
Retardation effect in cyclotron resonance 
E. A. Kaner, O. I. Lyubimov, and N. M. Makarov 

Institute of Radio Physics and Electronics. Ukrainian Academy of Sciences 
Khar'kov State University 
(Submitted February 6, 1974) 
Zh. Eksp. Teor. Fiz. 67, 316-333 (July 1974) 

Cyclotron resonance in metals under conditions of the retardation effect is investigated theoretically 
for the case when the electron transit time through the skin layer considerably exceeds the period of 
the electromagnetic wave. The amplitude and shape of the resonance curve are found under 
conditions of the anomalous and normal skin effects by taking into account the real distribution of 
the electromagnetic field in the metal, and in particular its dependence on the character of electron 
reflection from the sample boundary. It is shown that in the presence of a strong retardation effect 
the amplitude of consecutive resonance lines decreases in power-law fashion as against the exponential 
decrease in the normal skin effect. The effect of anisotropy of the Fermi surface is investigated. 

1. INTRODUCTION 

Cyclotron resonance takes place in metals under con­
ditions of extreme spatial inhomogeneity of the electro­
magnetic field, when the radius R of the electron orbit 
in a constant magnetic field H is much larger than the 
thickness 0 of the skin layer (see Fig. 1). This means 
that when the electron is in the skin layer it interacts 
with the wave during a characteristic time (BRO)1/2/ v 
(v is the electron velocity), which is only a small frac­
tion of the Larmor period 21T/n. If the electromagnetic 
field does not manage to change noticeably during this 
time, then the interaction of the electron with the wave 
is the most effective. In other words, if the inequality 

(1.1) 

is satisfied, then the electron absorbs strongly energy 
from the electromagnetic field during the entire time of 
motion in the skin layer. It is seen that the inequality 
(1.1) imposes an upper bound on the frequency w of the 
external wave, and that at a fixed frequency w it im­
poses a lower bound on the magnetic field H. Therefore 
condition (1.1) is violated at sufficiently large w (or in 
weak fields H). This means in turn that the travel time 
of the electron through the skin layer becomes larger 
than the half-period 7T/W of the wave, i.e., the electron 
"is late" in leaving the skin layer by the instant when 
an appreciable temporal change takes place in the high­
frequency field. The change of the electromagnetic field 
during the time of flight of the electron through the skin 
layer is called the retardation effect. 

Under the conditions of strong retardation, when the 
inequality (1.1) is reversed, the field reverses its sign 
many times during the stay of the electron in the skin 
layer. This causes the electron to effectively absorb the 
wave energy only during a small fraction of the time 
(BR6 )1/2/ v. As a result of the retardation, the amplitude 
of the cyclotron resonance decreases strongly and its 
line shape is altered. 

Before we proceed to study the influence of the re­
tardation effect on the resonance, let us recall briefly 
the main results of the theoretical investigation of cy­
clotron resonance when inequality (1.1) is satisfied. If 
the reflection of the electrons from the sample bound­
ary is not specular, and if the resonance is sharp 
enough, i.e., 

hi (Il/R)"'¢:l-p, v/Q¢:i-p, (1.2 ) 

then the formula for the surface impedance of the metal 
Z( H), in the case of isotropic and quadratic electron 
dispersion, takes the form 
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Z(H) ",Z(O)[l-exp (-2rq) ],/,. (1.3) 

Relation (1.3) was first obtained by Azbel' and one of 
us[l]. Here p is the specularity parameter (0:5 P :5 1; 
in the case of diffuse reflection p = 0, and if the metal 
boundary is specular then p = 1); II is the frequency of 
the collision of the electrons with the volume scatterers, 
and y = (II - iw )/n. We emphasize that in this case the 
conducti vity of the metal, and with it also the skin layer, 
are formed by the resonant electrons, whereas the con­
tribution of the nonresonant electrons is negligibly 
small. 

Subsequently experiments have revealed frequent 
and noticeable deviations from theory[l]. The oscilla­
tions of Z( H), which are connected with cyclotron reso­
nance, constitute a small fraction of the average value 
of the impedance. Chambers[2] has attempted to elimi­
nate the resultant contradictions and obtained results 
that are in much better agreement with experiment. His 
phenomenological calculations are based on the assump­
tion that the skin layer is formed mainly by electrons 
that do not take part in the resonance. In other words, 
the nonresonant electrons make a much larger contribu­
tion to the conductivity than the resonant electrons. 
Chambers connected his assumption with the insuffic­
iently low value of II/n (not too sharp a resonance). 
Chambers hypothesis found a natural microscopic justi­
fication in the work of Meierovich[3] and Zherebchevskii 
and one of US[4]. In[3] there was considered the limiting 
case of near-specular reflection of electrons, when the 
second inequality of (1.2) is reversed (I y I (6;R)1I2 « 1 
- P « II/n). In[4], a cyclotron-resonance theory was 
constructed for specular reflection of electrons from 
the surface of a metal (1 - P « I y I (6/R)1/2« II/n). In 
this case the principal term of the asymptotic expansion 
of the current density has no resonant singularities, 
since it is due to the contribution of electrons that 
glide along the sample boundary because of multiple 
collisions with it[5]. The cyclotron resonance arises 
only in the next higher terms of the asymptotic terms 
of the expansion of the current density. 
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Thus, the status of the "ordinary" cyclotron reso­
nance (1.1) has by now been investigated with sufficient 
detail. The opposite limiting case, which leads as indi­
cated above to the retardation effect, was considered by 
a number of authors[6-B]. In none of these references, 
however, was an analysis of this case developed. The 
most detailed theoretical investigation of the retarda­
tion effect in cyclotron resonance was carried out by 
Drew[9]. He has shown that the retardation effect leads 
to an exponential decrease of the amplitude of the suc­
cessive resonance bursts. The main shortcoming of[9] 
is that Drew used in his calculations an exponential de­
crease of the electromagnetic field in the metal. This 
model, generally speaking, is not equivalent to the real 
situation that obtains under the conditions of the ano­
malous skin effect. 

We construct in this paper a consistent theory of 
cyclotron resonance in the case of a strong retardation 
effect. We take into account the real distribution of the 
high-frequency field in the metal, and in particular its 
dependence on the electron reflection coefficient p. 
Unlike in [9], this leads to a power-law decrease of the 
amplitude of the successive resonance lines. In addition, 
we investigate cyclotron resonance in the region of the 
normal skin effect, corresponding to extremely high 
frequencies w» v/o. We analyze the influence of the 
anisotropy of the Fermi surface. 

We note that recent papers deal in considerable de­
tail with the influence of the retardation effect on cyclo­
tron resonance from the experimental point of view (see, 
e.g.,[lO,ll]). This makes this problem of even greater 
theoretical interest. 

2. FORMULATION OF THE PROBLEM 

We consider a metallic half-space placed in a con­
stant homogeneous magnetic field H parallel to its 
surface. Assume that a plane monochromatic electro­
magnetic wave of frequency w is incident on the metal­
vacuum interface (the yz plane). The wave propagation 
is perpendicular to the surface x = 0 and coincides with 
the x axis (the x axis is directed in the interior of the 
metal, z II H). The dependence on the time t in the 
incident wave is assumed throughout to be of the form 
exp (-iwt). The electric field E inside the metallic 
half-space x> 0 depends only on the coordinate x, i.e., 
E = E(x)exp (-iwt). We introduce the Fourier transfor­
mation in accordance with the formula 

"i (k) = 2 I E (x) cos (kx) dx. 
D 

The problem is to find the principal values of the 
surface-impedance tensor of the metal 

where c is the speed of light and the prime denotes 
differentiation with respect to x. 

(2.1) 

We shall assume throughout that the following condi­
tions are satisfied: 

f,4:.R, v/,,)4:.(1IO),". (,)~nQ(n~I,~, 0, ... ), \.4:.Q. (2.2) 

The first of these conditions is simply the condition that 
the skin effect be anomalous with respect to the mag­
netic field. The second inequality of (2.2) (the inverse 
of (1.1)) points to a strong retardation effect and means 
that the time of flight of the electron through the skin 
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layer is much longer than the half-period of the wave. 
The third condition ensures resonant interaction between 
the electron and the high-frequency field (proximity to 
cyclotron resonance). The difference between two suc­
cessi ve resonant peaks is n, the width of the resonance 
curve is of the order of v. Therefore the fourth condi­
tion in (2.2) is equivalent to the requirement that each 
of the resonance lines be well resolved ("sharp" reso­
nance). 

The connection between the Fourier transform of the 
a -component of the current density ja( k) and the field 
C (k) should be obtained by solving the kinetic equation 
for the electron distribution function. Calculations of 
this type were performed earlier (see, e.g., [5]). We do 
not present here the explicit expression for b( k), since 
it is contained in[5,4]. Owing to the conditions (2.2) it is 
possible to separate in the exact formula for b( k) a 
resonant term j;es( k) and a term j o( k) that contains 
no resonant singularities: 

j. (k) ~j.o (k) +;:e, (k). (2.3 ) 

By virtue of the first two inequalities of (2.2), it is 
possible to disregard completely the dependence of the 
current J O( k) on the magnetic field and assume H = O. 
Indeed, in the case of a strong retardation effect, the 
interaction of the electron with the high-frequency field 
can be regarded in the linear approximation as a sum 
of successive acts of absorption and emission of a wave 
on short sections of the trajectory in the skin layer. As 
a result of interference, an important role will be 
played only by a small [compared with (8RO )1/2] seg­
ment of the trajectory covered by the electron with 
approximately half the period TTl w. It is therefore obvi­
ous that the magnetic field does not manage to bend the 
electron trajectory in such a small segment. 

In the case of isotropic and quadratic conduction­
electron dispersion, we have[5,4] 

3/2 00 

.res(k)~ 3000' 1 S dtisin'ti Sdk' ity(k')l: (kR.L) I: (k'R.L) 
}y 4,,' v-i(oo-nQ) " , 

{ 
sin[ (k-k')R.Ll sin[ (k+k')R.Ll } 

x nO(k-k')- k-k' +(-1)" k+k' 

"/ 2 ro (2.4) 
jres(k)~ 300 0 2 1 S dtlSin11cos'tiS. dk'it,(k')ln(kR.L) 
, 4,,' v-if 00- nQ) , 

Xl WR){ 6("_1.')_ sin[(k-k')RJ 
" l J.. ;( n; I~_I/ 

_, sill [ (k+k')R.Ll } 
( 1) k+k' . 

Here 
")0~(4nN"e2/m)'I', R.L ~R ,in 1~, R~VIQ; (2.5) 

Wo is the plasma frequency of the metal, No is the con­
centration, m is the effective mass, v is the Fermi 
velocity, e is the absolute value of the electron charge, 
n = e HI mc is the c yc lotron frequenc y, R 1 is the radius 
of the electron orbit in the magnetic field H, J is the 
polar angle with the polar axis z( Vz = v cos if), In(x) 
is a Bessel function, and J~(x) is its derivative with 
respect to its argument. 

In the metallic half-space, there are two different 
groups of electrons. One consists of the so-called 
"volume" electrons, which do not interact with the 
surface of the metal. The other group is made up of the 
"surface" electrons, which collide in each revolution 
with the sample boundary. The resonant term j;es( k) 
is due to the contribution of the volume electrons, for 
they are the only ones that take part in the cyclotron 
resonance. At the same time j~(k) receives contribu-
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tions from both the nonresonant volume electrons and 
the surface electrons. Therefore the dependence on the 
reflection coefficient p in formula (2.3) is contained 
only in the term j~( k). 

In the considered limiting case of strong retardation 
effect (2.2), just as in the case considered by Cham­
bers[21, the resonant term j~es( k) turns out to be much 
smaller than the nonresonant current 

Ij!es (k)/i.'(k) 1«1. (2.6) 

The validity of (2.6) can be easily verified by recogniz­
ing that in formula (2.4) for jres(k) there are sub­
tracted from the 0 function o?k - k') the oscillating 
terms that comprise less-than-limiting expressions 
for the 0 functions. This greatly decreases the value of 
j~es( k) in comparison with j~( k), in spite of the pres­
ence of the resonant factor in the current j&es( k). 

According to (2.1), the surface impedance of the 
metal is expressed in terms of the Fourier component 
of the field Ca ( k) which should be obtained from Max­
well's equations 

k'cr .(k) +2E.' (0) =4niooc-'i.(k). (2.7) 

The inequality (2.6) enables us to solve the Maxwell 
equations by perturbation in terms of the parameter that 
determines the existence of the retardation effect. In 
this case we obtain for the surface impedance Za( H) 

81tw2 00 res 
Z.(H)=Z.(O)+ c'E."(O) ~ dkcr.(k)i. (k). (2.8) 

Here Za( 0) is the impedance and tf a( k) is the Fourier 
component of the field in the absence of a magnetic field 
H. In other words, tfa( k) is the solution of Maxwell's 
equation (2.7) with current denSity j~( k). It is seen 
from (2.8) that the principal term of the asymptotic ex­
pansion in the impedance does not contain any resonant 
singularities, and cyclotron resonance arises in the 
next higher approximation of perturbation theory. The 
oscillations of Za( H) due to cyclotron resonance con­
stitutes only a small fraction of the mean value of the 
impedance Za(O). 

We substitute in (2.8) the value of j~es(k) from (2.4) 
and represent the surface impedance of the metal in the 
form 

24 " Q -/' 
Z.(H)-Z(O)= ~k ~o '( 0) J dftn.' (ft) I. (koR,L) , 

1[C '0 v V-l {J}-rt ... _ 0 

(2.9) 
a=y, z; ny(ft) =sin ft, n,(ft) =cos ft, 

Here 

l.(x)=x ids i d6'F(s)F(S'l/.'(xs)In'(xS') ' 
(f I) 

(2.10) 
x{n6(s-S'l- sin[x~~~:')l +(_1)' sin[~~;s')l }. 

The expression for Iz(x) differs from Iy(x) in that 
J~ is replaced by I n, and the sign of the last term in 
the curly brackets should be reversed (cf. (2.4)). In 
(2.10), ~ = k/ko and ( = k'/ko are dimensionless wave 
numbers. The quantity k,/ corresponds to the depth of 
penetration of the electromagnetic field into the metal 
(k;/ = 0), and the field Ca(k) is connected with the func­
tion F( i;} by the relation 

cr.(k) =-2E.'(0)ko-'F(k/ko). (2.11 ) 

The surface impedance Z( 0) and the skin-layer thick­
ness k;/ in (2.9) are independent of the index a in the 
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absence of the magnetic field H. This is a consequence 
of the isotropic and quadratic dispersion of the elec­
trons. 

3. ANOMALOUS SKIN EFFECT 

Formulas (2.9) and (2.10) admit of further simplifica­
tions if it is assumed, in addition to the requirements 
(2.2), that the conditions of the anomalous skin effect 

(3.1) 

are satisfied. Inasmuch as the inequality (3.1) is equiv­
alent to n « koR near the resonance w ~ nn, the 
Bessel functions in (2.10) can be replaced by their 
asymptotic expressions in accordance with the formula 

,/ 2 ( n' nn n) l.(z)"" V-cos z+----- at 1, n«z 
nz 2z 2 4 

(3.2) 

It is necessary to retain the term n2/2z in the argu­
ment of the cosine, since its value can greatly exceed 
unity under conditions of a strong retardation effect. 
We substitute this asymptotic form in (2.10) and obtain 
after simple transformations 

1 ~ ds ~ ds' f 
l.(x)""'-J-=F(s) S-=F(S') { n6(5-5') 

2n" I ~ " l's' \ 

sin [ fx ( + -- -T )] cos[ fx( + + +)) }, (3.3) 

;-5' ;+S' 

Obviously, Ia(x) does not depend on the index a in the 
considered limiting case of the anomalous skin effect. 
The curly brackets in (3.3) are conveniently expressed 
in the form of an integral, using the equality 

J~ , , sin (x-x') sin (x+x'+2<p) 
2 dt cos (xt+<p)cos(x t+(p) =,,6 (x-x )- x-x' x+x' 

I 

(.c,x'>O). (3.4) 

As a result we obtain for Ia(x) the following asymptotic 
formula 

I(X)""'~I dt[j ~~F(~) cos (~t£+~)]' 
2nx , ,,1';; 2x 4 

(3.5) 

To calculate the integrals in (3.5), it is necessary to 
know the function F( ~). The explicit form of the field 
tf a( k), and hence of F( ~), is determined by the charac­
ter of the reflection of the electrons from the surface of 
the metal. F( ~) has the simplest form in the case of 
specular reflection. We therefore consider first pre­
cisely this case. 

1. Specular reflection (p = 1). Here 

F(s) =s/(s'-4). (3.6 ) 

The validity of (3.6) can be easily verified by solving 
Maxwell's equation (2.7) with the current density 

i",O(k) =300o'cr .(k)/16kv. 

We substitute (3.6) in the integral with respect to ~ in 
the square brackets of (3.5). After transformations, 
which will not be presented here, we obtain 

S~ s'/'ds cos(~ts +~) = -~exp(-~t) 
"i-is' 2x 4 6 2x 

(3.7) 
n (ni i+i1'3 n' ) f~ u'''du ( n' ) +-exp ------t +i --exp --tu . 
3 6 2 2x "u'-1 2x 

The inequality v/w « (Ro/12 from (2.2), which gives 
rise to the retardation effect, is equi valent near the 
resonance w "" nn to the requirement koR « n2. Conse-
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quently, the parameter n2 t/2x is large in comparison 
with unity. This makes it possible to neglect in the 
right-hand side of (3.7) the first term in comparison 
with the second, and the integral in the sense of the 
principal value can be replaced by its asymptotic form. 
As a result we get 

00 £'I'd£ ( n' n) n ( ni 1+d3" n' ) J--cos -t£+- "'-exp -----_t 
, 1-i6' 2x 4 3 6 2 2x 3 8 

. (11) ( n' ) -HI, ( • ) 
-,f 2 2;"t . 

where r(x) is the Euler gamma function. Squaring (3,8) 
and integrating as a result with respect to t, we obtain 
in accordance with (3.5) the value of I(x). We then sub­
stitute I(x) in (2,9) and obtain the final expression for 
the surface impedance in the case of specular reflec­
tion. The impedance of the metal, for a wave polarized 
transversely to the vector H, is 

Z,(H)-Z(O) 21'3 Q {. \' (ni Hd3 ) 
IZ(O)I '" , "1· - exp ----A 

n v-i(w-nQ) 3 2 
(3.9 ) 

n .. [ nl ., 1 } -""x.\-"exp 6-(1+03)A -I1I1A-" , 

where A = n2/2koH, and the values of the constants fj, K, 

and Il are given in Appendix 1. In the case of longitudi­
nal polarization (E II H), the resonant increment to the 
impedance turns out to be smaller than (3.9) in absolute 
magnitude, and is given by the formula 

~ iTjA- 7 exp ---;\. 
Z,(H)-Z(O) 21'3 Q { (Hi1'3) 

IZ(O) 1 n' v-i(w-nQ) 2 . 

[ nl ]} (3.10) 
-xA-'/'exp -i3-(1+d3)A -flA-1O . 

Here 
16nw (ni) Z(O)=-_--exp ---

31'3 c'k, 3 
(3.11) 

is the impedance of the metal in the absence of a mag­
netic field in the case of specular reflection of the elec­
trons from the sample surface. At a fixed external­
Signal frequency w, the parameter A varies linearly 
with the number of the resonance n (in inverse propor­
tion to the magnetic field H), A = nw/2kov. We recall 
that formulas (3.9) and (3.10) are valid for higher har­
monics of the resonance if the following inequalities are 
satisfied: 

1 «n«k,R«n'. (3.12) 

It follows from (3.9) and (3.10) that the cyclotron­
resonance amplitude in the surface impedance consists 
of three terms. Each decreases in a different manner 
relative to the parameter A = n2/2koR. Whereas in the 
first two terms this law is determined by the product 
of a power function by an exponential, the third term 
decreases with increasing A in power-law fashion. A 
comparison of the different terms with one another 
shows that in the regions A < 4 and 24 < A < 28 for 
Zy(H) and A < 5 and 20 < A < 25 for Zz(H) the princi­
pal role is played by the first term, while in the inter­
val 4 < A < 24 (and respectively 5 < A < 20) it is 
played by the second term. Finally, at A> 28 (A < 25 
for Zz( H)) the third term becomes much larger than 
the remaining ones. We note that in the asymptotic ex­
pansions (3.9) and (3.10) the prinCipal role is played by 
the third term. This leads to a power-law character of 
the decrease of the amplitude of the successive bursts 
of cyclotron resonance, and the exponent is large (A -10). 

We emphasize that the resonance-line shape depends 
essentially on the numerical value of the parameter A, 

161 SOy. Phys.-JETP, Vol. 40, No.1 

which enters in the phases of the exponentials that are 
contained in (3.9) and (3.10). Consequently, the shape of 
the resonance curves for the real and imaginary parts 
of the impedance is described by a linear combination 
of the quantities He [v - i( w - nn W1 and 1m [II - i( w 
- nn)r\ the coefficients of which oscillate with varia­
tion of A. As a result, the resonance line shape can 
assume a great variety of forms. The neighboring reso­
nances are practically of the same shape because when 
the number n of the resonance changes by unity the 
parameter A changes by an amount .6:.A = w/2kov « 1. 
Finally, in the region of extremely large A. when the 
principal role is played by the last term of formula 
(3.9) or (3.10), the resonance curves have a pure 
Lorentz shape. 

2. Arbitrary reflection (0:5 P :5 1). We consider 
now the case of an arbitrary coefficient of reflection of 
the electrons from the metal boundary. The current 
density j~(k) becomes under the conditions of the ano­
malous skin effect (3.1) 

3",,' 3",,' J' ,In(k/k') 
;.'(k)= 16kv8 .(k)- 8n'Y-P) odk 8.(k) k'-k'" (3.13) 

Solving Maxwell's equations (2.7) with the current 
density (3.13), we obtain the Fourier component of the 
field t! Q( k), and in accordance with (2.11) we obtain the 
function F( ~). In order not to clutter up the main text 
with the auxiliary formulas, we relegate the necessary 
results of the solutions of Maxwell's equations (2.7) 
with the current denSity (3.13) to Appendix 2. 

Just as in the preceding subsection, we calculate 
first the integral with respect to ~ in the square brack­
ets of expression (3.5) for I(x). We use the Mellin in­
tegral representation (A.2.2) for the function F(~) and 
obtain 

J~ d; (1) (n' n ) -F - cos -t6+-
(, 1'; £ 2x ~ 

1 c+iOCl n/·t :_'i, 1 JtZ 

=~ J dO(-?) M(o)r (--;;--") sin (-" ). 
_Jll c ._ i " _x .... '" 

(3.14) 

-4<c=Hc z<'/'; 

where M( z) is the Mellin transform of the function 
F( ~). By virtue of the condition n2t/2x » 1, the con­
tour integral in (3.14) can be estimated asymptotically. 
The asymptotic expansion of this integral with respect 
to the parameter n2t/2x is determined by the contribu­
tion of the Singular pOints of the integrand, which lie to 
the left of the integration contour. The principal terms 
of the asymptotic form are, in accordance with (A.2.3), 
the residues of the integrand taken at the simple poles 
z = -4 and z = -5. Confining ourselves to the contribu­
tion of these points, we obtain 

JOO d; (1) (n' n ) -F - cos -1;+-
" 1'£ £ 2.T I, 

2i (9) (nz ) (n' ) -'I, ",---;;-r ~ M(-1)sin' T 2x 1 (3.15 ) 

-if (~)cos' (nzo) (~t) _H~, 
2 2~,;; 

The value of M( -1) is given by formula (A.2.5) in 
Appendix 2. Substituting the asymptotic expression 
(3.15) in (3.5) and performing the operations indicated 
in (3.5), we obtain I(x). We SUbstitute the value of I(x) 
obtained in this manner in expression (2.9). After aver­
aging over the polar angle, we write down the following 
formula for the surface impedance of the metal at arbi­
trary reflection of the electrons from the sample 
boundary: 
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Z,(H)-Z(O) (ni) Q (nZ ) (nZ) 
IZ(O)I --Aaexp 3 v-i(<O-IlQ) sin' T sin' T A-' 

[ J + . ( rri ) cos' (JlZo/2) _ (ni ) cos" (nzo/2) ] x aaexp ---, --: '-, --,-A I+b.cxp -- A-' . 
ti Sill" (n:r/.3) 3 sin' (JlZo/3) 

(3.16) 

The values of the constants Act, aa, and ba are given 
in Appendix 1. The specularity parameter is p 
= cos (1TZo). We note that the surface impedance in the 
absence of a magnetic field Z(O), at arbitrary reflec­
tion of the electrons from the metal boundary, takes 
the form[12) 

Z(O)= -~M(-I)= 4nl'3<o sin'(rrzo/3) cxp(-~) (3.17) 
c-ko c'ko sin'(n:ol2) 3' 

Formula ~3.16) is valid for both specular (p = 1, 
Zo = 0) and dlffuse (p = 0, Zo = 7'2) reflection of the 
electrons from the sample surface. If the reflection is 
close to specular, i.e., 

(3.18 ) 

then the last term in the square brackets of (3.16) turns 
out to be much larger than the first two. In this case 
the result coincides, accurate to the exponential terms 
with formulas (3.9) and (3.10) derived by us under con: 
ditions of strictly specular reflection. 

In the case of nonspecular reflection, when inequality 
(3.18) is reversed, the last two terms in the square 
brackets of (3.16) can be neglected in comparison with 
the other two, Under these conditions, the amplitude of 
the cyclotron resonance in the impedance Za( H) de­
creases with increasing parameter A like A- s, i.e., 
more slowly than in the specular case (3.18). We note 
that when the inequality (3.18) is satisfied, the cyclo­
tron-resonance amplitude is proportional to A- lO• This 
difference in the rate of change of the resonance ampli­
tude makes it possible to assess the character of the 
reflection of the conduction electrons from the surface 
of the metal. 

4. NORMAL SKIN EFFECT 

We investigate cyclotron resonance at sufficiently 
high frequencies w, when the anomalous skin effect 
condition n « koR is not satisfied. In other wordS, we 
consider the region of high-frequency normal skin ef­
fects, characterized by the inequality 

vi <0";::0, Ii -I =ko=<O,,/c. (4.1) 

We emphasize that the condition of strong retardation 
vi w « (Ro)1/ 2 is satisfied automatically for resonant 
electrons with 0 = win in the case of normal skin ef­
fect (4.1). 

Thus, we supplement the requirements (2.2) by the 
normal skin effect condition (4.1) and calculate the 
resonant increment to the surface impedance. To this 
end we transform formulas (2.10) for Ia(x) with the 
aid of (3.4) into the expressions 

/,(x)='2x' fdt U dSF(S)I.'(xS)Sin( xts + ~/) r. 
(4.2) 

1,(x)=2x' f dt [I dsF(S)ln(XS)COS( xts + ~') r· 
The current denSity j~( k) is independent in this case of 
the coefficient p of electron reflection from the metal 
boundary, and is given by 

j.o (k) =i<oo 'ff) a (k) /4n<o. (4.3) 

162 SOy. Phys.-JETP, Vol. 40, No.1 

Consequently, the electric field in the metal has an 
exponential distribution, and the function F( E,) takes 
the form 

F(s)=J/(S'+l). (4.4) 

Substituting (4.4) in (4.2), we can readily calculate the 
integrals with respect to E, in the square brackets. For 
example, 

S'· dsl,,(x~) ( nil ) n ( inn) 
--~'-ros xlq,+- =-l,,(ix)exp -xt+-

, ~'-:-I 2 ~ 2 . 
(4.5) 

After taking the integral with respect to t, we obtain 
n' 

f,(x) = T( - t) ,,+Ixln" (ix)exp(-2x), 
n' 

/,(x)= ".-(-i)nxl ..'(ix)exp(-2x) , 

(4.6) 

Formulas (4.6) in the model in which the electric field 
has exponential dependence on x are general and valid 
for both the normal and anomalous skin effects. Substi­
tuting them in (2.9) we obtain the surface impedance for 
any degree of anomality of the skin effect in the expo­
nential-dependence model. In particular, if the Bessel 
function in (4.6) is replaced by the asymptotic form 
(3.2), which is valid in the case of the anomalous skin 
effect (3.1), then we obtain the result corresponding to 
the Drew model[9). 

Since condition (4.1) near the resonance w"" nO 
means that koR« n, it follows that the Bessel func­
tions (4.6) can be replaced by the asymptotic form at 
large values of the index in comparison with the argu­
ment. Therefore 

= :t' (-=--) ,,,-I exp(-2x) _ n' ( x ) ,,,+1 cxp(-2x) 
f,(x)- 8 2 P(n) , /,(x)=2 "2 P(n+t) . (4.7) 

USing the asymptotic expreSSion (4.7), we obtain in ac­
cordance with (2.9) the following formulas for the sur­
face impedance: 
Z,(lI)-Z(O) _~3 = <0 (~) -,,,+, exp[2(n-k,R)] (4.8) 

IZ(O)I :12fn \'-i«(1)-IlQ) koR n' l , 

Just as in the case of the anomalous skin effect, the 
resonant increment in the impedance turns out to be 
much less for the z polarization than for the y polari­
zation 

Z,(H) -Z(O) _:1 <0 ( 2n ) -,,, exp[2(n-koR)] 
----=----= - . (4.9) 

IZ(O) I 16fn v-i(<o-nQ) koR n'l, 

Here Z( 0) is the surface impedance of the metal in the 
absence of a magnetic field in the region of the high­
frequency normal skin effect, 

Z (0) =-4"i<o/c'ko. (4 0 10) 

At a fixed frequency w of the external electromagnetic 
field, the parameter 2n/koR does not depend on the 
number of the resonance n (in the magnetic field H), 
and is simply equal to 2w/kov. Therefore the depend­
ence on the number n in the resonant increments (4.8) 
and (4.9) is practically exponential. It is seen from (4.8) 
and (4.9) that in the case of the normal skin effect the 
cyclotron-resonance amplitude decreases with increas­
ing n much more rapidly than under the conditions of 
the anomalous skin effect. 

We note that formulas (4.8) and (4.9) are valid for 
large resonance numbers n, when the following inequal­
ities are satisfied: 

koR";::n, 1";::n. (4.11) 

In this case the parameter koR can be arbitrary in 
comparison with unity. The inequalities (4.11) are the 
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sufficient conditions for the resonant current j~( k) to 
be independent of the magnetic field H. For z-polariza­
tion, the necessary and sufficient condition for j~( k) to 
be independent of H is only koR« n. It can be satis­
fied even for the fundamental resonance n " 1. In this 
case the resonant increment to the impedance can be 
written in the more general form 

Z, (II) -Z (0) 3 w 

IZ(O) 1 2 v-i(w-nQ) (n!)' 

(k,RI2)," 
(4.12 ) 

,t/2 

X f, dthos'ttsin'"+'ttexp(-2kcRsintt' if k,lI«:n. 

We call attention to the fact that cyclotron resonance 
under the conditions of the normal skin effect (ko R « n, 
koR « 1) was considered earlier by Melerovich[8]. He 
analyzed the limiting case when the resonant part of the 
current is much larger than the nonresonant part. 
Formulas (4.8), (4.9), and (4.12) describe resonance in 
the opposite limiting case (2.6). We indicate also that a 
formula similar to (4.8), cited by Strom, Kamgar, and 
Koch [13] contains an extra factor n2n. 

5. INFLUENCE OF FERMI-SURFACE ANISOTROPY 

So far we have considered the influence of the re­
tardation effect on the cyclotron resonance in metals 
with an isotropic and quadratic dispersion of the con­
duction electrons. This dispersion law holds in alkali 
metals, in which the Fermi surfaces are spherical. The 
results obtained above can be generalized without dif­
ficulty to the case of an anisotropic quadratic disper­
sion law, which is realized, for example, in semimetals 
such as bismuth. A feature of the quadratic dependence 
of the energy on the momentum near the Fermi surface 
is the absence of a dependence of the cyclotron fre­
quency 0 on the momentum projection pz. In many 
metals, the electron dispersion law differs from quad­
ratic and therefore 0 depends on pz. In this case not 
all the electrons take part in the resonance, but only 
those whose cyclotron frequency 0 is extremal. This 
leads to a decrease of the amplitude and to a change in 
the shape of the resonance curves. In this section we 
analyze the influence of the anisotropy of the Fermi 
surface on the cyclotron resonance under conditions of 
the retardation effect. 

1. Cylinderical Fermi surface. We consider first an 
idealized model of an anisotropic metal, the Fermi sur­
face of which is a combination of a sphere and a circu­
lar cylinder, with pz axis parallel to the magnetic field 
H. The concentration of the Fermi-sphere electrons is 
No, and the density of the electrons inside that part of 
the cylinder which is bounded by the main cell of the 
reciprocal lattice will be designated by Nc. We consider 
resonance with the electrons of the Fermi cylinder. For 
these electrons Vz == 0 and therefore j~es " 0, i.e., the 
resonance is contained only in the y-component of the 
impedance. 

The resonant part of the Fourier component of the 
current density can be represented in the form 

i:e'(k)= 2N"e' . 1 S~ dk'fff,(k')Jn' (kR)J; (k'R) 
11m, v-«w-nQ) " 

x {"6(k-k') _ sin[ (k-k:)Rl +(-1)" sin[ (k+k:)Rl }. 
k-k k+k 

(5.1) 

Here mc, 0, and R are the characteristics of the elec­
trons on the Fermi cylinder. The nonresonant current 
is determined by the contribution of the electrons from 
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both the sphere and the cylinder, and differs therefore 
from expressions (3.13) and (4.3) by the factors 
1 + (8NcP/31TNoPc) and 1 + (2Ncm/Nomc) respectively 
(p and Pc are the Fermi momenta on the sphere and 
cylinder). Renormalization of the plasma frequency in 
jO(k) leads to an obvious change in the thickness k(jl of 
the skin layer. The final expressions for Zy( H) are 
obtained by the same method as in the preceding sec­
tions. The difference between the results are due to the 
absence of averaging over the angle ,J (over pz) and in 
that the numerical coefficient in (5.1) is different. 

Under the anomalous skin effect conditions (3.1), the 
resonant increment to the impedance for specular re­
flection is 

Z.(H)-Z.(O) __ 3f3(1+ 311NoP,) -, Q {~r("/JA-"'" 
IZ.(O) 1 211' 8N,p v-i(m-nQ) 3 

_ (5.2) 
( 1+i1':1 ) 11 [1Ii ( .,7; ] I"("/,) _IO} xexp ---A +-exp -;-- 1+<1,,).\ +---.\ . 

2 "18 3 1lI11 

The values of Zy( 0) and A are determined by the same 
formulas as before, with allowance for the renormaliza­
tion of ko. 

At arbitrary reflection of the electrons from the 
metal-vacuum interface we have 

Z,(H)-Z,(O) 1"(,'/,) ("i)( 311N,P,)-' ~~ 
IZ,(O) 1 - - (311)"1':3 eXP :3 "1 +RIV,p - v-i("'·~nQ) 

. ("Z') ., ( 1IZO) _8 [ 8 . ( :li) cos'. (nzo/2) \_' x:;Ill' - sm -.\ 1 +=-cxp -- ----, 
2 3 1'3 (J sill' (11zo/:J) (5.3) 

+ 27 cxp (_~) cos'(11z,/2) .\-'] , 
J 3 Sill' (11z,/3) 

Finally, in the region of the high-frequency normal 
skin effect (4.1), the resonant part of the surface im­
pedance is 

z, (II) -Z, (0) 

IZ,(O) 1 (5.4) 
_ 1 ( Nom, ) -, w ( 2n ) -,,,+, cxp[2(n-le,R) 1 
= --w;:;- 1 + 2N,m v-i(o,-nQ) Ie,R n' 

2. Arbitrary Fermi surface. Anomalous skin effect. 
In the case of isotropic and quadratic dispersion, the 
nonresonant current j~(k) is given by (3.13). In the 
case of arbitrary dispersion, formula (3.13) retains 
the same form, but the quantity 3w~/16v is replaced by 
the principal value of the tensor[14] 

B = 21te' _ rh n. (I.) n,(t.) dA. (5.5) 
., (21th)' 'j' K(t.) 

!'.):=I'I 

Here Ila " va/v is the unit vector of the velocity on 
the Fermi surface, K is the Gaussian curvature, A and 
i/J are the azimuthal and polar angles in velocity space 
with polar axis Vx (vx " v cos i/J, Vy " v sin i/J sin A, 

Vz " v sin i/J cos A, v" v(i/J, A)), and the integration is 
carried out along the line i/J " 1T/2, on which Vx " O. In 
the presence of several lines Vx ,,0 it is necessary to 
take in (5.5) the sum of the analogous integrals over all 
these lines. We note that the principal directions of the 
real tensor Bo. J3 do not COincide, generally speaking, 
with the axes y and z. The expression for the resonant 
current j~es( k) can be easily generalized for an arbi­
trary spectrum of electrons, in analogy with the pro­
cedure used in[1] 

/e'(k)= __ e'_ rh na'(t.)Q(t.)dt. S....!!.~fff"(k') 
" 1t(211h)' 'j' K(t.) [v-i(w-nQ(iI» 1 , (kk')';' 

',~:-,: (5.6) 

{ sin[~(~-~)] cos[~(~+~)]) 
, D(t.) k' k D(t.) k k' i 

x. rr6(k-k)- /.:-k' --c,,-+-ck-=-,---
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where D(A) = c I Pyax - pyin I/eH is the diameter of 
the electron orbit in the dlrection of the y axis with 
given value pz = PZ(A)o The off-diagonal components of 
the conductivity tensor in j~es( k) can be neglected, 
inasmuch as we confine ourselves to the first order of 
perturbation theory in j~es( k) when calculating the 
resonant correction to the impedance. 

If we substitute (5.6) in (2.8) and use the representa­
tion (3.4), then we obtain for the correction to the im­
pedance a formula analogous to (2.9) 

Z.(H)-Z.(O)=- G4ne'w~ t d').. n.'(')..)Q(')..) I ( ".D(')..) ). 
(".!.C(/l) "a'c" "~,,K(')..) Y-i(w-n~l(A)) 2 

'"'F (5.7) 

Here I(x) is determined as before 'by formula (3.5), and 

(5.8) 

The impedance Za(O) differs from (3.17) in that ko is 
replaced by ko. 

Unlike in (2.9), the integrand in (5.7) contains the 
product of two relatively varying functions A: the func­
tions I( kaD( A )/2) and the resonant denominator. It is 
easy to see, however, that the denominator is a 
"sharper" function than I(kaD/2). Indeed, if the ex­
trema of n(A) and D(A) cOincide, then the denominator 
is changed over an interval t.A ~ ("I W )1/2 much smaller 
than the characteristic interval t. A( kQD )1/21 n over 
which the function I( k aD/2) varies. When calculating 
the integral with respect to A, we can therefore regard 
the function I(kaD/2) as a smooth one and take it out­
side the integral sign at a point where the cyclotron 
frequency is extremal. We note that there is no reso­
nance at the limiting point (it is exponentially small with 
respect to the parameter wi,,), because I( 0) = 01). 

Recognizing that in the general case of a centrally­
symmetrical Fermi surface the extremum of n( A) is 
reached at four values of A, we can represent the reso­
nant part of the impedance in the form 

z.(I/)-z.(U)~ ,)(j4~e'w' ,1("·D')z[n.'(')..,)+na'(A,)]rp,. (5.9) 
(_"It) (".c) , 2 KO.,) K(')..,) 

Here AO and Al are two nonequivalent pOints on the line 
Vx = 0 (pz( AO) = pz( A 1», at which the frequency n( A) is 
extremal. The function I( kaDo/2) takes into account 
the influence of the character of the reflection of the 
electrons from the metal boundary. In the case of spec­
ular reflection we have 

2 ~"" ( HH'S ) l(kaD,/2)~ -;jr("/,)A. exp -~A" 

n [ni .- ] P("/,) _10 , --exp -;;--(1+11'3)A.) ---A •• A.=n /k.D,. 
18" tOn 

(5.10) 

In the case of arbitrary reflection we have 

J (k.D/2) ~ _ r~(I1/,) cxp (ni) sin' ( nz, ) ,~. 
a4n 3 3 

[ 8 (ni) cos' (nz,I2) \_' 
x l+-cxp -- '. 

¥3 3 sin' (nz,/3) 
(5.11) 

+ 27 ( ni ) cos' (nz,/2) _, ] 
-exl' -- ,\ 

;; 3 sin" (nz,/3) • . 

The shape of the resonance curve is described by the 
function 

(5.12 ) 

The zero subscripts denote here the values of the func­
tions at the point of the extremum of the frequency 
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n ( A); the integer r = 1, 2, 3, . .. characterizes the 
order of the extremum of n( A). The dependence of the 
integral (5.12) on II and t.w = w - nno can be easily 
obtained for arbitrary r.[lO] At r = 1 we have 

nQoexp(-is<p) s=s nQ" 
(nIQ,"I)'I·(v'+~w')'I. • g, • 

(5.13) 
[ (v'+~W')'I,-S~W ] 

<p = arctg (v'+~w')'''+s~w 

The presented formulas provide an analytic description 
of the influence of anisotropy of the Fermi surface on 
cyclotron resonance, with allowance for the retardation 
effect. They show that the line shape depends signifi­
cantly on the character of the Fermi-surface aniso­
tropy. 

3. Arbitrary Fermi surface. Normal skin effect. In 
the limiting case of high-frequency normal skin effect, 
when kv « w (Le., kR« n), the spatial dispersion of 
the conductivity can generally be neglected. The reason 
is that for an arbitrary dispersion, generally speaking, 
all the Fourier components of the electron velocity 
vector, with respect to the variable T, differ from 
zero (with the exception of the zeroth harmonics v~) 
and vy»' In other words, resonance at the multiple 
frequencies w = nn exists even in a spatially homogene­
ous electromagnetic field 2 ). This constitutes the qualita­
tive difference between the arbitrary dispersion law 
and the isotropic and quadratic law, at which the inter­
action of the electrons with the wave in the n-th reso­
nance is proportional to (kR)2n (see Sec. 4). Inasmuch 
as the spatial inhomogeneity of the wave field in the 
metal does not play any role when the conductivity ten­
sor is calculated, the result does not depend on the 
character of the reflection of the electrons from the 
boundary of the sample, This in turn denotes that one 
can use the expression for the conductivity of an un­
bounded sample in a homogeneous high-frequency field. 
It is well known that at an arbitrary dispersion law this 
conductivity can be represented in the form 

(5.14) 

where the asterisk denotes complex conjugation, and 
the Fourier harmonic of the a-component of the velocity 
is 

By virtue of the condition w » 51 » " it is necessary 
to separate from (5.14) one resonant term a~~s, and 
the sum of all the remaining terms should be replaced 
by the integral with respect to n. This integral obvi­
ously yields the conductivity tensor a~J3 at H = O. 
Thus 

~\ r.es 0 2e2 S V(l.V~ 
ar.r.~=crafo +OCli" (JCI~ = dS--. 

(2nh)'(Y-iw) "~'F v 
(5.15) 

The surface-impedance tensor is equal to 

z.,= (4nwc-')," exp( -nil4) «jo+(jres).~"· . (5.16) 

The actual form of the resonance and the magnitude of 
the resonant part of the impedance depend Significantly 
on the relative values of the tensors (To and ares. The 
resonant increment to the conductivity a~~s can be 
analyzed exactly, as was done in the preceding subsec­
tion. Resonance takes place at the extremal frequencies 
n(pz) = no, and near resonance we have 

res 8ne'mo ( (n,' ("') 

0,-,-" = - (2nh) :J Va. [,''l ,0 
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(5.17) 

(2r) 2r 2r 
where no = d n( p~)/dpz , and the factor 2 is the 
result of the two sections pz = I p~ I at which the fre­
quency n (pz) is extremal. Since aJ$S is proportional 

to the bivector v~n)* v~n) , the resonance is maximal at 
the chosen polarization of the wave. For lack of space, 
and in view of its relative Simplicity, we shall not in­
vestigate the shapes of the resonance in the numerous 
cases described by the general formulas (5.16) and 
(5.17). 

APPENDIX 1 

In this Appendix we present exact and also'approxi­
mate values of the constants contained in the main text. 
The constants '1 , K, and JJ. of formulas (3.9) and (3.10) 
are given by the expressions 

'I=r ("/.) 12/n"'41.76, x= "'-;I2t,~O.07385, 

,,=2'r' ("I,) 15n'r (11) -"'2.683. 
(A.1.1) 

Further, we present the definitions and approximate 
values of the constants Ao., ao.' and bo.' introduced in 
formula (3.16). The constant Ao. is given by 

A = 4I"(11I2)l'3 "S" df}n '(f})sin'f} 
• (3n)' ,,' , 

(A.1.2) 

A ,,=!lA ,=2"r' ("I,) 13/(3n) 'I' (11) "'0.93. 

The constant aa. is given by the expressions 
111..2 "/,.2 

a.=8 Sdf}n.'(f})sin9 f}/13 Sdf}rz.'(tt)sin'tt 
, , (A.1.3) 

a,.=iOa/9=2'r'(6)/l I 1"("1,) 1'::)"'-".414. 

Finally, the constant bo. is defined by 
11!~ nit 

b.=27 S df}rz.'(tt)sin"f}/5 S dttn.'(f})sin'tt, 
o 0 

(A.1.4) 
b,=11b/9="I". 

APPENDIX 2 

According to (2.7), (2.11), (3.1), and (3.13), the sought 
function F( ~ ) is determined from the following integral 
equation: 

(~'- ~ )F(~l+~:(1-P)jd~'F(~,)h::~::; =1. 
~ f. ~ '0 

(A.2.1) 

This equation was solved by Hartmann and Luttinger[121• 

They have shown that 
1 c+iCXI 

F(~)=::;-:- S dzM(z)'?,', -2<c=Rcz<1-zo, 
_:1l r _ i ",> 

(A.2.2) 

where Zo = 1T- 1 arccos p, O::s zo::s Y2. The function M( z) 
is regular in the band -4 < Re z < 1 - zo, with the ex­
ception of one singular point z = -2. At this point 
z = -2 the function M(z) has a simple pole with a 
residue equal to unity. The function M( z) satisfies the 
difference equation 

M(z-:;) . eos[n(z+zo)/2]cos[,,(z-zo)l2] 
-----=l 

1I1(z) cos' (nz/2) 
(A.2.3) 

This equation, together with the requirements stipu-
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lated above, defines uniquely and in single fashion the 
function M( z), which is described in the regularity band 
(-4, 1 - zo) by the formula 

( n ('xp["i(z+~)/Ij) ( n S' I '{1') , (') 
111 Z)=". -.1')"' J c\:p :-;-:- (z -: rlg.-u 

.. ",,[:r(z "_)/.~ .. b . 

-H(z' +z,) ctg[n (z' +Zo) J -6 (z' -zo) ctg[n (z' -zo) ] 

-18115 ('TO' 12) +9Ig[ n (z' +z,) I~] +9Ig[n (z' -:,) 12 J (A.2 .4) 
+8 etg!n (z· -1) 1:1 J --4 ctg[n (z' -1 +zo) /3]-4 etg!n (z' -1-z,)/3] 

-8etg!n (z' +1 )/3] +4 etg!n (z'+1 +z,) 13] +4 c.tg!n (:.'+ l-z,) 13j} ). 

Having obtained the explicit form of M( z), we can 
easily obtain its value at the point z = -1: 

M( nl'3 sin'(nz,/3) ( ni ) 
-1)= cxp - . 

2 sin'(nz,/2) 6 
(A.2.5) 

OIf the extrema of UtA) and D(A) do not coincide, then the value of the 
integral in (5.7) and the character of the resonance depend significantly 
on the relative rate of change of the denominator and of the function 
I(ka D/2). We shall not, however, analyze the ensuing different limiting 
cases. 

2)If certain Fourier harmonics v~)are equal to zero (for example, from 
symmetry considerations), then the cyclotron resonance at this har­
monic appears when account is taken of spatial dispersion, i.e., when 
account is taken of the next terms in the expansion of the integral 

J ,hv.(t) cxp (-in9.t+ikcp,leH) 

in powers of k. 
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