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A solution of two near-ideal Bose gases at a temperature close to absolute zero is considered. It is 
found that two independent superfluid motions of the components can exist with different velocities 
in such a solution. It is shown that two Goldstone elementary-excitation branches with a linear 
dispersion law at small momenta exist in the solution. It is established that in the dilute-solution 
limit the sound velocities corresponding to these branches coincide with the first- and third-sound 
velocities defined in the hydrodynamics of solutions of two superfluid liquids. Also considered is the 
problem of the velocity dependence of the elementary-excitation energies in the presence in the 
solution of two independent motions, and the Landau condition for such a solution to be superfluid 
is found. 

The discovery [1J that liquid He3 undergoes a phase 
transition at a temperature of a few millikelvin has 
placed a second superfluid liquid at the disposal of ex
perimenters. It is also well known that the solution of 
liquid He3 in liquid He4 does not, at He3 concentrations of 
up to ~, stratify into pure components even at 
T = 0° K [Z). This allows us to hope that a similar phase 
transition of He3 into the superfluid state will be dis
covered in solutions of He3 in superfluid He\ i.e., that it 
will be possible to produce a solution of the two super
fluid liquids. 

In [3, 4J Khalatnikov derives, from phenomenological 
arguments, hydrodynamic equations for such solutions 
and investigates the problem of sound propagation in 
them (see also [5J ). In the present paper we study the 
microscopic model problem of the solution of two super
fluid, near-ideal Bose gases. Let us note at once, how
ever, that there apparently does not exist on this planet 
a solution of two Bose liquids such that both components 
do not solidify before the ,\ transition. The only other 
candidate besides He4, namely He6, is radioactive (half
life 0.8 sec). But besides possible astrophysical appli
cations, such a simple microscopic model is of interest, 
since it may help us understand the general laws typical 
of solutions of two superfluid liquids. For example, the 
presence of two Bose branches in the spectrum of the 
elementary excitations is typical of both Bose + Bose and 
Fermi + Bose superfluid mixtures. 

In the first section of the present paper we study the 
problems connected with the energy spectrum of a solu
tion of near-ideal Bose gases. In the second section we 
consider a solution in which the components move with 
independent velocities. This turns out to be possible 
owing to the invariance of the Hamiltonian of the system 
under two independent groups of gauge transformations 
of the first kind. In other wordS, on account of the 
conservation of the number of particles of each of 
the components of the solution taken separately, we 
can introduce two independent phases of two super
fluid motions and, consequently, two superfluid veloci
ties. Also, in this section, we establish the Landau con
dition for the existence of superfluidity in the solution 
under consideration. 

1. A STATIONARY SOLUTION OF TWO NEAR-IDEAL 
BOSE GASES 

The Hamiltonian of a mixture of two Bose gases in 
the case of point interaction between the particles has, 
in second-quantization representation, the following 
form: 
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+ :~ L b.,+b .. +b.,b •• + ~ L a.,+b.,+b.,a ••. 

(1.1) 

P,.P:I,PJ/P, PI,'I,P"P, 

Here ap, ~, bp, and bp are the particle creation and 
annihilation operators for the first and seco!Kl compon
ents of the solution respectively, the operators satisfying 
the standard Bose commutation relations: 

apap'-ap·ap=O, 
b.b.,-b.,b.=O, 
a.b.,-b.'a.=O, 

apap'+ -ap,+ap=l)pp" 

b.b.,+ -b .. +b.=6 ••. , 
apbp·+-bp·+ap=O; 

m1 and mz are the masses of the particles of the com
ponents; g1, gz, and g3 are respectively the constants of 
the interaction between the particles of the first com
ponent' between the particles of the second component, 
and between the particles of the first and second com
ponents. The summation in the last three sums in (1.1) 
is carried out under the condition that the momentum
conservation law, P1 + pz = P3 + P4, is fulfilled. As usual, 
it is assumed that the conditions for" near ideality" of 
the gas 

__ -_ ~ -- -- ~ - ~1' mig, (N' )'" 1 m,g, (N2 )'" 1 m,m,g, (N )'" 
4nli' V '4nli' V '2nli'(m,+m2) V ' 

where Nl and Nz are the numbers of particles of the first 
and second components, N = N1 + Nz is the total number 
of particles, and V is the volume of the system, are 
satisfied. 

It should be noted with respect to the Hamiltonian 
(1.1) that it is invariant under two independent gauge 

transf?rmations of the first kind: ak - akeiq\ bk 
- ~el(pZ, i.e., it commutes with the total particle num
ber operator of each of the components 

which allows us to introduce two independent con~ensate 
"wave functions": ao ~ NI01/Ze1qJ1 and bo ~ N201/Ze1qJ z. For 
a moving solution the presence of the two independent 
phases qJl and qJz enables the two components of the solu
tion to flow with different superfluid velocities (see the 
following section). We assume that qJ 1 and qJ z are equal 
to zero in the case of a stationary solution. 

At temperatures close to absolute zero we can, fol
lowing Bogolyubov(6J, expand (1.1) in powers of the 
small quantities ~ and bp (p f. 0). We obtain 

~ N,'g, N,'g2 N,N,g, L P' 
H=--+--+--+ --a +a 

2V 2V V 2m, • I . 
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·'", 
In deriving (1.2), we used the relations 

IV't=au:!+ .L,ap+ap, 
.*0 

N,~bo2+ .L,b.+b •. 
.,.0 

(1.2) 

In order to diagonalize (1.2), we carr~ out the canon
ical transformation (see, for example, [7 ): 

... ·=1,2 
(103) 

Here ~PlJ and ~il1J are the new Bose operators and the 
functions uO!IJ(p) and v O!IJ(p) satisfy the relations 

.E [u,.(p)ua:(p)- v,.(p)v.:(p)]~ /)." (1.4a) 
" 
.L,[Ua.(P)Va (p)-u.,(p)v.~ (p)]~O, 

as well as the relations 

.L, [u .. (p)u,:(p)- v,,(P)Va:(P)]~ /)a" 

1: [u~,(p)v.:(p)- u.,(p)v,:(p)]~ o. 

The Hamiltonian (1.2) is transformed into the form 

ii~Eo+ .L, .EE,(pH.,+~.,. 
p+-O ,,=1,2 

(l.4b) 

(1.5) 

Dropping in the expression for Eo the terms of higher 
order than the first in the interaction constants, we can 
write 

Eo = N,'g, + N,'g, + N,N,g, 
2V 2V v 

(1.6) 

The functions uO!IJ(P) and v O!IJ(p) and the energies EIJ(p) 
are determined from the system of equations 

where 

.E {[s.,(p) -E,(p)/).,]u,,(p) +R.,v,,(p) }~O, 
, 

(
L+N,g, 

S ( _2m, 2V a, p)-

l'N,N,g, 

V 

H.,~ 
( 

N,g, 

V 

'iN,N2 g, 

V 

m;,g,). 
N,g2 

V 

(107) 

(1.8) 

From the conditio:} that the determinant of the system 
(1. 7) should be equal to zero, we obtain the elementary
excitation energies l ) 

E,. ,(p) ~Cl. ,p, (1.10) 

C'.2~ {~(N,g, + N,g,) ± [~( N,g,_ N,g,),+ N,N,g,: ]'h}'h .(1.11) 
2 my m,V 4 m,V m2V m,m,V 

Thus, the spectrum of the single -particle excitations 
has two branches with a linear dispersion law at low 
momenta (as it should be-in accordance with the 
Goldstone theorem). In order to ascertain the physical 
meaning of these branches, it is necessary to find the 
physical quantities to whose oscillations they correspond. 

Let us introduce the concentration c and the density p 
through the formulas 

mtNt 
pC~l1' 

m,N,+m,N, 
p~ (1.12) 

V 

Then we have in the lowest nonvanishing order in the 
concentration (we assume here that c ~ 1) the expres
sions 

, pg, 
Cl =-,' m, 

(1. 13a) 

(1. 13b) 

c l coincides with the velocity of first sound in a mixture 
of two superfluid liquids (see [4J) and u~ = (ap/op)c if u~ 
is computed in the zeroth approximation in the concen
tration2). Indeed, we have 

U 2 ~ (!!..) ~ _ ~ (~) '" pg2 
, op, dp d V m2' . 

(1.14) 

The quantity C2 coincides with the velocity of third sound 
in a mixture of two superfluid liquids obtained in [4J. To 
first order in the concentration (see [4J ), we have 

(1.15) 

Here !J.l and !J.2 are the chemical potentials of the first 
and second components of the mixture: 

p being given by the formula 

aE, 2[ g,c2 . (1-c)' C(1-c)] 
P~--i)" ~p -2 ,+g2-?,+g.,--- . 

v ml ... m~ n~lm2 

(1. 16a) 

(1. 16b) 

(1.17) 

Thus, using (1.16a), (1. 16b), and (1.17), we find from 
the formula (1.15) to first order in the concentration that 

(1.18) 

which coincides with (1.13b). The velocities Ul and U3 

found in [4J are the velocities of propagation of coupled 
oscillations in the pressure and concentration of a solu
tion of two superfluid liquids. It is interesting that the 
purely imaginary diffusion branch of the spectrum of a 
solution of ordinary liquids is converted in a solution of 
two superfluid liquids into a real branch of the concen
tration fluctuations. 

From (1.9) (see also (1.13a) and (1.13b) it is easy to 
derive the conditions for realness of the elementary
excitation energies: 

(1.19) 

These conditions are sufficient for the fulfillment of the E"(P)~p{~(~+L+ N,g, + N,g,) 
. 24m,' 4m,' m,V m,V 

± [~(L_~+ N,g, _ N,g,),+ g,'N,N,]'!,}'h. 
4 4m,' 4m,' m,V m,V m,m,V' 

which reduce at low momenta to 

(1.9) thermodynamic inequality (ap/av) < 0, which can easily 
be verified with the aid of the formulas (1.17) and (1.12). 
The second condition in (1.19) also coincides with the 
condition for the absence of stratification of the phases 
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in a solution of two Bose gases at T = OOK. Indeed, in 
order that such a stratification will not occur, it is 
necessary that the chemical potential of, say, the first 
component in the mixture be less than the chemical po
tential of the same component in the pure form at the 
same pressure. In other words, for any c (0 < c < 1) the 
inequality 

/-t,(e, pee, P))</-t,(1, pet, P)). (1.20) 

should be satisfied. We can verify, using (1.16a) and 
(1.17), that (1.20) coincides with the second condition in 
(1.19). 

2. A SOLUTJON OF TWO NEAR-IDEAL BOSE GASES 
WITH INDEPENDENTLY MOVING CONDENSATES 

In order to study the case of a solution with moving 
condensates, we write the Hamiltonian (1.1) in the coor
dinate representation: 

h'V' h'V' ) A Jt = S d'r¢,·(r) (-z;;;:-- /-t') ¢,(r)+ S d'r¢,+(r) (- 2m, - /-t. 'i',(r) 

+ ~ Sd'r¢,+(r)¢,+ (r)¢, (r)¢, (r) + ~ S d'r ¢,+(r)¢,+(r)¢,(r)~,(r) 
2 2 (2.1) 
+ ~ S d'r[~,+(r)~,+(r)¢,(r)¢,(r)+¢.+(r),p,+(r),p,(r),p,(r»). 

In this Hamiltonian we have, using the usual procedure, 
also made a change of prescribed quantities from the 
numbers N1 and Na of particles of the components of the 
solution to the chemical potentials 1J.1 and lJ.a, and $1 and 
$ 2 are the Bose operators for the particles of the first 
and second components. Let us, as usual, represent each 
of them as a sum consisting of a condensate part and an 
operator correction: 

(2.2) 

Notice that the epicondensate corrections ~ q. will now 
not exactly satisfy the Bose commutation relations 
(see [8]): 

- -, ( ,'i'. (r) 'i'. + (r') ) 
[Ill.(r); Ill,+(r )]= 6(r-r) (N.,N,,)," 6.,. (2.3) 

Here NQlO and Ni30 are the numbers of condensate parti
cles in the first and second components, QI = 1, 2; 
i3 = 1, 2. 

Let us substitute (2.2) into (2.1). The terms linear in 
~QI(r) vanish if the equations 

{ h'V' } 
,- 2m. - J!.+g, I'i"(r) 1'+g,I'i',(r) I' 'i', (r) =0, 

ft'V' 
{- 2m, - J!,+g,I'i',(r) I '+g,I'i',(r) I' } 'i',(r) =0. 

(2.4) I 

are satisfied. These equations for the condensate func
tions of the mixture of Bose gases are analogous to the 
equation obtained for the Bose gas by Gross [9] and 
Pitaevskir [10]. As in the case of ordinary superfluidity, 
from the nonsteady-state analogs of Eqs. (2.4) we can 
derive equations for two superfluid velocities vs1 and 
v s2 that coincide with the velocities obtained in (3J in a 
phenomenological manner and in (5J from the equations 
of motion for the anomalous mean quantities: 

av" + V ( '+ m.v,,' ) - 0 m,---at /-t. -2- - , 

av.,+ V ( '+ m,v.,,) -0' m, ---at /-t, -2- - , 

here v SQl = (ti/mQl)oSQI lor, S QI is the phase of the con
densate wave function defined in (2.2), and 
/-t.'=I',-j 'i'.!-' (g,! 'i',!'+g,! 'i',!'); /-tz'=/-t,-! 'i',!-'(g,! 1/J,!'+g,! 'i'.! '). 
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Thus, we emphasize again that two independent super
fluid motions with velocities v s 1 and V s2 can exist in the 
solution under consideration. 

Retaining in (2.1) only the terms quadratic in ~QI' we 
obtain 

11=E, + S d'r <Il,+(r) [ - 2:' V'-/-t,+2g,I1/J, (r) 1'+g,I'i',(r) I'] ~,(r) 

+ S d'r <D,+(r) [- 2:' V'-/-t,+2g,lw,(r) 1'+g,lw. (r) I'] <D,(r) 

+ ~. Sd'r[(W.·(r»'<D.(r)<D,(r)+<Il.+(r)tD.+(r) ('i'.(r»'] 

+ ~' Sd'r[(w,'(r»)'<D,(r)<D,(r)+<D,+(r)<D,+(r) (1jl,(r))'1 

+g, S d't[ 41,+ (r).D, + (r) W, (r) ¢,(r) +~,+ (r).D, (r) w.· (r) w,(r) 

+¢,' (r) w.· (r) <D. (r) <D,(r) +<D.+(r) <D, (r) W,'(r)'i'. (r) I. 

Here Eo is given by the expression (1.6). 

(2.5) 

Let us separate out the variable phases in (2.2) in ex
pliCit form: 

where 

Let us rewrite (2.5) with allowance for (2.6): 
h' 

B=E, + S d'r~,+(r) I--(V+iVS.(r»)'-/-t,+2g.'w.(r) I' 
2m. 

(2.6) 

+g,lw,(r) I'] ii, (r) + Sd'r ~,+(r) [ - 2:, (V+iVS,(r»'-/-t,+2g,I'i',(r) I" 

+g,lw.(r)I' ]~,(r)+ t S d'rl¢,(r)I'[~.(r)~,(r)+~.+(r)~,+(r)] (2.7) 

+ ~' S Iw,(r) I'[~, (r) ~,(r) +~2 + (r)~, + (r)] +g, S d'rl'i'. (r) II'i',(r) I. 

X [~,+(r) ~,+ (r) +~,+ (r)~. (r) +~, (r) ~,(r) +~,+ (r) ~,(r) I. 

We diagonalize (2.7) by carrying out the canonical trans
formation 

;.(r)= ~ ~[u.,(r,l)s,(I)+v.:(r,/)V(l)I. (2.8) 
"=1,2 f 

The l sum in (2.8) is over all the particles that are not 
in the condensate. The functions u and v satisfy the rela
tions 

1: ~ [u,,(r, f)u.: (r',l) -v.v(r', I) v.:(r, I) ]=0 (r, r')6,v, 
r a=t,2 

~ ~ [u.v(r,/)v.,(r',/)-v •• (r,/)u.,(r'/)I=O 

(here 6(r, r') denotes the expression in the round 
brackets on the right-hand side of the formula (2.3», as 
well as the relations 

~ S d'r[u.v(r, l)u,:(r, m) -v,v(r, m) v.v· (r, I)] =6'm6." 

~ S d'r[u,,(r, I) Vav' (r, m) - u • .(r, m) V,v' (r, I) ]=6'm6.~. 

After substituting (2,8) into (2,7), we obtain 

JJ=E,+ ~~E,(I)V(l)S,(l). (2,9) 
"=1,2 I 

without allowance for the terms of order higher than the 
first in the interaction constants, Eo is given by the ex
pression (1.6), 

The system of differential equations for the deter
mination of the functions u and v and the excitation ener
gies Ev(l) is entirely similar to the system of algebraic 
equations (1.7): 
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L ([Sa,(r) -E,(l)6a']u,,(r, I) +Ha, (I') v" (I', t)} =0, 

(2.10) 
L (Ra,(r) n" (I', I) +[8a; (1') +E,(1)6a,]v,,(r, l) }=O, 

where 

ft' So,(r) 

( 
-2(V+iVS'("»'-Il,+2g,Il/l,(r) l+g,Il/l,(r) I', g,Il/l, (I') Ill/l,(r) I ) 

= g'Il/l~;r) 11~,,(r) I. - 2h~, (V+iVS,(r»'-f!,+2g,Il/l,(r) 1'+g,Il/l,(r) I' 

Ra,(r)=( g,Il/l,(r) I', g'Il/l,(r)II~',(r)l) (2.11) 
g,Il/l,(r) Ill/l,(r) I, g,Il/l,(r) I' 

Let us consider in greater detail the case when both 
condensates move uniformly with different velocities Vl 

and V2: 

(2.12) 

Here naO = Na0/v (a = 1, 2) are the densities of the 
first and second condensates. The condensate densities 
coincide up to terms of order higher than the first in the 
interaction constants with the densities of the corre
sponding Bose gases. 

Further, from the Eqs. (2.4) we have: 

(2.13) 

In the case of uniform motion of the condensates the role 
of the variable l in the formulas (2.8)-(2.11) is played 
by the momentum p. 

Setting 

(2.14) 

Substituting (2.14) into (2.10), and taking (2.13) into con
sideration, we obtain, instead of a system of differential 
equations, a system of algebraic equations of the form 
(1.7): 

~ {[Sa,(P) -E,(p) 6a,]u,,(p) +Ra,v,,(p)} =0, 
"-' , 
~ (/{a,U,,(p) +[Sa,(P) +E,(p) 6a.]v,,(p)} =0 

with the matrice s (see (2.11)) 

g,Y""n" ) 
, , 

2~' + pv,+g,n,. 

g,Yn"n" ) 

p' 
--pv,+g,n", 
2m, 

R _( g,n", g,Yn"n 20 ). 

a.~ - g3l'nIOn~(), g~n:!o 

(2.15) 

By equating to zero the determinant of the system (2.15) 
we can find the energies of the excitations of a solution 
with two uniformly moving condensates. Equating the 
determinant to zero, we obtain the following equation: 

Here 
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e'+ (a-26') e'+26de+b+6'a+6'=0. 

f=E-(p',+pv,)12, 6= (pv,-pv,)!2, 
a=-A, '-A ,'+B,'+B,', b= (A,A,-2C') '+ (B,B, 
-2C') '- (B,A,-2C') '- (A,B,-2C')', d=-A,' 

+A,'+B,'-B,', 
A(.=p2/2mo.+ganao, B:x.=g'J.nao (a=i, 2), 

C=g:;l'n lOn 20 • 
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(2.16) 

In the particular case of motion with equal velocities 
Vl = V2 = v, {; = 0, Eq. (2.16) is converted into the equa
tion 

e'+ae'+b=O, (2.17) 

whose roots are given by the formula 

E,ffi(p) =E} (p) +pv, v=1, 2. (2.18) 

Here E~(p) are the energies of the excitations of the 
solution with moving condensates, while the quantities 
E~(p), which are determined by the formula (1.9), are 
the corresponding energies for the case of stationary 
condensates. But if the condensates move with different 
velocities, then, as can be seen from (2.16), the excita
tion energies will depend on the half-sum and half
difference of these velocities, which will lead, at tem
peratures different from zero, to similar dependences of 
the currents, densities, and all the other thermodynamic 
quantities. 

The exact expressions for the roots of Eq. (2.16) are 
too unwieldy, and therefore in solving this equation we 
can use the fact that one of the positive roots of Eq. 
(2.17) is much larger than the other at concentrations 
c « 1, i.e., when Cl »C2 (see (1.13a) and (1.13b)). If 
we assume that Vl «Cl and V2 «Cl' but that Vl and V2 

are entirely arbitrary in relation to C2, then Eq. (2.16) 
will possess an analogous property. 

We have 

EfI'(p) = pv,;pv, + (-a+26') 'I" 

pv,+pv, -6d-[ (6d)'-(a-26') (b+6'a+6') ]'/. 
(2.19) 

E,ffi(p)=--2-+ a-26' 

The Landau condition for the existence of superfluid
ity in this case will be the condition that the smaller root 
E~(p) > O. A simple analysis of Eq. (2.19) leads us to 
the conclusion that the Landau condition is violated when 
IV1I 2: C2 and IV21 ;G C2. Thus, upon the attainment by any 
of the components of the solution of a critical velocity of 
the order of C2 (we abstract ourselves here from the 
possible existence of vortices), the superfluidity of this 
component vanishes. It should be emphasized that in the 
considered model for the solution, for c « 1, the Landau 
condition is violated at considerably lower velocities 
than in a pure Bose gas of the same density. This is due 
to the appearance of a second Goldstone excitation branch 
in a solution of two superfluid liquids. 

In conclusion, the author considers it to be his pleas
ant duty to thank 1. M. Khalatnikov, without whose stimu
lating influence the present work would never have been 
published. I am also grateful to V. L. Pokrovskil for his 
benevolent criticism. 

OWe consider only the two positive roots of the fourth-order equation. 
The two negative roots correspond to normalization conditions that 
differ from the conditions (1.4a) (see, for example, [7]). 

2)The retention in (ap/ap)c of terms of order c is senseless, since these 
terms were neglected in the derivation of the eXpression for u~ itself 
(see [4]). 
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