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The threshold amplitudes for parametric excitation (by parallel pumping) of wave pairs of normal 
modes of various nature are calculated for antiferromagnets with anisotropy of the easy plane type 
by taking exchange, Dzyaloshinskii, hyperfine, and magnetoelastic interactions into account. An 
intermediate transformation in which the symmetry of the system is taken into account is employed 
when nuclear spin waves are introduced, and this simplifies the calculations considerably. Normal 
magnetoelastic oscillation modes, including the "intersection point," are found. In all cases the 
exchange and Dzyaloshinskii interactions decrease the threshold amplitudes. The threshold microwave 
magnetic field values h ;1.2) observed experimentally in MnC03 at T = 1.55-4.2 oK, H 0=0-1.5 kOe 
and vo:::::9.3 GHz are interpreted at the result of excitation, h ;') being attributed to excitation of 
electron-nuclear spin pairs, and h ;2) to excitation of "nondegenerate" normal magnetoelastic oscillation 
pairs. The nonlinear process observed at v 0 = 875 MHz and h > 0.06 Oe is ascribed to excitation of 
nuclear-nuclear spin-wave pairs. It is suggested that an electron-nuclear three-particle relaxation 
mechanism exists. 

1_ INTRODUCTION 

In antiferromagnets (AF) the interaction of the system 
of electron spins (E) with the system of nuclei (N) spins 
and with the elastic deformations (S) of the lattice leads 
to a mutual influence of the systems which is much 
stronger than in ferrites, owing to the participation Qf 
the exchange interaction, which as a rule is quite large. 
This mutual influence is subdivided into "static" and 
"dynamic" components. The first is calculated at 
"frozen-in" Nand S subsystems and leads, in particular, 
to the appearance of additional terms in the expressions 
for the antiferromagnetic-resonance (AFMR) frequencies. 
The second causes a mixing of the linear vibrations of 
the subsystems, which is stronge!: the smaller the differ­
ence between the energies of the unperturbed oscilla­
tions. 

From the experimental point of view, the study of 
these effects is most convenient in AF with easy-plane 
anisotropy (AFEP) [1], such as MnC03, FeB03, and 
others. In these substances, one of the branches of the 
electron spin wave spectrum is quasiferromagnetic 
{QF) [:b] and has energies of the same order as in ferr­
ites at moderate magnetic fields. Therefore the 
exchange-enhanced influence of the hyperfine and mag­
netoelastic interactions on the QF branch is relatively 
large. 

The first investigations of the static manifestation of 
the hyperfine and magnetoelastic interactions in AFEP 
were carried out in [3 ,4]. The dynamic manifestation of 
the hyperfine interaction leads to nuclear spin waves [5J , 
and in particular to a shift of the NMR frequency [6]. 
The strong dependence of the speed of sound in AFEP on 
the magnetic field, which was observed in [7 ,BeJ, is the 
consequence of the dynamic magnetoelastic interaction 
of the electron spin waves with the phononso The 
nuclear-like spin waves contain an appreciable admix­
ture of electronic components, and therefore interact 
also with phonons, so that analogous effects are pro­
duced in the other frequency region [9J • 

The study of the most interesting of the nonlinear 
dynamic phenomena in AF, namely parallel pumping, was 
initiated by investigations of RbMnF3 [loaJ and 
CsMnF3 [11 ,saJ 1). The presence of hyperfine and mag­
netoelastic interactions greatly broadens the circle of 
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the possible parametric processes, and the exchange en­
hancement can facilitate their experimental observation. 
In this paper we calculate the threshold amplitudes of 
the parallel-pump field for the main parametric proces­
ses in AFEP. The experimental study of the excitation 
of pairs of quasiparticles of different types was under­
taken on MnC03, which is the typical AFEP (with 
Dzyaloshinskii interaction), in which the hyperfine inter­
action is large [3J and the magnetoelastic interaction is 
noticeable [3,6, 9J • 

2. THEORY 

2A. Model and Calculation Scheme 

We consider the Simplest AFEP model that takes into 
account the effects of hyperfine and magnetoelastic inter­
actions.· It consists of the following: 

a) An E-subsystem, namely two sublattices of elec­
tron spins with exchange, anisotropy, and Dzyaloshinskii 
interactions (only between the nearest neighbors) and 
with interaction with the external field H. 

b) An N subsystem, namely two nuclear-spin sub­
lattices, each of which is coupled by hyperfine interac­
tion only with the spin of "its own" electron (EN interac­
tion). 

c) An S subsystem, namely an elastic continuum of 
the lattice, which for simpliCity is assumed to be cubic 
and elastically isotropic (i.e., the phonon velocity vs de­
pends only on the phonon polarization s and not on the 
direction of its wave vector k). 

We shall take into account only the cubic-symmetry 
part of the single-ion magnetostriction [12-14] in the mag­
netoelastic (ES) interaction, but without the magnetoelas­
tic isotropy (Bl f B2)' With an eye at application to 
rhombohedral AFEP, the corresponding expression for 
the energy will be rewritten in a coordinate system in 
which the body diagonal of the cube is perpendicular to 
the easy plane: [111] II z II C3 (see [13,15]). 

The Hamiltonian of the system in this model is written 
in the form of a sum of the energies of the E, N, and S 
subsystems and the energies of their interaction (see the 
Appendix): 

(1) 
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The most interesting case for AFEP is when the con­
stant external field Ho lies in the easy plane. Directing 
the x axis along Ho and the z axis along the difficult axis 
of the crystal, we choose auxiliary systems with quan­
tization axes along the equilibrium magnetizations. With 
the aid of the Holstein- Primakoff transformation and the 
Fourier transformation, we change over from the elec­
tron spin operators Sj v to the Bose operators~ a~k' and 
analogously from the nuclear spin operators I j v to a~nk 

(I' = 1, 2). We express Jt"SS and Jt"ES in terms of the 
phonon operators b;k' This enables us to rewrite (1) in 
the form 

?i6 =?i6 0 +:JG, +?i6, +?i6, +?i6, +?i6', (2) 

where the index of each term denotes each order in the 
Bose operators a~ek' a~nk' and b~k' while Jt"" describes 
a perturbation that depends explicitly on the time. 

From the condition Jt"1 = 0 we obtain the equilibrium 
state, and then we separate the part quadratic in the Bose 
operators; this part is in turn conveniently represented 
in the form 

(3) 

where the subscript e (electron), n (nuclear), and 
p (phonon) correspond to the operators a~ek' a~nk' and 

b~k' We diagonalize the term Jt"~~ 

coupled oscillations in terms of creation and annihilation 
operators, it is convenient to introduce new (auxiliary) 
nuclear spin operators c~nk with the aid of exactly the 
same transformation (5) which was used to introduce the 
operators c~ek: 

(6) 

where Xan and Xcn are formed in analogy with (5b) and 
(5c), and S is the same as in (5a). 

As a result of this, and also of the transformation of 
Jt"ES to the variables c:ek and b~, we obtain an expres­
sion that is subject to final diagonalization: 

, 
?i6,=1i L L {w,.c,;.c".+E,.c,:.c,,,. 

It v=l 

+ t [w,.b •• +b •• +(D".c".-D,',.c,;_.) (b,_.-b,. +)] }. 
.=1 

This equation is convenient because the only directly 
coupled operators are c:ek and c~nk with identical v, i.e., 
spin variables of like symmetry. The variables with un­
like symmetry are coupled only via the phonons. The 
transformation (6) can greatly simplify a great variety of 
calculations for the oscillations in the EN system (for 
example, of the relaxation frequencies). 

?i6,:"=1i L w,.c,:.c". (4) For the frequencies of the uncoupled oscillations we 
,k have at small k « a-I (a is of the order of the lattice 

with the aid of the transformation (the matrix S is written constant): 
out in (A.10» W,.z""Wmoz=l'[Ho(Ho+HD)+2HE(HN+H~::)+vm'k'] (8a) 

(5a) 

(5b) 
for the QF mode and 

Wzt'=l'[2HE H A+H D (Ho+H D) +2HE(HN+H ~';.) +,vm'k'] (8b) 

(5c) for the QAF mode; 

In the subsequent transformations it is useful to take 
into account the following physical circumstance. If we 
write out the Landau-Lifshitz equations for the two elec­
tron-spin sublattices, then it turns out that the quantities 
(/Joey' /lez' Aex) oscillate with frequencies wlk (QF mode) 
and the quantities (/lex' Aey' xez) oscillate with frequenc -
ies w2k (quasiantiferromagnetic (QAF) mode). Here Ile 
and Ae are time-dependent small parts of the variables 
Me == Mel + Me2 and Le = Mel - Me2' where Mev is the 
magnetization of the v-sublattice of the electron spins 
(v = 1, 2). 

Introducing analogous variables Mn and Ln for the 
nuclear sublattices and writing down the general expres­
sions of motion [5J, we note that the system of 12 equa­
tions breaks up into two subsystems of six equations 
each. The first describes the oscillations of the 
"QF variables" (/ley' /lez' Aex' /lny' /lnz' Anx), which 
are coupled by the hyperfine interaction, and leads to 
two QF branches of the spin-wave spectrum-quasielec­
tron (e) and quasinuclear (n). The second group of six 
equations describes the QAF branches (e and n) of the 
spin waves (see also [16J). 

When we consider the oscillations of the electron sub­
system without allowance for its coupling with the 
nuclear system, the separation of the variables 
(/ley' /lez' Aex) from the aggregate (lle1' lle2) is fully 
equivalent to the separation of the variables clek from 
the aggregate (a~ek' a2ek), which is effected by means of 
the transformation (5). Therefore, when considering 
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V 2rn =V2m .L sin2 81r.+v2
11!1i cos2 8k , 

CiJ.k=v.k, VJ;;;;;;;a!Vl, V2=V3~VI, 

w'nO= (E',.-F',.) "'=w n. 

(8c) 
(8d) 
(8e) 

Here Ok is the polar angle of k, Vz and Vt are the longi­
tudinal and transverse sound velocities, vm is the 
"maximum velocity" of the magnons, and wn is the fre­
quency of the unshifted NMR. 

In our approximation (cubic approximation for the 
. ) h (1) - H(2) (f [4J. H elastlc subsystem we ave Hmes - mes c. , mes 

is the effective field of the static magnetoelastic inter­
action). 

When EE interactions between only nearest neighbors 
are taken into account, the "maximum velocities" vm1 
and vmll for the electron spin waves are uniquely deter-
mined [17 bJ by the effective exchange field (which can be 
calculated from the value of the static susceptibility X). 

2B. Spectrum of Normal Oscillations 

The spectrum of the normal oscillations of the ENS 
system for the cubic AF was calculated by Fedders [14J , 
and in some particular cases also by others[5,9,18J. We 
shall diagonalize the Hamiltonian (7) only for the case 
W20 »WI0, for in this case U1, VI »U2, V2 (see (A.10», 
so that we can neglect the coupling of the variables with 
different v via the phonons. Assuming for simplicity 
D2ks = 0, we can in general neglect the QAF modes. The 
dispersion relation for the coupled ENS waves takes the 
form 
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(9) 

where il 1ek and ilink are the roots of the dispersion 
equation for the coupled EN waves without allowance for 
the magnetoelastic interaction: 

(10) 

Here and in (9) the dynamic-coupling coefficients take 
the form 

(9a) 

(Wmed is the effective frequency of the dynamic magneto­
elastic interaction), 

From (10) follow the known relations [5J 

(l1a) 

(Ub) 

In the derivation of (9)-(11) we used the inequalities 

(12) 

which are satisfied, for example, for MnC03 at helium 
temperatures in moderate fields Ho. 

Figure 1 shows the part of the spectrum of the normal 
AFEP oscillations pertaining to the QF modes, construc­
ted from formulas (8) and (11) (the numerical values 
correspond to the case of MnC03). 

It follows from (9) and (10) that the coupling of the 
nuclear spin waves with the phonons (via the electron 
spins) is the strongest, as usual, at the "intersection 
point" k = kc(np). On the other hand if k - 0, then we ob­
tain for the velocity of the quasisound waves 

v, 
(13) 

i.e., an expression that leads to an exchange-enhanced 
dependence of the speed of sound in AFEP on the mag­
netic field[7,aaJ. From (13) and (8a) we obtain the cur­
ious fact that the presence of the N system does not in­
fluence the form of this dependence even at the lowest 
temperatures T, even though k~np) shifts with T. 

Each of the three branches of the spectrum 
(illk' il2k, il3k) contains some admixture of electron­
spin components, and consequently is coupled with the 
external field (including the alternating field). Therefore 
by parallel pumping at frequency wp it is possible in 
principle to excite any of the possible six pairs of ele­
mentary excitations with oppositely directed quasi­
momenta, if the energy conservation law is satisfied 

rop=Qak+Q.-. (cr, p=i, 2, 3). (14) 

To determine the threshold amplitudes of these proc­
esses it is necessary to construct the normal oscilla­
tions of the system, described by the Hamiltonian (7). 
This problem is in the general case very cumbersome 
(especially at k ~ k~np», but for definite pump-frequency 
intervals it is possible to carry out a separate diagonal­
ization of the hyperfine and magnetoelastic interactions 
in the AFEP. 

2e. Parallel Pumping of ee, nn, and en Pairs of Spin 
Waves 

We shall omit from (7) the terms containing the 
phonon operators b~k' The diagonalization of the remain­
ing part is carried out by introducing the normal coor-
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dinates QI~ek and QI~nk with the aid of the transformation 
(A.14). In the concrete calculation of its coefficients, it 
is necessary to distinguish between three cases: I-low 
electron frequencies, wvk « WE 14, and II-the simpler 
but less interesting case Wvk ~ wE/4 (see the Appendix), 
For MnC03 and CsMnF3 we have WEir ~ 7 x 105 Oe and 
W20/Y ~ 1050 e, so that in fields Ho:5 15 kOe there is 
realized case I for v = 1 and case II for v = 2 [see (8)]. 
In case I, the formulas are relatively simple at not too 
small values of il vnk »Pvwn' and this condition, as a 
rule, is satisfied (pv == (w nwN) l12lw vk)' For cubic AF 
(at Ho > HSF they are similar to AFEP), in which the 
frequency W20 is low as a rule (e.g., RbMnF3), case I is 
realized for both v, 

In the calculation of the threshold amplitudes under 
parallel pumping, when H = (Ho + h cos w.pt, 0, 0), it 
suffices to retain in (2) only the perturblng terms Jf.3 
+£'. Allowance for ')/"4 is essential in the calculation of 
the state beyond threshold. Changing over in (7) and in 
£3 +£' to the normal-oscillation operators (for our pur­
poses they can be regarded as c-numbers) and retaining 
only the terms that have a bearing on our problem, we 
obtain (0-, p = e, n) 

li-tJ'€,"=Q",cx~,cx'.'+lh cos (ropt)R,(cx;';,+cx,,,) + ~. Qt"CX~.CXlPk ..... 
II],: 

(15) 
{ ~ {a., (a.' + (a.' ) 1 + + H } + ~hhcos(ropt)Fk -(<Ilk CX",+'¥k cx,,' CX".CXtp-,+ .C •. 

O',p,k 

Setting up the equations of motion and introducing in 
them the dissipation phenomenologically (see [lob,CJ), 
we obtain for the threshold amplitudes hc the expression 

Here k is determined by the equation wp = il10-k 
+ illp-k and 17vpk are the relaxation frequencies (in[17bJ 

they are deSignated 17 vpk) of the corresponding normal 
oscillations. In first-order approximation, the 'ii k can 
be expressed in terms of the relaxation frequencr~s 
17 vek == 17 vk and 17 vnk == 17 n of the (dynamically) non­
interacting oscillations of the electron and nuclear spins 
by differentiating (10) with a constant right-hand side, 

At an arbitrary pump frequency, we confine ourselves 
to the product of the expression for the threshold of the 
excitation of only ee pairs (il2eO "'" W20, 'ii2eO "'" 17 20, 

;J'lek"'" 171k): 

lh,(OO' = 21]tkrop[ (w,,'-w.'+1],:)'+4w.'n,,']"'{[ lH,(2ro,,'+1],,') (17) 
+lHv (ro,,'-ro.'+1],,') l'+l'(H,+2H D)' W.'1J,,'}-'·. 

At 17 20 « W 20 it practically coincides with that derived 
from the Landau-Lifshitz equation[2b J • 

The simplest expressions are obtained in the fre­
quently encountered experimental situation wp « il2eO 
"'" w20[17b]2), 

(18a) 

(18b) 

(nn' 2ro .. ' (w,,'/wNro.-1) (18c) 
lh, = . 

1 (H D+2Ho) Q". 

Here Qvpk == ilvpk/2'iivpk are the quality factors of the 
corresponding normal modes (they can be expressed in 
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terms of q1ek == w1k/21)lk and qn == wn/21)n' i.e., the 
Q's of the noninteracting vibrations). At HD = 0, expres­
sions (18) differ from those given in [lOCJ only in the 
notation. If identical k are ensured for all three cases by 
suitable choice of wp' then at wp « W20 there follows 
from (18) the curious relation 

coupling, which depends on the direction of the unit vec­
tor k /k and on the polarization s of the phonon interact­
ing with the QF electronic spin wave. 

The Hamiltonian of the problem, with allowance for 
the three-particle interaction responsible for the parallel 
pumping, acquires when expressed in terms with the 

(19) operators of the normal magnetoelastic oscillations QI~k 
the already known form (15) with the substitutions 

In the derivation of (18) we neglected the dynamic 10 _ 0 and 1p _ p and with the coefficients of (A.17)· 
magnetoelastic interactio? Therefore agreement bet.ween 0, p = 1, 2. At wp « W20, using (16), (21) and (A.16), ~nd 
these formulas and experIment can be expected only if changing over from the Q's 0 == U /21) of the 
the values of k determined by the frequency condition I d t th Q' "GO~ ok/2 ok d 
are far enough from the points of intersection of the norma mo es 0 e s qmk = wmk 1)mk an qsk 
quasielectronic (U1ek) and quasinuclear (U1nk) branches == wsk/21)sk of the noninteracting magnons (m) and 
with the phonon branches of the spectrum (i.e., from phonons (s), we obtain (in a form somewhat different than 
k~ep) and k~np), see Fig. 1). in[17 CJ ) 

20. Parallel Pumping of Magnetoelastic Waves 

We omit from (7) the terms containing the nuclear 
spin operators c:nk' Being interested in AFEP and in k 
such that W20 »w1k == wmk' we neglect in the remaining 
part the connection between the phonons and the QAF 
branch, i.e., we put D2sk = O. The diagonalization of the 
Hamiltonian 

3 3 

tz ~ [!i)m.Cm. +Cm• + ~ !i),.b •• +b •• + ~ (D',kC,,-D: •• cl""-.) (b._.-b •• +) 1 . -

(20) 
is carried out with the aid of the transformation (A.16). 

The natural frequencies of the coupled magnetoelastic 
oscillations are determined by the solutions of the dis­
persion equation 

(21) 

where 41D1skl2wmk == wEwMedVsk defines the effective 
frequency wMed == wmed of the dynamic magnetoelastic 

0.1 

0~--~--~2----JL---~q--~5 

10~Sk, em-I 

FIG. l. Spectrum of MnCO, at Ho = 0.5 kOe, T = I. 7° K, HD = 4.4 
kOe, wEwNh2 = 5.8 r 1 kOe, wEwmes h 2 = 0.3 kOe2, WEWmedh2 

= 0.4 kOe2 , vm = 1.07 X lOs em/sec, Vs = 3.0 X lOs em/sec. Pump fre­
quency wph = 3.3 kOe. 
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(22a) 

(22b) 

As in the preceding section, if wp is suitably chosen 
we obtain the relation 

In the case of maximum dynamic coupling of the mag­
nons of the QF branch with the phonons, which occurs at 
wmk = wsk == wc, all three thresholds practically coin­
cide at (wEwmed)1/2 « 2wc: 

h (11)""h(2Z)""h (12) "" !i).(21],.,+21] •• ,) = h 
, , , ,,(HD +2H,,) - ". 

Here HOc are the values of the external field at which 
wmk = wsk' We note that the expression for hcc does not 
contain explicitly wmed and can be obtained from the 
formula for the threshold of the excitation of the ee 
pairs [2 bJ by making the substitution ~w1k == 21) 1k 

c c 
- 21)lk + 21)sk (cf. (4.86) of[13J). 

c c 

For AFEP, the general picture of the excitation of 
parametric pairs with allowance for the magnetoelastic 
interactions, is similar to that described by Comstock 
for ferrites [19J. However, the exchange amplification 
(the presence of WE in (9) and (22)) and the participation 
of the Dzyaloshinskii interaction (which is sometimes 
large, for example HD = 100 kOe in FeB03), make the 
AFEP experimentally convenient objects for the investi­
gation of still unsolved general problems of parametric 
excitation of pairs of magnetoelastic oscillations. 

Let us make a few remarks. Manganese carbonate is 
in closer agreement with the model in question than many 
other AFEP. A rigorous allowance for the elastic and 
magnetoelastic interactions (including the contribution of 
the distortion tensor) for rhombohedral MnC03 makes 
only the expression for Dllsk somewhat more accurate, 
but hardly changes the expressions for h(QlP) at a scant 
angle if! « 1 (by virtue of the structure 8f the coefficients 
u±, v" Pt' q±, see the Appendix). The real difficulties 
are more serious. The hard (with hysteresis) character 
of the excitation of, say, the ee pairs, observed in[17a, 20J 
(and for the case of ferrites in [21, 22J) can call, even for 
the calculation of the thresholds (and not only the beyond­
threshold state), for the allowance of four-particle inter­
actions (for example, within the framework of the ideas 
developed in [23J. In addition, the small (in contrast to 

V. 1. Ozhogin and A. Yu. Yakubovsk" 147 



the ferrites) contribution of the dipole-dipole interaction 
to the formation of the spectrum of the spin waves in 
AFEP[2aJ and the paired four-particle interaction can 
cause not one standing plane wave to be excited at h '" hc' 
but almost simultaneously a two-dimensional continuum 
in k-space (surface of ellipsoid of revolution for MnC03, 
see (8a)). This can greatly influence the interpretation of 
the experimental data (on the position of the phonon peaks 
on the hc(Ho) curves, etc.). 

All the foregOing allows us to regard the cubic treat­
mene> of the magnetoelastic interaction (espeCially for 
the "rhombohedral" setting of the cube) as a sufficiently 
good approximation for a semiquantitative description of 
the thresholds of the parametric processes in MnC03. 

3. EXPERIMENT 

3A. Experimental Procedure 

We investigated single-crystal samples in the form of 
plates, the largest of which measured 4 x 3 x 1 mm (the 
AFMR line width was"" 100 Oe). The sample was glued 
to the bottom of a rectangular TE101-mode reflex resona­
tor with loaded Q "" 1500 and natural frequency Vo 

'" wo/21T '" 9.3 GHz. The threshold absorption was re­
vealed on the oscilloscope sc~een by means of the dis­
tortion of the shape of the rectangular pulse reflected 
from the resonator. The absolute accuracy of the meas­
urement of the amplitude of the threshold field hc was 
± 1~, and the relative accuracy was ± 2%. 

Figure 2 shows a block diagram of a spectrometer for 
the study of parallel pumping in the 3-cm band. The 
power of the cw klystron was modulated by a p-i-n diode 
in such a way that microwave pulses of power ~ 10 mW 
and duration 10-1000 jJ.sec, were applied to the input of 
a traveling wave tube (TWT) at a repetition frequency 
5-50 Hz. These pulses were amplified in the TWT ap­
proximately 1000 times and were fed to the resonator. 
The signal reflected from the resonator was detected 
and observed on an oscilloscope screen. 

The nonlinear processes in the 1 GHz frequency range, 
where parallel pumping of the nn pairs was expected, was 
investigated with the aid of the helicoidal resonator 
(vo'" 875 MHz) mentioned in [lodJ. 

A stationary magnetic field Ho II h 1. C3 was produced 
by an electromagnet and was calibrated against AFMR 
in MnC03 [3J. The accuracy with which Ho was measured 
was 1%. The helium-bath temperature was varied be­
tween 1.55 and 4.2°K and was determined from the helium 
vapor pressure with an error ± 0.01 OK. 

3B. Measurement Results 

When the pulse amplitude was increased to a certain 
value corresponding to the threshold intensity of the 
microwave magnetic field hg>, the pulse waveform be­
came distorted (Figs. 3a and 3b) as a result of excitation 
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FIG. 2. Block diagram of spectro­
D meter: A-attenuator, PG-pulse gen­

erator, D-detector, PM-power meter, 
o FM-magnetic-field meter, K-kly­

stron, TWT-traveling wave tube, M­
microwave-power modulator, O-oscil­
loscope, ML-matched load, T-im­
pedance transformer, C-circulator, 
F-frequency meter. 
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of a certain parametric process in the sample. Further 
increase in the amplitude decreased the instability de­
velopment time T (the time from the start of the pulse to 
the instant of distortion), and at a certain h '" hg) a new 
distortion of somewhat different shape appeared on the 
trailing edge of the pulse (Fig. 3c), owing to the excita­
tion of another parametric process. At still larger 
powers, oscillations appeared on the pulse, followed by 
a third threshold. 

We interpret (see Sec. 4) the first process as the re­
sult of parametric excitation of a pair of spin waves, one 
of which belongs to the electronic branch and the other 
to the nuclear branch of the MnC03 spectrum (see Fig. 
1). The second process is connected, in our opinion, 
with excitation of a pair of magnetoelastic oscillations. 
We shall henceforth call the first process the en process, 
and the second the ep process. We note that in a certain 
range of values of T and Ho we have hg) < hg) (see Fig. 
8 below). 

Figure 4 shows plots of the reciprocal instability de­
velopment time (1/r) for both processes against the 
quantity h(T)/h(T - 00) where h(T - 00) is that amplitude 
of the field at the sample at which the development time 
tends to infinity (in other words, this is the threshold for 
the given process in the case of continuous action of the 
microwave signal). Both plots are straight lines, whose 
slope for each process separately depends little on T 
and Ho. The slope of the line for the en process is much 
larger than for the ep process. Bearing in mind the 
fact that the calculations pertain to the case of an infin­
itely long pulse, we shall present henceforth throughout 
the values of hc extrapolated to liT'" O. 

Figures 5 and 6 show plots of the threshold amplitude 
h~l) against Ho and T. In the field range Ho'" 0.5-0.75 
kOe, we have hg) a: T1.o ~ 0.2; at Ho '" 0.5 kOe, in particu-

lar, we have hg) a: T1.1 ± 0.05. In the next two figures 
(7 and 8) we snow the analogous relations for the ep 
process. Attention is called to the utterly different char­
acter of these relations. Figure 9 shows the dependence 
of the threshold amplitude (vo'" 875 MHz) on the field for 
the process whose most probable cause is the excitation 
of nn pairs. 

FIG. 3. Photographs of pulses reflected from the resonator at dif­
ferent values of the microwave magnetic field h: a) h < h~l), b) h~l)< h 
< h~2), c) h~2) < h < hpj. 
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Figure 10 shows the behavior of the imaginary part of 
the beyond-threshold susceptibility X" for the en and ep 
processes as a function of the microwave power. The 
absolute accuracy of the measurement of X" is ~ 50%. 
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FIG. 4. Dependence of the reciprocal instability-development time 
on the microwave magnetic field: .-for the en process. O-for the ep 
process; Ho = 500 De, T = 1.7°K, 

FI~. 5. Plots of h~l)(Ho) at two temperatures: .-T = 1.55°K, 0-T 
= 2.11 K. The arrows mark the measured AFMR fields Hres and the 
limiting fields Hb calculated from formula (14) for the en process. The 
discrepancy between the experimental limiting fields and calculation 
may be due to excitation of the ep process at small k :$ k~np) (see Fig. I). 
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FIG. 6. Temperature dependences of h~l)at .-Ho = 500 De and 
O-Ho = 750 De. At Ho = 0.5 we have h~l)a: TJ.l ± 0.05; at Ho = 0.75 
kOe we have h(l) a: TO.9 ± 0.05 

FIG. 7. Plots of h(2)(Ho) ~t different temperatures: O-I.72°K, 
+-2.15°K, .-3.0o K,b-4.2°K. 

FIG. 8. Temperature dependences of h~2) at various Ho; for com­
parison the figure shows the values of h~1) at Ho = 250 De. 
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The region in which the instability of the beyond-thresh­
old state is observed in the case of the ep process is 
shown shaded. This instability is manifest in the form of 
low-frequency (v ~ 100 kHz) oscillations, and their exci­
tation threshold hgsc is shown in Fig. 11 as a function of 
Ho. With decreasing He, the difference hgsc - hg) in­
creases, and the 3lI}.plitude of the oscillations decreases 
in such a way that at Ho ~ 0.25 kOe they are practically 
unobservable. The amplitude and the fundamental fre­
quency of the oscillations increase with increasing 
microwave power-see Figs. 10 and 12. We see that in 

I 

"'~ I I 
\ : £ 

0.10 ~) ---=~-~=~=-J 
C,05 O~---(J..l.Z-5----0.l.5------,J0.75 

Ho,kOe 

FIG. 9. Field dependence of the threshold amplitude of parallel 
pumping at the frequency wp = 211 X 875 MHz (T = 1.7°K). The dashed 
line is drawn in accordance with the formula (I8c) with Q, nk = const; 
the boundary field Hb was calculated from the condition wp = 2ni nk. 
At Ho > Hb, a 3-3 process with k :$ k2np ) is possible, see Fig. I. 
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FIG. 10. Behavior of the beyond-threshold susceptibility Xu: .-for 
en processes, O-for ep process; T = 1.7°K, Ho = 500 De. 
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FIG. II. General picture of threshold phenomena observed in 
MnCD 3 at T = 1.7°K at the frequency Wp/211 = 9.3 GHz;.) h~IL 
threshold of excitation of en process; 0) h~2>-threshold of excitation 
of ep process; dash dot-result of calculations by formula (25a) for the 
1-2 process; 0) h~SC) oscillation excitation threshold;"') h~) -observed 

threshold of excitation of a process difficult to interpret at the present 
time. 

FIG. 12. Dependence of the oscillation frequency of the beyond­
threshold (h > h(2)l susceptibility on the microwave power; Ho = 500 
De, T = 1.70K. c 

V. I. Dzhogin and A. Yu. Yakubovskli 149 



the indicated power range we have v 0: log h (no spectral 
analysis of the oscillations was carried out). A detailed 
study and a discussion of the beyond-threshold phenomena 
are outside the scope of the present paper. 

4. DISCUSSION 

4A. In the case of parallel pumping in MnC03 in the 
A ~ 8 mm microwave band, two peaks are observed on 
the ho(Ho) curve [24J. The nature of the first peak (at H1) 
is still unclear, but the second (at H2) is of phonon origin. 
Its position relative to the field agrees well with the 
calculated pOint k(ep) of the intersection of the softest 

c 
magnons (vmi. = 1.07 x 105 cm/sec [25J) and the softest 
phonons (vs = Vu = 2.94 X 105 cm/sec [10J ), see Fig. 1. 
The independence of H2 of the orientation of Ho in the 
basal plane [24bJ can be attributed to the almost simul­
taneous excitation of quasiparticles belonging to the 
equal-energy surface S(wp) in k-space, a surface corre­
sponding to the frequency wp. 

The calculation undertaken in Sec. 2D pertains to ex­
citation of single pairs. We shall plot the experimental 
curve h~(Ho) for this case by extrapolatin~ the absorp­
tion curves Pout(Ho) of Fig. 1a and of[17a in the direc­
tion from He towards Hq to the zero-absorption level. 
We can attempt to describe the curve obtained in this 
manner, which is shown in Fig. 13, with the aid of formu­
las (22a) and (22b), by putting wEwmed ~ 0.4 k0e2 ~.e., 
close in order of magnitude to wEwmes ~ 0.39 kOe as 
determined in [3, 6J), and assuming for the Q's the values 
qmk ~ 105 and qsk ~ 104, which are reasonable at the 
corresponding frequencies (the boundary field Hb is 
calculated from (14) at k = 0), we can state that the 
agreement is qualitatively good. Allowance for the 
harder phonons raises the threshold at H2 > Ho > Hb. 
Allowance for the magnons (see (8c); vmll = 1.48 
x 105 m/sec [25J) raises the thresholds at Ho < H2. Allow­
ance for four-particle interactions can explain the hard­
ness of the excitation and the hysteresis, and can smooth 
out the phonon peaks (as a result of averaging of the 
magnon-phonon coupling over S(wp)). 

4B. Comparison of theory with experiment for the 
case of en and nn pumping in AFEP with the Dzyaloshin­
skit interaction was carried out by us earlier(17l>J and 
in Figs. 5 and 9, and demonstrates that the Dzyaloshin­
skit interaction affects the determination of h~en) and 

VJ 

q.TO 

O.OJO~---:------:2:----!J:---r-L.-,--,,---,J 
q Ho, kOe 

Hz H. 

FIG. 13. For use in comparison of theory with experiment at 35 
GHz. Curve I was plotted from the experimental data of [17"]. Curves 
2 and 3 are plots of formulas (22a) and (22b) with the parameters 
given in the text (Sec. 4A). Curve 4 corresponds to the case when there 
is no magnon-phonon coupling (wmed = 0). 
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h~nn), namely, just as in the case of the ee pumping[24J, 
the presence of this interaction makes it possible to ob­
serve parametric excitation down to very low fields Ho. 
Relation (19) for MnCO~does not seem to be satisfied 
(just as for CsMnF3 (8,10 ). One of the reasons may be 
the neglect of the linear excitation of the QAF of the 
n-mode. The value (Q1ekQ1nk)1/2 ~ 104 obtained at 
T = 1.7° K agrees well with the data [a aJ for CsMnF3 
(which we reduce by means of formula (18b) at HD = 0). 
It follows therefore that the nature of the relaxation 
processes in CsMnF3 and MnC03 is apparently the same 
(see also[24CJ). 

In view of the strong coupling between the oscillations 
of the E and N systems in the AFEP, it is more advan­
tageous to characterize the relaxation by means of the 
values of Qvpk of the normal modes, and not by qvpk of 
the unperturbed oscillations, since the appreciable re­
structuring of the spectrum (wn - Q1nk ~ wn) influences 
directly the three- and four-magnon processes, and 
therefore the transformation Qvpk - qvpk with the aid of 
the differentiation of (10) is too rough an approximation 
(for normal magnetoelastic Oscillations, to the contrary, 
the relative restructuring of the spectrum is small even 
at the "intersection point," so that the use of qmk and 
qsk instead of Quk is not only more convenient for these 
oscillations, but is physically justified). 

From experiment (Fig. 6) and from formulas (11) and 
(18b) it follows that (Q1ekQ1nkr1 0: T1.o± 0.2 in the tem­
perature range 1.55-2.17°K and Ho = 0.5-0.75 kOe, 
where k ~ 3 X 105 cm-1• We note that to study the tem­
perature dependences we have chosen values of k far 
from the point of intersection of the magnon and phonon 
branches. Calculations of the relaxation parameters 
from the h~en)(T) dependence as k - 0 (as also in the 

case h(ee)(T), see Fig. 13 above) by formulas (18b) and 
(18a) can yield distorted information, owing to the neglect 
of the magnetoelastic coupling (including the case of the 
magneto static modes). 

By studying the influence of the heating of the N sys­
tem (with the aid of the NMR saturation at the frequency 
Q1nO' see [6J) on the value of h~en), we obtained the rela­
'ion h (en) 0: T1•a ± 0.2 after which we found that Q 

L C n ' 1ek 
ex: T, i.e., the Q of the magnons increases with increas­
ing temperature in the interval1.55-2.17°K. This un­
usual dependence can take place only if a noticeable con­
tribution is made to the magnon relaxation by the three­
particle (e ~ e + n) processes with participation of 
nuclear spin waves (see below). 

4C. Greatest interest attaches to the observation of 
parametric excitation with threshold h~2) -see Figs. 7 
and 8. This is apparently an autonomous phenomenon not 
connected with superheating of the system in the state 
that is beyond the threshold of en pumping; it is seen 
from Fig. 8 that, for example at Ho = 0.25 kOe, the value 
of hg) at T > 2" K becomes smaller than hg), and that 
hg)(T) does not have here a noticeable kink (although one 
should expect this kink from a more detailed analysis). 

What is unusual is the increase of the threshold am­
plitude with increasing field-Fig. 7 (a similar depend­
ence was predicted for ferrites in [19J and was observed 
in [27J at a frequency wp = 21T x 114 MHz), as well as the 
initial decrease of this amplitude with temperature-Fig. 
8. These two qualitative singularities are explained 
under the assumption that excitation of 1-2 or 2-2 pairs 
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of magnetoelastic oscillations takes place at h6)' see 
Fig. 1 (the 1-1 process is forbidden by the condition 
(14)), namely, a decrease of Ho or an increase of T 
brings kap closer to the point k~ep), and this improves 
the coupling of the pairs with the pwnp, owing to the 
increase of the admixture of the E component to the 
deformations in the quasiphonons fl2k' 

Under our experimental conditions (wp/y = 3.33 kOe, 
T 2': 1.55°K, Ho 2': 0.25 kOe), kap is situated to the left of 
k~ep) and is far enough to be able to put 4wEwmedW~k 
« (w~ - W~k)2 in (21). In addition, the simplification 
wmk ~ wmO is possible. It follows then from (8), (14), 
(21), and (22) that 

h (n) 200 .. 0000 (2oomo-ooo) 
'Y, "" 1(HD +2Ho) (ooEoo m,,)'" 

(23a) 

h(22)"" 2 (oo mo'-oo.'!4) , 1 k ""~ 
1 ' (If H ) (n, • 22 • 1 0+2 (l OJEffimt'd q sk 2v~ 

(23b) 

In the considered frequency range, the Q's of the 
phonons are smaller than or of the order of the Q of the 
magnons [28J, so that we can conclude from (23) that h~12) 
< hg2), i.e., the excitation of the 1-2 process precedes 
the 2-2 process (in contrast to the expected situation 
in [29J ). 

The plot of hg2) (Ho) for T = 1. 7°K (see Fig. 11) was 
obtained in accordance with (28) at wEwmedqmk/y2 
~ 1.6' 103 k0e2 and qsk ~ Lk, where L is the smallest 
dimension of the sample (~0.1 cm). The last relation is 
a consequence of the realistic assumption that the mean 
free path of the phonons at these frequencies is deter­
mined by the boundaries of the samples. 

Calculation of hg2) (T) with the same values of qmk 
and qsk (which are constant with respect to T) leads at 
Ho = 0.5 and 0.25 kOe to unexpectedly good description of 
the descending sections of the hg) (T) curves in Fig. 8. 
The subsequent growth of hg2) can be easily attributed to 
the inevitable temperature-induced increase of q~. 
From the good agreement between hg~)alc(T) and 

hgbbs(T) in the region 1.55-3.4°K we can assume that 
in this temperature and field range there exists, besides 
the three- and four-particle processes of E-magnon re­
laxation, which make a contribution with dq~ /dT 
> 0 [3 oJ to the total relaxation, also a process with 
dq~/dT < 0 and of comparable intensity. One cannot 
exclude the possibility that this process is the three­
particle (e ~ e + n) process mentioned in the preceding 
section. Its intensity decreases with increasing field and 
can decrease with increasing temperature, owing to the 
decrease of the EN coupling. 

5. CONCLUSIONS 

1. Antiferromagnets with easy-plane anisotropy com­
bine the favorable properties of ferrites (relatively low 
natural frequencies of the electron and spin waves at 
ak « 1) and antiferromagnets (exchange enhancement of 
the influences of the hyperfine and magnetoelastic inter­
actions on the dynamics of the system). 

2. Parametric excitation of pairs of normal oscilla­
tions containing not only the electron-spin but also the 
nuclear-spin and elastic subsystem variables, is facili­
tated by the exchange interaction (which as a rule is 
large), since the dynamic coupling (as measured by the 

151 SOy. Phys.-JETP, Vol. 40, No.1 

maximum ~erturbation of the frequencies) is more than 
(wE/W1k)1 2 times larger than in ferrites. 

3. The Dzyaloshinskir interaction influences in equal 
fashion the parametric excitation of pairs of different 
nature in AFEP, and lowers the threshold amplitudes. 

4. For magnetically ordered crystals with strong 
coupling of the oscillations of the electron-spin and 
nuclear-spin subsystems, it is of interest to study the 
three-wave mechanisms (with participation of nuclear 
spin waves) of the relaxation of electron and nuclear 
spin waves. 

5. The most probable cause of the nonlinear process 
with threshold hg> in MnC03 is excitation of nondegener­
ate (belonging to different branches of the spectrum) 
pairs of normal magnetoelastic oscillations. The con­
clusion requires a direct proof (for example, byextrac­
tion of the phonons from the sample), since this process 
can serve as a convenient means of generation of micro­
wave (quasi) phonons with smooth frequency tuning (in a 
wide range) by a stationary magnetic field. 

We are deeply grateful to I. K. Kikoin for constant 
interest in this research, to A. S. Borovik-Romanov, 
L. A. Prozorova, and B. Ya. Kotyuzhanskil for useful 
discussions, and to V. D. Voronkov, G. A. Yakovlev and 
L. M. Yakubenya, for help in the solution of methodologi­
cal problems. 

APPENDIX 

1. The initial expressions for the interaction energies 
are 

:l(EE = 2 L {J (6) (Sj1S;,) + D (6) [S;1S;,] + K, (6) Sj1'S;,'} 
i 1t 6 

+ K1~(Sj,')'+ liTH ~Sj" 1'==1'.>0; (A.1) 
v,jv v,;" 

.,. 
~ .. = ~ [ b, ~ (Si~')' ui!:! +b, ~ Si/' S,:' u~~' ] • 

Y,i.,:l' ).'''''~' (A.4) 

Here and below, )) = 1 and 2; j)) = 1 to N, where N is the 
number of sites in the sublattice; Mo = yI'iSNV-1 is the 
sublattice magnetization; M is the mass of the magnetic 
unit cell, 6 == r j1 -rj2; A', Il' == x', y', Z' (Zl II [001]); 

A, Il == x, y, z (z II [111]). The Hamiltonian Jt'ES{A'} is 
transformed into Jt'ES{ A} with the aid of (4.A7) of [13J: 

Uv) '{1 (lJ,I) ... • 
u,... = ~ Il> •• (b •• -b.-.)exp{lkrJ'}, 

o. (A.5) 

£s is a unit vector of the phonon polarization; pV is the 
crystal mass (pV = NM). The auxiliary coordinate sys­
tems (z)) is the quantization axis) are shown in Fig. 14. 

2. For the E subsystems, after going over to a~k 
and taking into account the static EN and ES interactions, 
we have 

~,~~ft E {A. (a,~.a".+a2~a".) +.8. (a".a"_k+a,~a,~) 
• 
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where 

r(6)""2[J(6) cos 21jJ+D(6) sin 21jJ]±2[J(6)+K,(6)], 

H Al == K1S/ti y, Hmes == wmes /y is the effective field of 
the static magnetoelastic coupling (see [4J); HN 
= A(IZI')/tiy == wN/Y' wn = AS/ti is the frequency of the 
"unshifted" NMR W == (w W )112 (IZI') 'en n N ' 
= tiwnI(I + I)/3kBT. 

Taking into account interactions only between the 
nearest neighbors (their number is ?; = 6 for MnC03) and 
putting J(61) = J, D(6 1) = D, K2(6 1) = K2, we introduce 

H D "" 2D~S 
lil ' 

H A ,= 2K,S~ 
lil ' 

(A.7) 

The balance equations take the form 

H. sin 21jJ-H D cos 21jJ=Ho cos lb. (A.S) 

The frequencies of the "pure" waves in the E system are 
equal to 

cu,.'=[A.+ (-1)'C.]'-[B.+ (-1)'D.]'. (A.9) 

The conversion coefficients (5a) are as follows 

"( s. s, ) 
s= s; s.' , s.= ( u .. U"), 

-U .. u,. s.=( v .. -v'") (A.IO) -v .. -v,. 
where 

_ [ A.+(-t)·C.+cu •• ]'" 
Uvt - , 

4cu •• 
_ [ A.+(-1)'C.-cu •• ]'" 

V"k-
4cu •• 

U •• '- V'k'='f,. 

3. The coefficients of the Hamiltonian (7) are 

E,.=2 (u •• '+ v •• ') CU n , G,.=-2 (U,.'+ v •• ') CU,n, 
(A.l1) 

F •• =- (-1)' ·4U •• v"wn> H,.=( _1)' ·4U •• v •• cu ... 

At small cant angles (lj! « 1) we have 

(u .. + V •• )S'" [b.+2b, 1'2 1 
D"''''-i (Mf/cu •• ) 'I, --3-(k.e.,+k,eu)-T(b.-b,) (k,e,,+k,e,,) 

(U2k+V2k )S'I, {2b.+b, 1'2 ] D"."'- 'I ---(k,e,,+k,e.,)--(b.-b,) (k.e,,+kyeu) " 
(Mnw •• ) '3 '~ 

The connection with the notation of [13J is the following: 
M = pVN-1, 2NS~I.2 = VBl.2. 

The Hamiltonians of the perturbation in (2) take the 
form 
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+ (a".,+a,;_k,) a.;-.,a.,.J t. (k. +k,+k,), 

Yk= -[ L eik6; 
{nit) 

;J6'",,;J6,''''llihcos(cupt) (S:)'" coS1jJ'(a",+a~,+a,.,+ai,,) 
~ + + 

+llih cos (cupt)sin 1jJ ~ (a".a".+a".a,.t). 

(A.I2) 

(A.I3) 

4. Diagonalization of the hyperfine interaction yields 
X.=R,X.', 

(A.I4) 
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FIG. 14. Principal and auxiliary co· 
ordinate systems. 
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z, 

(I' = 1 or 2, i.e., we are considering here also the QAF 
mode). Using in the calculations the symmetr~ proper­
ties of the matrix R, which are indicated in [12 , we obtain 

R '= ( 1 Iv.') 
'" -gy,,' W.,,, ' 

" (cr.. tv.") 
Rv =(-t)' -g •• " (W.'-t) 'I, • 

At (w~k/wEwN - 1) »wn/wE' putting Pl'k == wen/wllk' 
we obtain: in case I (strong coupling, wE/4wl'k » 1-
see Sec. 2C) 

(A.I4A) 

and in the case II (weak coupling, wEI 4wvk ~ 1) with 
relative accuracy pI'2 we have 

(A.I4B) 
g,.'=p ••. 2 (U,.'+ V,.'), g •• " =p,. ·4U •• v ••. 

The coupling coefficients of the normal en modes with 
pumping and QAF mode are expressed in terms of 
UI'k1 V 1At, and at WE »4w IAt their values are 

(.n) ( •• ) 2/.tlH,(w,,-w.t) 
R,!l>. =R,I1!. '" , 

Scu •• 
( •• , (n,) 2j.tlH,(cu,,+w.t) 

R,'l'. =R.'l'. ""---"..--­
SCUtt 

(n'll (n") 4/tk'l."'{HoCiJ20 
R,Cfl t =R,'l't ""--=S-­W,. 

(A.I5) 

5. Diagonalization of the magnetoelastic interaction 
for the QF mode yields 

Y=TY' 

(A.I6) 

At lJ! « 1, where Disk ~ -DIsk' we have 

. (2 2)1/2 . Puttlng ~ == nlk - n2k ,we obtalO 
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All these numbers are positive (see Fig. 1). 

Useful consequences of Eq. (21) are: 

The coefficients of the coupling of the normal mag­
netoelastic modes with the pump and with the QAF mode 
at I/! « 1, ak « 1, W20 « wE (not only in the case 
wp « W20 when wlk « W20) take the form 

F ""= 1(Ho+HD ) Q,k'-W.k' (""') 
It 4Qok Qakz-Qpk2 cr p, 

F (12'_F(21,_ 1(Ho+HD)w.k(WEWm,d)"· 
k - k - 4(Q Ik'-Q'k') (QlkQ'k)'" ' 

(0'1» (pa) ('1/» (PO) Ho <U20 (O'p) 

4llk =411k ='l'k ='l'k =---Fk 
Ho+HD 2Ro ' 

(A.17) 

Roe (NSW,,/WE)"', cr, p=i, 2. 

I)In CsMnF3 in fields HII > HSF (-0.1 kOe), the magnetic sublattices 
are in the "spin-flop" state, which in many respects is similar to the 
equilibrium configuration in the AFEP. The same pertains to the 
cubic RbMnF3 po]. 

2)Formulas (2) and (5) of [17b] were garbled by the typesetter-they 
should be of the same form as (8a) and (l8b). 

3)It can be improved also by means of the "rhombohedral" form JCEE, 
without assuming elastic isotropy (c ll -C12 =1= 2C44). 
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