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The causes for the discrepancies between the transition rates in the balance equations for atomic level 
populations and the transition probabilities per unit time calculated with the usual perturbation-theory 
formulas are investigated. It is shown that the structure of the probability for a two-quantum 
transition from a level n to a level k, involving an intermediate level m (to which a real transition 
from the initial level is possible), is such that it can be incorporated into the standard 
perturbation-theory formula only for times considerably exceeding the lifetime 'Y-;': of the mth level. 
In this case "resonance" contributions to the transition probability have time to develop. For times 
t <1;;;1 the "resonance" contributions are negligible. 

1. A detailed analysis of the behavior of an atom 
with discrete energy levels, interacting with a phonon 
field which is in thermal equilibrium at constant tem
perature T, leads to the fOllowinr. balance equations for 
the population of atomic levels [1 : 

(1) 

where aj is the equilibrium value of population. In the 
first-order approximation in interaction V the relaxa
tion parameters Wij are in full accord with the transi
tion probabilities per unit time given by the perturba
tion theory. For simplicity we confine ourselves to a 
system with three consecutive levels k, n, and m. 

Deviations from the standard perturbation theory 
appear already when we consider two-phonon transitions, 
if the total splitting of the levels k, n, and m does not 
exceed the Debye energy. A calculation of the transi-
tion probability per unit time between the levels nand 
k with absorption of one phonon (A) and emission of 
another (a) by using the formula [2] 

w",,=2nli-' 1: 1 U"",,, (E,,") 1'6(E,,"-E,,) 
k, 

(2) 

(here U(w) is the Laplace transform of the time-develop
ment operator S of the system, 1fi(t) = S(t)!J!(O), see (8) 
below) leads to the conclusion that the essential contrib
ution to the probability is due to the "resonance" pho
nons with frequencies Wx O:j wmn ' and wa '=::$ Wmk[3,4l. 
However,the contribution of these phonons to the re
laxation parameters of (1), calculated in the same ap
proximation proves to be negligible[l, 5l. 

An apparent contradiction arises here because 

w",=dcr,ldt (3) 

for the time intervals 

at the initial condition an(O) = 1; under this condition 
and at small times, Eq. (1) assumes the same form (3): 

W nl=dcr,/dt, l=m, k, (4) 

if the detailed-balancing conditions ajwji = afwij are 
fulfilled. To clarify the situation it is necessary to 
compare more carefully the conditions for the validity 
of (1) with those for the applicability of (2). Such an 
analysis is interesting also from the point of view of 
the general theory of quantum transitions. 
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2. The balance equations (1) are obtained by aver
aging the equation for the density matrix of an atom and 
the phonon field over the phonon states. The thermal
equilibrium assumption for the phonons means that 
during the time TC == W~1 of the relaxation of excitations 
in the phonon system the atom experiences no marked 
changes, i.e. 

In the general case TC must be understood to be the 
longest lifetime of the phonons involved in the relaxa
tion. For the validity of (1) it is moreover necessary 
that the levels m, n, and k were sufficiently well re
solved, i.e. that the widths of these levels, which we 
can estimate by USing Wij' were much less than the 
corresponding splittings. 

The above conditions can be jointly represented by 
the inequalities: 

It is clear now that (1) can be reduced to (4) with the 
initial condition an (0) = 1 for the times t satisfying 

WI;-I~t~'t" IWI;I-'. 

It might be well to note that these inequalities involve 
all the relaxation parameters Wij and not just Wnk 
or Wnm. 

3. Now let us analyze the derivation of (2) and (3). 
According to Heitler[2l the amplitude of the state N of 
the whole system atom plus phonons, which was ini
tially in the state 0, at the time t is given by 

(5) 

(6) 

(7) 

(8) 

(9) 

and V is the energy of the atom-phonon interaction. The 
real part of r determines the width of the initial level 
of the atom. 

Evidently, without additional restrictions (8) can 
be rewritten in the form 

(10) 

, 
which in the limit as r -0 an~ t _00 yields (2) and (3), 
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provided only that the matrix U(w) itself has no singu
larities. However, this is not the case when the proces
ses like resonance fluorescence are studied. 

Indeed, let the Hamiltonian for the interaction be
tween the atom and the phonons be 

V= .E V"Q", (11) 

where the operators Va act only on the atomic states, 
and Qa are linear in the lattice variables. The equation 
for the matrix U, which is the Laplace transform of 
the Schrodinger equation, is 

UNo(w)=<NiviO>+ ~, <NiViM>UMO(W), (12) 
~ (j)-WM M,.O 

In the case when the final state differs from the initial 
state by two fhonons (N = k~a) its approximate solution 
is given by[4 

<kt.aiVimt.><mt.iVin> + <kAalVima><maiVin> 
W-W m A.+ 1/2i"!m CJ)-Wmo 

UIi.1.O',n (13) 

where 

~lm(W)=i ~ <mt.iVipt.a><pt.aiVimt.>. 
2 '-.J (1)-W,1.0 

p_h.,n;a 

(14) 

We see that the term 
< kt.ai Vimt.><mt.i Vin>exp[i(w ... -wm,+'/,i1m) tl 

(wm,-w".-'/,i1m) (wm,-w.+'/,i(r-1m)) 

(15) 

appears in addition to the right-hand side of the expres
sion (10) for ~(t). (The pole w = wma need not be con
sidered since the corresponding term vanishes at 
t» w~k') In order to be able to neglect this term in 
calculating dlbk~aI2/dt, i.e. to obtain the usual result 
(2), the following additional condition must be fulfilled 

Re 1mt>1. (16) 

But the quantity ReYm (in the following we shall omit 
the real part symbols) measures the broadening at the 
intermediate level m, and the above condition therefore 
requires suffiCiently large width of this level, at any 
rate such that rm» r. 

Thus the whole set of conditions for the validity of 
the relations (2) and (3), when applied to processes like 
resonance fluorescence, appears as follows: 

(17) 

These conditions differ substantially from those (7) for 
the equation (4), and hence there is no reason to expect 
the identity of content of (3) and (4). 

4. If we now calculate the transition probability per 
unit time under the constraint (7) on time t, which is 
possible if the breadth of m is small compared to all 
the other splittings, we must obtain an expression free 
from contributions of the "resonance" phonons. This 
is interesting enough to at least sketch the calculation. 
It is obvious that the contribution of (15) must now be 
taken into account, and after some Simple algebra we 
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obtain the following expression for the transition prob
ability: 

-ib".i'=--- e-,rl ----d ilAi' { I e"w'-""·-1 " 
dt u,,+il' Ul,-iE 

(18) 

Here 
e=l-r, A=(kt.al Vlmt.)(mt.1 Vln), 

and the factor 1/2 at yand r is omitted for brevity. We 
have also omitted the second terms in the expression 
(13) for U~a,n because they add no singularities to the 
calculation of the resonance fluorescence processes, and 
their contributions are small in the resonance phonons 
region. 

In order to get the total probability of the atomic 
transition n _k, the expression (18) must be averaged 
over the propagation directions of the phonons, and over 
their polarizations and frequencies. Since the calcula
tions are carried out at small r one can use the follow
ing approximation (see[21): 

1 P e-iw,1 

--""--in6(w,), --""-2ni6(w,), (19) 
Ul,+ir w, w,+ir 

where P stands for the principal value, and (18) reduces 
to 

(20) 

The novelty of this expression compared to the usual 
formula (2) is the presence of the exponent. As a result 
the integration of (20) over w 2 contains no Singularities 
however small y be. 

Thus, we come to a conclUSion that at times y-l, 
r-1 » t» I wijl the contribution of the resonance 
phonons to the atomic transition probability from 
state n to state k is negligible. This contribution be
comes essential only at large times r- 1 » t» y-\ 
I wijl-l. The latter inequalities are possible only in the 
case when the width of the intermediate level much ex
ceeds that of the initial level. However, this is pre
cisely the case when the processes like resonance 
fluorescence are dominant in the spin-lattice relaxa
tion. In the study of these relaxation processes the 
balance equation approach cannot be regarded as en
tirely equivalent to the quantum-mechanical pertur
bation theory, but under the same conditions they both 
lead to the same results. 
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