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A theoretical study is reported of the linear stage of turbulence development during the interaction
between a beam of ions and a chemically active weakly ionized target. It is shown that when
inhomogeneities in the beam density are taken into account, this leads to the appearance of a growth
threshold that depends on the chemical reaction and charge exchange cross sections, a fact that can
be used to determine the cross sections as functions of the beam velocity.

T he ion beam method ! has long been used to investi-
gate the kinetics of ion-molecule reactions, i.e., reac-
tions of the form

B++A,~AB*+A, (1)
By examining the various characteristics of the par-
ticles leaving the target one can then determine the
cross sections for the elementary processes involved
in this system. The main disadvantage of this method
is that all the modern sources of ion beams have very
small saturation currents (S 10™ A for U ~ 10 v). This,
of course, introduces considerable difficulties for the
detection of the chemical reaction products. Moreover,
this method cannot be used to produce the above type of
chemical reaction on an industrial scale,

It is clear that the effective ion current can be in-
creased by replacing the ion beam with a quasineutral
jet of plasma in which the electrons and ions move with
directed velocities. It is also important to note that,
since in many cases the cross section for the reaction
given by (1) is found to increase when the molecules
are in an excited state, the target temperature must be
sufficiently high, i.e., the target may be a weakly ion-
ized plasma in which the electron density ng is much
less than the neutral-particle density n,,. Under these
conditions we have the usual (for plasma systems)
problem of the stability of the interaction. It is clear
that the appearance of instability may lead to a sub-
stantial distortion of the charged-particle distribution
function'?’ and, consequently, may affect the rate at
which the chemical product is produced. In this paper
we investigate the case where the ion density is such
that ng < ng << ny,. Moreover, we shall assume that
the directed velocity of the ions and electrons in the
beam is u << vpe. The electrons in the plasma jet can-
not then lead to additional instability and may be elim-
inated from the analysis.

Let us, therefore suppose that the beam of cold ions
of density ng and mass Mp is travelling along the x
axis with velocity u. The weakly ionized target consists
of molecules A, of density npg, cold ions A", and elec-
trons with ne =ny at temperature Tg. The target occu-
pies the layer 0 = x = L. It is important to note that
in addition to the molecules A; the target may also con-
tain the atoms A. They, however, do not participate
either in the chemical interaction or in the interaction
with the charged particles, and can also be eliminated
from the analysis. As already noted, we are assuming
that np, > ne >> ng. We shall also assume that
Mp >> My, and that collisions of ions B' with particles
A, do not lead to an appreciable change in the directed
velocity, i.e., that the velocity of the reaction products
is upap*= uMp/(MB +Mp) ® u.

The stability problem will be solved in the linear
approximation, using the equations of multicomponent
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hydrodynamics. Before we write out these equations,
let us consider in greater detail the main processes
which distinguish this problem from the well known
beam problem in high-temperature plasma.'?! These
processes include various types of collision leading,
firstly, to the relaxation of the particle momentum and,
secondly, to the appearance of density inhomogeneities.
For the A" particles the main type of collision is reson-
ance charge transfer on atoms A (A" + A —~ A +A"),
which leads to a substantial relaxation of their momen-
tum (it is well known that the cross section for this
process is greater than or of the order of the gas-
kinetic cross section), but does not lead to a reduction
in the number of the A" ions (we are assuming that the
target particles are in thermodynamic equilibrium).
Consequently, resonance charge transfer is allowed for
in the equation of motion for A" but not in the continuity
equation.

For the B' ions, the main processes are collisions
leading to the formation of the chemical product AB*
[see (1)] and charge transfer on neutral atoms and mol-
ecules in the target (the cross section for this process
may be either greater or smaller than the gas-kinetic
cross section depending on the extent to which charge
transfer approaches resonance). Both processes lead to
a reduction in the density of the B ions and, therefore,
enter the equation of continuity. As already noted, we
are assuming that Mg > Ma and, therefore, all elastic
cross sections leading to the relaxation of the momen-
tum of the B' ions can be neglected (in a single collision
and the change in momentum is Ap/p ® My/Mp <K 1).

Finally, for the AB" ions, the main processes are
chemical interaction, leading to an increase in their
density, and charge transfer on neutral particles,
leading to a reduction in the number of the AB" ions.
As in the case of B", we are neglecting elastic scat-
tering for the particles AB’. We shall also suppose that
the unstable oscillations are potential and have low
enough frequency [w K wpe = (4meng/m)'’?], so that
electrons in the field of this wave succeed in reaching
the Boltzmann distribution.

In view of the foregoing, the equations for the prob-
lem can be written as follows:
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In these expressions ¢ is the perturbation of the elec-
tric potential of the wave, all the perturbed quantities
are primed, v, { aovTa> n A is the frequency of resonance
charge transfer between ions and atoms of type A,

v, ={o,vpp) n, is the charge transfer frequency between
ions of type B™ and neutrals inthetarget, v, = ( °2VTAB>“n
is the charge transfer frequency between ions of type
AB’ and neutrals in the target, and Vg =(o xVTB’ "AB

1s the frequency of collisions between ions of type

B" and molecules A,, which lead to the formation of

the ions AB'.

In the zero-order approximation ¢ = 0, and it fol-
lows from (2) that
vtV
o)
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Therefore, the set of equations given by (2) for the per-
turbed quantities contains coefficients which are explicit
functions of x and, therefore, these perturbations can

be sought in the form ¢ ~ @(x)e”i®t, The derivation of
the dispersion relation in the general form is quite lab-
orious and, therefore, we shall give it in detail only

for the case when there are no chemical interactions,
i.e., when v, = vy = 0. The equations given by (2) then
reduce to the form

na=n,=const, nz=nesexp (—
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In these expressions w;,a41re2no/MA and ¢ = Te/Ma.

Applying the operator (—iw +ud/8x + v,) to both sides
of (4), and using (3) and (6), we obtain
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Applying the operator (—iw + u8/9x) to both sides of
these equations, and using (5), we finally obtain
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In this expression wpb = 4me’n,g/MB.

In the general case, a similar procedure leads to the
following dispersion relation:
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Equation (9) cannot be solved in a general form, and
we shall therefore examine only some special cases
which are most readily realized in practice. However,
before we proceed to the particular analysis of these
situations, we must consider a number of further points.
Analysis of the instability of oscillations produced in
plasma by an ion beam is meaningful only when
w >> Vmax. When this condition is not satisfied, the
oscillations will of course be damped. Since in beam
instabilities the growth rate is a maximum for oscil-
lations with phase velocity approaching the beam veloc-
ity, the inequality w >> v 5% can be rewritten in the
form

9)

Vi tve—v,

Vmax

(10)
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We shall therefore assume throughout that the ine-
quality given by (10) is satisfied. Finally, we recall
that the inequality ng << nA was assumed right from
the outset. Since the problem contains small parameters,
we can use perturbation theory to solve (9). We shall
describe this in detail for the special case where there
are no chemical interactions in the system.

1. INTERACTION OF AN ION BEAM WITH WEAKLY
IONIZED TARGET IN THE ABSENCE OF CHEMICAL
REACTIONS

This situation is encountered when dense, low-energy
beams of neutral particles are produced by charge trans-
fer from a plasma jet to a gas target. In this case
vx = V; = 0, and (9) takes the form given by (8). Assu-
ming that w = w, + 6 and w, >> §, we can rewrite (8)
in the form
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The solution of (11) will be sought in the form of the
series ¢ = Qo + @, + . where “OB/nO << 1 and
¢, << @o. In the zero-order approximation, we have
from (11)

05\ F'Qo _ 0p
(-55) e (12)
It follows from this equation that ¢ = (p@lkx. The rela-

tionship between the oscillation frequency and the wave
vector k is given by

O pe
O M amt/kien) ™ (13)
In the first approximation we have from (11), using
(13),
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iz k*c? L az*
(14)
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We now multiply (14) from the left by ¢¥e~ikX and
integrate it with respect to x across the target
0 = x = L. Successive integration of the left-hand side
of the resulting equation by parts, using the fact that
the operator 8°/8x* —k® is self adjoint, and the fact that
the potential and all its derivatives are zero on the
boundaries of the target, we obtain

(15)

Wpa® u
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o’ v L
Before we proceed to investigate this equation, we

A. A. Ivanov and V. V. Parail 50



must introduce the following remark. We recall that,
firstly, (15) is valid only at the initial stage of develop-
ment of the instability, when the oscillation amplitude
is still small enough and the reaction of the waves on
the distribution of ions in the beam in plasma can be
neglected. Secondly, it was assumed in the derivation
of (15) that the wave potential was zero on both boun-
daries of the target, At the point of entry of the beam
into the target this is always valid and, since at x = 0
the oscillations increase from the thermal-noise level,
their amplitude can be neglected. The condition that the
potential at x = L is zero imposes certain definite res-
trictions on the length of the target and the growth rate.
In fact, since we have included in our analysis only
waves travelling in the direction of propagation of the
beam (such oscillations have the maximum growth rate),
the amplitude at x = L is not in general zero. After
reflection from the plasma boundary and transformation
in the thin transition layer, these oscillations leave the
system (we recall that we are taking into account only
oscillations traveling in the direction of propagation of
the beam), and this leads to a reduction in the wave
energy within the plasma.

The influence of this effect on the growth rate can be
estimated quite readily by considering the integral
equation for the energy balance:

@9 __ @
Vo Ve - (16)
In this expression @ is the mean amplitude of the poten-
tial within the target, 7 is the mean growth rate given by
(15), and vgp is the group velocity of the oscillations.
It follows from (16) that the escape of the oscillations

from the system can be neglected when
v>Vg /L. (17)

Specific estimates based on this formula will be given
below for each particular case.

We now return to (15). We have already noted that
the oscillations with w, = ku have the maximum growth
rate. In that case, we have from (15)
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In both cases the oscillations are unstable.

Y=Ilmo=

Vi<Ymax<Vo

(18)

If, on the other hand, we have

[mn W u (1_0\1)(_\7._))] <y,
ne Ve Vy VL

then the instability cuts off and Im = —v,. This can be
explained physically as follows. It follows from (2) that
the rate at which the beam ions disappear is propor-
tional to their density. Since the beam ions move with
velocity approaching the phase velocity of the wave,
their density in the wave field is modulated. The instab-
ility tends to increase this modulation, and consequently,
the opposite effect of density spreading leads to a re-
duction in the wave energy, i.e., to the suppression of
the instability.

(19)

In addition to the inequalities given by (18) and (19),
there is a further condition which is necessary for the
appearance of instability. In fact we have already noted
that the maximum growth rate is exhibited by oscilla-
tions with phase velocity approaching the ion velocity
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in the beam. From (13) we then obtain the following
condition for the appearance of instability:

(20)

usic.,

In the opposite case, only the oscillations propagating at
an angle to the direction of propagation of the beam can
be unstable.

Finally, let us estimate the effect of the escape of
oscillations on the growth rate. Since v < u throughout,
it follows from (17) that the necessary condltlon for the
development of instability is

(1)

It is interesting to note that the threshold for the devel-
opment of instability depends explicity on the charge
transfer cross section of the B* ions. This can probably
be used as a method for determining the dependence of
the cross section on the velocity of the incident ions.

L>u/Y .

2. INTERACTION OF AN ION BEAM WITH WEAKLY
IONIZED TARGET FOR v, ~ v, > vy

This case includes the interaction between a plasma
jet and a target in which the original B" ions and the
product AB" ions undergo resonance charge transfers
on the target atoms. In fact, since the resonance charge-
transfer cross section is much greater than the cross
sections for all the other processes, it may be supposed
that vy << v, v, If in addition v; ® v, and Mg = Mpp
(and, consequently, ug = vpB), it follows from (2) that
the set of B" and AB’ ions is equivalent in the electro-
dynamic sense to a beam of B’ ions interacting with
the plasma in the absence of the chemical reactions.
This has already been considered above.

3. THE CASE v, =0 (NO AB* CHARGE TRANSFERS)

1t is known'®’ that, if the ionization potential of the
incident ion is less than the ionization potential of the
target atom, charge transfer is possible only at very
high energies of relative motion of the particles
(¢ ¥~ MAE/m, where AE is the ionization-potential
difference between the atom and the ion). As an example,
let us consider the interaction between oxygen ions O
and a weakly ionized hydrogen target. The ionization
potential of oxygen is Ig = 13.61 eV and the ionization
potential of atomic hydrogen is Iy = 13.59 eV. Finally,
the ionization potential of the radical is Igy = 13.18 eV.
When the oxygen ions enter the gaseous target they
undergo charge transfers on the hydrogen atoms. At
the same time, there is the chemical reaction resulting
in the formation of OH'. These ions cannot undergo
charge transfers, and freely pass through the target. In
this case, ¥> =0 and (9) assumes the form

) d 2 ‘12 aZ nZ
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Using the above method, we find that, as before, the
relation between the frequency of the excited oscilla-
tions and the wave vector is given by (13). In the first

approximation, it follows from (22) that
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In these expressions “"f)x = “’;)b"x/('jl +Vy).

Let us suppose to begin with that v, << v,. The os-
cillation growth rate is then very dependent on the
length of the target. In fact, when L < u/v, we can neg-
lect in (23) the presence of the beam of AB" ions, and
the conditions for the appearance of instability are
given by (18)-(21). When the target is thick enough and
L > u/vy, we can neglect in (23) the first two terms on
the right-hand side:

02 (8 ivo) =060 5.2/ @ 2. (24)

It is known® *! that (24) always has solutions with
Imw > 0, i.e., the instability will always develop in a
sufficiently thick target. It is readily shown that, when
vx > v,, the oscillations will be unstable for any tar-
get thickness and their growth rate will be given by
(24) (to within small terms of the order of v,/vy). It is
important to note, however, that when

Nos ©° Uc 1"

<w,

No Vo Vi :

the instability in a sufficiently thick target will appear
only for x > u/vyg, i.e., whenever the chemical reaction
has practically terminated. This can be of considerable
practical interest if we recall that any beam instability
during the nonlinear stage leads to an appreciable
broadening of the ion distribution function for the beam,
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and may thus influence the rate of the chemical
reaction.'’ !

We can now summarize the above results as fol-
lows. To avoid the effect of instability on the course
of the chemical reactions during the interaction be-
tween a monoenergetic ion beam and a chemically ac-
tive, weakly ionized target we must, in any case, sat-
isfy the inequality

(25)

Nos @o° \ 2
(——) <wvitvs
Ny Vo
If this is so, then the instability, even if it appears, can-
not lead to an appreciable change in the distribution
function for the incident ion beam. When the opposite
inequality is satisfied, the problem must be considered
in its nonlinear version.
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