlinear transformations in 
a finite-dimensional space new branches of solutions 
arise for those parameter values for which there is a 
unity in the spectrum of the linearized problem. We 
have shown that, in the infinite-dimensional case of the 
non-linear integral operator appearing in the right-hand 
side of (4), non-Gaussian solutions also arise (about the 
points f; 1 = 2 - 1/1, 1 = 2, 3, ... ) which fall off like 
exp(- Elz IS), where s = 2/(2 - f;) and is close to 21, 
E = (c 1 - C )a, and 

a= k(k;1) S r·(""e,(z; p) S .. · J exp{-~Q(z" .... z.)} 

• • 
X e,(z,; ~)e,(z,; p)c5 (~z,-yz) II dz,dz, 

i=1 i=1 

where el(z; (3) is the eigenfunction of the linearized prob­
lem for the Gaussian solution, corresponding to the 
eigenvalue 

It is found that a F 0 always. 

In order to explain the appearance of the non­
Gaussian solutions we shall fix (3 = 1 in (4) and expand 
the arbitrary function g(z; 1) = g(z) in a series in the 
eigenfunctions el (z; 1): 

g(z)=1 + ~alel(z; 1). 

Substituting this expansion into (4), we can rewrite (4) 
as a system of equations for the coefficients 01.1: 

m,n=1 

01. 1 == 0 corresponds to the Gaussian solution. If any Alo 
is close to 1, another solution can be written in the form 

alo= (i-A,.) I d,;~:' +0 « 1-A,,) ') . a,=O « 1-1.,,) ') 

for 1 Fl o• Moreover, for the non-Gaussian solution we 
can write a formal expansion in powers of the small 
parameter 1 - Alo' However, the convergence of such an 
expansion is completely unclear. 

The mathematically more accurate derivation of the 
non-Gaussian solutions is carried out in two stages and, 
in its principal features, follows the general theory of 
bifurcations and invariant manifolds (cf. [S,6J ). We shall 
regard the right-hand side of (4) as the result of applying 
a nonlinear transformation T to the function g. Then the 
solution of Eq. (4) is the stationary point for T: g = Tg. 
Since all the stationary points that we are considering 
are unstable, to determine them we must start by deriv­
ing the "stable separatrix," i.e., by deriving those func­
tions h for which Tnh converges to the required solution 
gas n - 00. More preCisely, we shall construct first 
those functions h which under the action of iterations Tn 
remain all the time close to h. It turns out that the form 
of such functions can be described more or less explic­
itly. Namely, we shall consider an lo-parameter family 
of functions, of the form 

h(z;a)=exp[ -ee,,(z; 1)+ t a,e,(z; 1)]. 
1=0 

It is shown by the method of contractive mappings that a 
uniquely defined set of parameters ao, ... , alo will be 
found for which the function h(z; a) lies on the separa­
trix, and all the ai are proportional (in leading order) 
to E2. 
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The second stage consists in checking that, for the 
functions h(z; a) found, we do in fact have the conver­
gence Tnh(z; a) - g as n - 00. A complete description 
of all the calculations pertaining to this will be pub­
lished elsewhere. 

Only the branch passing through the Gaussian branch 
for 1; 2 = 3/2 is stable for s < 3/2, in the same sense 
that the Gaussian solution was stable for 1; > 3/2. For 
the solutions from this branch, in the spectrum of the 
linearized problem there are two eigenvalues greater 
than 1, one of which, equal to k, is trivial and is elimina­
ted if we consider only solutions of (4) that are normal­
ized to 1. The second eigenvalue A, on the other hand, 
plays a fundamental role, and the remaining indices are 
expressed in terms of it. Namely, using arguments 
similar to those in[7,aJ, we can show that 

a=2 __ 1_ ~= log,c 1= 1-log,c 
log, A ' 2 log, A ' log, A ' 

& = 2-log,c 
log,c ' 

1']=0, v = 1-log,c 
2 log, A 

(5) 

The formulas (5) enable us to write down an analog of 
the Wilson E-expansion (cf. [4J) in which the parameter 
E = C2 - C appears in place of the dimensionality param­
eter E. The situation is obviously reduced to expanding 
A in E. There are reasons to suppose that A is only an 
infinitely differentiable, and not an analytic function of E. 
We have found the first two terms of its expansion for 
k = 2: 
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).= l2 f e 65+2012 -;:3 + -2-7- e'+O (e"). 

The non-Gaussian branch passing through 1;2 has been 
investigated recently by one of us (Po M. Blekher) on a 
computer. The results of the computation indicate that 
this branch does not experience other bifurcations and 
reaches 1; = 2 without singularities. The detailed results 
of the calculations will be published elsewhere. 

The authors thank L Mo Lifshitz for useful discus­
sions. 
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