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It is shown that in the presence of an undamped current in a thin ring consisting of two 
superconductors the thermoelectric current depends essentially on the magnitude of the undamped 
current. In this case the change in the thermoelectric current is proportional to the phonon 
relaxation time, whereas the ordinary thermoelectric current is determined by the total relaxation 
time. 

The problem of the thermoelectric phenomena in 
superconductors has been discussed in superconductivity 
theory, beginning with Meissner's work [1J, but it was not 
until recently that Significant progress was made in this 
field [2J. The aim of the present paper is to investigate 
the thermoelectric phenomena in a circuit in which an 
undamped current flows. 

It was shown in [2J that a thermoelectric current can 
flow in a closed circuit consisting of two different super
conductors in which a temperature gradient exists, and 
that the current will produce in the ring a magnetic field 
proportional to the temperature gradient. Let us carry 
out a simple derivation of this result. Let us consider a 
cylinder consisting of two superconductors (of thickness 
d) with a temperature gradient. The distributions of the 
magnetic field and the currents inside the superconduc
tors are determined by the London equation and the 
equation for the current [2J 

1=-1]VT+eN.v .. 

rot H=4nllc; 

V.=_1_( VX-~A) , 
2m c 

(1) 

H = rotA, (2) 

where X is the phase of the wave function of the conden
sate, Ns is the density of the superconducting electrons, 
T/ is the thermoelectric coefficient computed in [2J. The 
magnetic-field distribution in the k-th superconductor 
has, for the boundary conditions H(d/2) = He and H(-d/2) 
= Hi' the form 

H(')(X)=~(H,-H')Sh~/Sh~+~(H.+H.)Ch-=-/Ch~. (3) 
2 II. 211. 2 6. 26. 

The current distribution is found from (3) and (2), and 
has the form 

(0) c aH'" (x) c [ x / d I. = -----= --- (H.-H.)ch- sh-
4n ax 8n6. 6. 26. 

+(H.+H.)Sh-=-/Ch~] . 
60 26. 

(4) 

If the field outside the cylinder is equal to zero, Le., if 
He = 0, then calculating the circulation of the current 
about the inner part of the cylinder, using (4) and (1), 
and remembering that 'f5 A' dl = "'i is the flux inside the 
cylinder, we obtain ford/R « 1 and Ii/R « 1 (R is the 
radius of the cylinder and the ratio d/Ii is arbitrary) the 
value 

<I>,=(n+8/2n)<I>o; (5) 

"'0 = 1Tc/e is the magnetic -flux quantum (Ii = 1), 
while B is the difference between the thermoelectric 
angles [2J: 

In deriving the expression (5), we used the condition 

¢ ,"x dl=2nn. 

(6) 

Let us now consider the same superconducting cylin-
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der located in an external magnetic field whose penetra
tion depth is large compared to the thickness of the 
cylinder. Then in the absence of a temperature gradient 
there will flow in the ring a uniform-over the thickness 
of the cylinder-persistent current: 

l y=-c(H,-H,)/4nd, (7) 

which corresponds to the superfluid velocity 

(8) 

It is evident that additional terms may appear in the ex
pression for the thermoelectric current when current 
flows in the ring, and the expression for the current will 
have the form 

1=-1] VT+av.(v. VT) +~v.'VT+eN.v •. (9) 

As will be shown below, the dominant term, which de
pends on vS' is the term proportional to Vs(Vs' VT), 
since a/f3 ~ T hIT »1, where Tph is the phonon relaxa
tion time and ~ is the total relaxation time in the normal 
metal. We shall assume that the inequality TphlT »1 is 
always satisfied. A calculation similar to the one car
ried out above for the derivation of the relation (5) yields 
for the change in the magnetic flux inside the cylinder 
upon the inclusion of a temperature gradient the value 

(10) 

where B = Ih - 82, which is computed with allowance for 
the condensate motion, will have the form 

(11) 

where v sk is determined by the relation (8) in the ab
sence of a temperature gradient, i.e., 

v"""-cH,/4neN •• d, (12) 

since Hi « He when 1i 2/Rd « 1. 

Thus, the thermoelectromotive power of a supercon
ductor changes upon the application of a magnetic field. 
Let us note at once that the change in the thermoelectro
motive power upon the application of a magnetic field can 
be larger than the thermoelectromotive power in the ab
sence of the field, since a ~ Tph' while T/ ~ T, the total 
relaxation time. 

Let us now proceed to compute the coefficient a. In 
the presence of a finite superfluid velocity the kinetic 
equation has the form [3J 

oe. an. iJe. an. 
--- --= I.mp{n.}+Ip.{n.}; 
up at iJr iJp 

(13) 

where 
i'.= (s.'+L'1 ') "'+pv.=e.+pv., 

p. 1 ( 2e) p' p.' 
v. =-=- Vx --A , £p=-+-. -+Il-eq>. 

In 2m c 2m 2m 

(14) 

In the superconductor, the gradient of the electrochem
ical potential is equal to zero, i.e., V (11- - eqJ) = 0, while 

Copyright © 1975 American Institute of Physics 90 



I ph{n.l~lt )2 le.I' { {(1-n.)n._. [ (1 +N.) 6 (~p-E._.+ro.) 
• 

+N.6(i'.-E._.-ro.) ]-n.(1-n.-.) [N.6(E.-E._.+ro.) 

+ (1 +N.)6 (E.-~._.-ro.) ]l (1 + s.s.-.-!J.') + (t _ S.S.-.-!J.' ) 
E.Ep_. E.E._. (15) 

x {(1-n.) (i-n._.) [(t+N.)6(E.+E._.+ro.)+N.6(~.+E._.-ro.)] 

-n.nq _.[N.6 (f.+E._.+ro.) + (1 +N.) Ii (E.+E._.-OO.) ] I}, (16) 

where ICq l2 = 1Twq/2Tm2la (k = 1), la is the mean free 
path in the normal metal when T »® (® is the Debye 
temperature). In the absence of a temperature gradient 
Eq. (13) has as its solution the equilibrium Fermi func
tion of the energy Ep: 

(17) 

It is evident from (15) that the electron-impurity colli
sion integral computed with any Ep-dependent distribu
tion function vanishes, and therefore any perturbation of 
the distribution function that depends only on Ep can 
relax only on the phonons, in complete analogy with the 
case of the normal metal, where any function of the en
ergy relaxes to the equilibrium function during the 
phonon relaxation time. However, in contrast to the 
normal metal, where such a function does not make any 
contribution to the current, in the supercondutor the ap
pearance of an Ep-dependent correction to the distribu
tion function leads to the appearance of a current whose 
strength is proportional to the phonon-induced-relaxation 
time. The effect being studied is connected precisely 
with this circumstance. 

In the presence of a temperature gradient the kinetic 
equation assumes the form 

( s. ) 1'. an.!O) (I) (I) 
- v.-+v, VT---=I,mp{n p I+I"h{n. I, 

e. T agp • 
(18) 

where vp = a~p/op and np) is the nonequilibrium correc
tion to the distribution function. It can be seen from (18) 
that the left-hand side of the equation has two terms: 
one term contains the function Vp~p/Ep' which changes 
its sign on crossing the Fermi surface and is responsi
ble for the thermoelectromotive force in the presence of 
a stationary condensate, while the other term contains 
vs' the ordered excitation velocity connected with the 
fact that the quasiparticle spectrum Ep is determined in 
a reference system moving together with the condensate. 
Therefore, in the laboratory system the quasiparticles 
have the ordered velocity vs' 

It is convenient, for the solution of Eq. (18), to repre
sent the distribution function in the form 

n~1) =CP. + sign s.eD. (19) 
with the functions 'Pp and cI>p depending only on I ~ pl. 
Then the impurity collision integral assumes the form 

(I) 1 I: (!J.2 
) I,~,,{n. }=- W,_,,[cpp·-cp.] 1--- 6 (E.-E.') 

2 . EpEp' . 
1 s.~ [IS •. I E. ( !J.')] + -;- - .l... W._.· --eD.·-eD. -- 1 - -, - 6 (E.-e.'). 
2 Ep .' E.' I S.I E.E.' 

(20) 

Because of its linearity in npo, the phonon operator also 
splits up, in complete analogy with (20), into even and odd 
functions of ~ p' 
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Solving Eq. (18) with allowance for (19) and (20), we 
find that in the lowest order in PFvs/Ep ~ PFvs/Tc «1 
and under the condition that Timp « Tph the quantity cI>p 
has the form (see [2J ): 

(21) 

where Timp is the time of relaxation on the impurities 
in the normal metal. 

Let us now turn to the equation for 'Pp: 

e. an~O) 1 ~ (!J.' ) 
-v,VT---=-"'-' W._.·[CP.'-CP.] 1--- 6(~.-E.·)+Iph{cp.1. 

T Of. 2.. E.E.· (22) 

Let us, by adding and subtracting terms proportional to 
62/EpEp/, separate out from the phonon operator the part 
depending only on Ep. As a result, we shall have, after 
making the substitutions 

the expression 

a (0) 

n. 
cpp=-Tv,VT-a_ t.; 

E. 

(0) I I: I I {( !J.') (0) (0) I ph {f. =nv,YT e._., , 1--- n. (1-n.· ) (f.·-f.) 
fp£p' .' 

x[N._.,1) (l'.-f.+ro._.·) + (1 +N._.,) I) (E.-f.'-ro._.·) ] 

( !J.') (0) (0) - 1 + -:-::- n. n_.· (f-.,+t.) [N._.·I) (f.+'_ •. +ro._.') 
€pEp' 

+ (1+N._.,) I) (l'.+E_p-ro._.·) ] }. 

(23) 

(24) 

(25) 

The operator Iph{fp} is obtained from (25) by replacing 
the coherence factors in the first and second terms by 

The distinctive feature of Iph{~} is its explicit depend
ence on the direction of the quasiparticle momentum. 

It is clear that we can now solve Eq. (22) with allow
ance for (24) and (25) by an iterative procedure, for 
which purpose we represent fp in the form 

(26) 

Let us then assume that fp1) «fo{Ep)' Then, if fo(Ep) 

satisfies the equation (remembering that Iimp{fo(Ep)} = 0) 

ep an!O) (0) 
----=Iph (fo(E.)}, 

T iiE. 

we have for fp1) the equation 

I'mp{f~I)}+I~~) (f~O)J+I ~~) (f;1) }=O, 

whence 

which justifies the assertion that fp1) is small. 

(27) 

(28) 

Let us multiply (27) by Ii(E - Ep) and sum over all p. 
We then obtain 

where 

E 8n(O) _(0) 

----~lph (fee)}, 
T OE 

1;:){f(e)}=I:I)(e-f.)Iph{fo(E.)} II: 6(e-f.). 

(29) 

The right-hand side of Eq. (29) depends on v~ only 
through the effective transition probability. In the super-
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conductor, as in the normal metal, scattering by the 
phonons is highly inelastic, and each collision is effec
tive in respect of the transfer of energy (but not of mo
mentum). This means that the effect of the phonon opera
tor can be replaced by an effective relaxation time T ph 
~ ®2/T 3, and the function rpp' (23), has, up to terms 
of the order of v~, the form 

[ e, an~O) a '( e, an~O) )] 
'l',=Tph(V.VT) ---+(pv.)- --- , 

T aep ae, T ae, 

where Tph does not depend on vs' 

The total current 

J=2e L v,n,+ev.N; 

(30) 

(31) 

setting IIp = npO) + rpp + <Pp sign ~ p' and expanding it in a 
power series in PFvs/T « 1, we obtain 

J=-TjVT+a,v.(v. VT) +ev.N.=JT+L'+ev.N. (32) 

where 

(33) 

(34) 

J. =2e ~ Tph(V. vT) (pv.)vp- --- . 
, iJ (ep an~O») 
~ iJep T ae, 

p 

(35) 

The expression (35) differs from the other terms con
taining v~, in that it contains the phonon-induced-relaxa
tion time and is an even function of ~p' which yields a 
nonvanishing result even in the zeroth approximation in 
TI/J.. Let us, however, note at once that part of rpp is an 
even function of p and ~p' and therefore the existence of 
the term v s . VT will clearly change the energy gap 
entering into the expression for Ns . This correction 
turns out to be of the same order of magnitude as (35), 
and we shall consider it below. Taking the correction to 
the energy gap (and, consequently, to Ns ) into account, 
we obtain for Jv = J~ + eVsNs the expression 

£ a'n~O) £ a (e, an~O) ) 
1.=2e (pv.)vp--M+2e (pV.)V,Tph(V.VT)- --- . ae, ad aeo T !Je, 

, , (36) 

Since 
a (0) 

~ n, 
2 ~ (pv.) Vo a;; = v.(N.-N) , 

, 
while Ns depends only on A/T, we obtain after simple 
transformations the expression 

J.=eN.vf': + "t'h(v~VT) ] a InN.( ~ ) / a In(: ). (37) 

Thus, it is necessary to compute the correction (to the 
energy gap) proportional to v s • VT. 

It follows from (37) that the Vs-dependent contribution 
to the current for A - 0 vanishes, since I5A tends to zero 
together with A as we approach the transition point. 

The change in the energy gap is easily found from the 
self-consistency equation [3J : 

A ~ 1-n,-n~p 
1 = 2 ~ (~,2+d') 'I •• , 

(38) 

Substituting ~ = ~O) + rpp' we find after simple trans
formations that (Ao is the halfwidth of the energy gap at 
T = 0 and Vs = 0) 
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do ( N.) T,hV.VT _2Soo n(e) 39) InT+ 1-N --r-- , (e'-d')'" de. ( 

Expanding (39) in a power series in I5A/A « 1, we obtain 
the change in the gap: 

~= N-N. TphV.VT «1. 
d N. T 

(40) 

Notice that the sign of the change in the gap depends on 
the direction of v s relative to the vector VTo The ex
pression for the current with allowance for (40) assumes 
the form 

Tp'(V,VI') (d)! ~ (fj,) L=eNv. T iJlnN, T (jln T ' (41) 

i.e., the coefficient ()I is equal to 

eNT" ( d ) / ( d ) a=--iJlnN. - Din - . 
l' T l' 

(42) 

The ratio of the change in the thermoelectric current 
for Vs f. 0 to the thermoelectric current for Vs = 0 is of 
the order of (PFvs/T)2TphiTimp' and can become larger 
than unity when (pFvs/T)2« 1 if Tphhimp »1. 

We have assumed in all the preceding calculations 
that Vs does not depend on the coordinates, i.e., we have 
neglected the curling of the trajectories of the excita
tions in the magnetic field. To estimate the influence of 
this effect, let us write the kinetic equation for the func
tion <Pp with allowance for the spatial dependence of v s: 

-~(v,vr)~ iJn~O) -~[vp iJ'l', _~(~) a'l'O] 
e, T af, ep ar ar 2m ap (43) 

+ [v. aID, _ ~Spv.) aq,p 1 = I,"",{ID,l. 
Or iJr Dp 

Let us allow for the terms containing the derivatives of 
Vs with the aid of perturbation theory. Then in the lowest 
order in PFv siT « 1 it is sufficient to substitute for rpp 
only the p-even part. Taking into account the fact that 
the derivatives are computed at constant Ep' we obtain 
for the correction to the function <Pp the equation 

I~,I a(v.VI') ep an:O) cD~') I~pl 
--Vp T",---= ---, (44) 

Ep Or T iJep 'timp Ep 

from which we find the first-order correction to be equal 
to 

(45) 

which determines the current flowing in the direction 
perpendicular to VT (the Nernst-Ettingshausen effect). 
The correction to the thermoelectric current is clearly 
of second order in the parameter TphavS/axk ~ wcTph' 
The ratio of the change in the thermoelectric current 
due to the Nernst-Ettingshausen effect to the change Jv 
in the current due to the condensate motion and deter
mined by the expression (41) is 

~ ~ ~(~)'( Zp' )'. 
I. T p ' fL d 

(46) 

We consider this ratio to be small!). 

This effect will be observable only in films of thick
ness d satisfying the condition ~ «d ;; 15, where ~ is 
the coherence length. The first condition must be im
posed if the diffuse scattering by the walls is to be pre
vented from leading to a drastic change in the spectrum 
of the system. At the same time, since the scattering by 
the walls is elastic, it cannot lead to additional relaxation 
of the function rpp' and the change in the thermoelectro-
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motive force due to the condensate motion will still be istics of a superconductor as the relaxation-in terms of 
proportional to the phonon relaxation time when the scat- energy-time of the excitations, 
tering by the walls is taken into account. 

In conclusion, let us express the parameter PFvs/T 
in terms of the magnetic field, taking into account the 
fact'that the condition ~ «d :S {j can be satisfied only 
by superconductors of the second kind, Using the coup
ling (see [4J) 

(Po Il 
H,,=--ln-

4nll' ~' 

we obtain 

PFV. =~~~J.-ln~< 1. 
T 8 T Hoi d s 

A suitable object for such experiments is pure niobium, 
which is a superconductor of the second kind and in which 
the mean free path at low temperatures exceeds the co
herence length by a factor of 300 and all the conditions 
are easily met. At the same time, since the considered 
effect is insensitive to elastic scattering mechanisms, it 
may be inferred that the effect will also occur when 
l « ~, i.e., in alloys, for which the kinetic equation (13) 
is invalid. 

Thus, the change in the thermoelectric effect due to 
the motion of the condensate can be observed in super
conductors of the second kind at fields H < He 1, This 
effect enables us to measure such important character-
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1)1t is obvious that the condition (46) is important only when [ph < 
min(d, Il). If, on the other hand, [ h > min(d, 6), then the curling of 
the trajectories can be neglected iF Yf'/wc > min(/i, d) (Iph is the mean 
free path for relaxation in terms of energy). 
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