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It is shown that a correspondence exists between the quantum and the classical theories of the 
self-energy of the electron as1f -+ O. This result signifies, in particular, that the divergences in classical 
and in quantum electrodynamics have a common nature. The apparent violation of the 
correspondence principle in the problem of the self-energy, noted in the literature, can be ascribed to 
the inadequacy of the usual expansion procedure in terms of the parameter e2 /1f c as1f -+ O. 

1. INTRODUCTION 

In the literature (cf., for example,PI) there is a 
widely held opinion that the correspondence principle is 
not satisfied in the problem of the self-energy of the 
electron and that the self-energy problem in quantum 
theory has an entirely different nature than in classical 
theory, Suchan opinion originated on the basis of a 
comparison of the expression for the proper mass of 
the electron in quantum electrodynamics in second 
order of perturbation theory[2-41 

6mqu=mo[~(ln-1t-+ 41 ) +0 (Ii:', )] (1) 
2nnc romoc c 

(mo is the initial mass, ro is the cutoff distance) with 
the well-known expression for the proper mass in 
classical electrodynamics[l,51 

6mc<=e'/2roc'. (2 ) 

Actually, however, in order to clarify the question of 
the correspondence for n - 0 between the quantum 
electrodynamical and the classical theories of proper 
energy it is not possible to base the discussion on the 
results of perturbation theory, since the expansion 
parameter e 2/nc in this limit becomes large. 

In the present paper we shall directly, without 
utilizing perturbation theory, investigate the limiting 
value of the quantum electrodynamical operator for the 
electron mass as n - 0 and we shall show that it 
agrees with the classical expression (2). The method 
utilized here is close to the method of Thirring[61 de
veloped in order to prove the validity of the Thompson 
formula for the exact cross section for the Compton 
effect in the limit of soft photons. The result obtained 
in particular means that the divergences in classical 
and quantum electrodynamics have a common nature l ). 

This conclusion is significant in seeking a generaliza
tion of electrodynamics associated with the introduction 
into the theory of an additional fundamental constant 
(possibly of the gravitational constant[91) which in a 
fundamental manner removes divergences at small 
distances, since it becomes sensible and heuristically 
useful to begin the search for such a generalization at 
the level of the classical (n = 0) field theory in order 
to generalize the ideology and the method developed 
here to quantum theory. 

2. SELF·ENERGY OF THE ELECTRON AS h-+ 0 

The self-energy (mass) of the electron in quantum 
electrodynamics is determined by the value of the mass 
operator i~(p) on the mass surface2) 

ie 2 S 
i"2.(po) = 4n'~c l,G(Po-q) L(Po-q, Po)D,,(q) d'q, (3) 
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p~ = _m 2c2, (Po - imc after carrying all the matrix 
operations). Here eo is the initial charge, m is the 
physical mass defined as the pole of the electron 
Green's function G(p). 

Our problem is to find the value of the mass operator 
(3) in the limit as n - 0 and to compare this value with 
the classical result (2), In order that such a comparison 
should be sensible it is necessary first of all to guaran
tee that the cut-off parameter should be introduced in 
quantum and in classical theories in an equivalent 
manner, In order to guarantee convergence of the inte
gral in (3) we adopt the introduction of the usual Feyn
man modification of the free propagation function for 
the photon 

l/q'->-A'iq'( q'+ A'). (4) 

Further, we introduce the cutoff length ro = n/O corre
sponding to the cutoff momentum A, With this the re
placement in (4) assumes the form 

II q'->-l/ q' [ (roqlli) '+ 1J =l/h'k' (ro'k'+l) , (5) 

where k = q/Ii is the propagation vector of the photon. 
In classical electrodynamics it is evidently necessary 
to modify in an equivalent manner the Green's function 
for the wave equation: 

D(k') =llk'->-llk'(ro'k'+l). (6 ) 

We first obtain the form of the classical proper en
ergy of the electron when the cutoff is introduced by the 
method of (6), In classical electrodynamics for an 
electron at rest at the origin we have: p(x) = eO(x), 

1 S e 6m" =- p(x)cp(x)dx = -cp(O); 
2c' 2c' 

(7 ) 

cp (x) =4n S D (x-y, xo-Yo) P (y) d'y, 

cp (0) =4ne S D (0, xo-Yo) dyo = 4:' S D (Ic') e"'(x,-,,) d'k dyo 

= _e_ SD(k')6(lco)d'k. 
2n' 

(8 ) 

Substituting this expression into (7) and taking (6) into 
account we obtain 

e' 6 (ko) d'k e' 
6m" = 4n'c' S -k-'- ro'k'+l = 2roc' ' 

(9 ) 

i.e., we obtain exactly formula (2). 

We now show that the quantum electrodynamical 
mass operator (3) with the regularization (5) gi ves in 
the limit as Ii - 0 the same result (9), In order to ac
complish this we go over in (3) to integration over the 
propagation vector: 

ie 'lh3 

i"2.(po)=_o -S l,G (po-lilc) f,(Po-hk,po)D,,(hk)d'k (10) 
4n'c 
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and examine the limit of this expression as fi - O. 
Since the integral in (10) converges after introduction 
of the regularization (5) we can carry out the transition 
to the limit under the integral sign. Due to the pres
ence in (10) of the factor fi3 it is evidently sufficient to 
pick out in the integrand only the terms that are most 
singular as fi - 0 and which, as we shall see, behave 
as ~fi-3. 

The vertex function does not have a singularity as 
fi_0[4]3l: 

lim f,(p.-fzk, P.) =lim L(p., P.) =1, lim Z,-'. 

But, as may easily be seen, the Green's functions 

(11 ) 

G( Po - fik) and D/lII(fik) have at the point fi = 0 poles 
respecti vely of the first and second order. Indeed, in 
accordance with the spectral properties of the electron 
Green's function the following representation holds[41: 

G(p)=z,S,(p) [1+C,(p') +pC,(p')], 

where Sc(p)=(-p+imct\whileCd p2) and C2(p2) 
are scalar functions having zeros on the mass surface: 
Cl( pg) = C2( pg) = O. Taking these properties into ac
count we obtain retaining in the limit only the most 
singular term: 

lim G(p.-fzk) =lim Z,(fzk-p.+imc)-'=Z,'(p.+imc)l2fz(kp.), (12) 

where Z~ = lim Z2. 

Similarly for the photon Green's function in virtue 
of its spectral properties and taking the Feynman modi
fication (5) into account we have (since the quantity (10) 
is gauge-independent, we choose the simplest gauge for 
D ) [4]. 

/lll . 
Z, 1 

D., (fzk) = 6., i1i'k' ro'k'+ 1 [1 +d (fz'k') ], 

where the scalar function d(q2) has a zero at q2 = 0: 
d(O) = O. As a result, retaining only the most singular 
term, we obtain 

lim D ,(fzk) = Z,·6., 
• ifz'k'(ro'k'+1) ' 

(13 ) 

where zg = lim Z3. 

Substituting the limiting expressions (11)-(13) into 
(10) we obtain after taking into account that Zl = Z2: 

" . eo'Z,fz J - -. , d'k (14) 
liml'L.(po)=lim--,-, 1.(fzk-p.+lmc)-1. '( 'k' 1)' 

.~o 4" c k r. + 
Before going over to the final limit fi = 0 in (14) we 
note that expression (14) arising as fi - 0 without USing 
perturbation theory formally coincides with the expres
sion for the proper energy of an electron in the first 
non vanishing order of the renormalized perturbation 
theory. This result is analogous to the well-known re
sult of Thirring[ 6,4] which states that the exact matrix 
element for the Compton effect in the soft photon limit 
coincides with the matrix element in the first nonvanish
ing order of the renormalized perturbation theory. 

Going over in (14) to the limit fi = 0 in accordance 
with (12) and making (after carrying out all the matrix 
operations in (14)) the substitution po - imc we obtain 
the integral 

e 'Z 0 J imc d"k 
lim i'L. (po) = -' -. '- .., 

4,,'c' kpo k"(ro'k"+1) 
(15) 

in which the usual (Feynman) rule for going around the 
poles is assumed. Since expression (15) is Lorentz
invariant we evaluate it in the rest system of the elec
tron. In doing this we utilize 
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imc i 1 1 (16) 
-k +' -+-k +' =--:-P-+,,6(ko). PI) lO - 0 to [, ko 

The first term in (16) gives zero contribution to the 
integral in (15) due to the fact that the integrand is odd 
in the variable ko. The second term leads to the inte
gral 

limi'L.( )= eo'Z,' J 6(k.)d'k e.'Z,' 
p. 4,,'c' k'(ro'k'+1) 2r.o" 

(17 ) 

which coincides with expression (9) ariSing in classical 
electrodynamics for eg zg = e 2 •4 ) 

Thus, the correspondence principle is satisfied in 
the problem of the self-energy of the electron. 

In conclusion we note that in the case fi = 0 the inte
gral (14) for ro - 0 diverges logarithmically in accord
ance with (1), while its limiting form (15) for fi = 0 
diverges linearly. This is associated with the fact that 
in the limit as n - 0 the degree of the variable in the 
denominator of (14) is reduced by unity. As can be 
easily verified, as fi - 0 the region k > mc/n, in 
which one can not neglect in the denominator the term 
n 2k2 compared to n(kpo), introduces into the integral 
(14) a relative contribution ~fic/e2 which tends to zero 
in the limit under consideration. 

The authors would like to express their gratitude to 
M. A. Markov for his stimulating interest in the prob
lem discussed in this paper. 

1)We note that earlier with the aid of a definite departure beyond the 
framework of perturbation theory it was shown [7.8) that in quantum 
electrodynamics, just as in classical electrodynamics, the true divergence 
is entirely contained in the proper energy of the electron and has a 
linear nature (and not a logarithmic one to which perturbation theory 
leads); the renormalization constants Zl 2 3 are finite, with 0 < Z3 < I. 

2)We shall basically utilize the notation ad~pted in the text [4). 
3)Here and later lim denotes the limit as h -+ O. 
4)\t can be shown (for example, based on the results of Schwinger's 

article [10) that zg = lim Z3 = I, so that, strictly speaking, in the 
limit as h -+ 0 one should assume that e2 -+ e~, 
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