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The temperature of the transition to the superconducting state of quasi-one-dimensional metals has a 
power-law dependence on the hopping probability and can be considerably lower than that predicted 
by the BeS theory. The power exponent in this dependence is calculated in a model with a large 
number of conducting bands. Its connection with the form of the correlation function of a 
one-dimensional conductor at zero temperature is elucidated. 

1. INTRODUCTION 

The interest in one-dimensional conducting struc­
tures is connected to a considerable extent with the fact 
that, in some of them, we may expect strong attraction 
between the electrons and, consequently, a high super­
conducting-transition temperature. However, there can­
not be phase transitions in one-dimensional systems. 
This statement follows from the general theorem on the 
impossibility of coexistence of phases in one-dimen­
sional systems [lJ. 

Real solids are quasi-one-dimensional. There is a 
finite probability that an electron will hop from one fila­
ment to another. This hopping can proceed by tunneling 
under the barrier, or via impurities. If its probability is 
small the superconducting-transition temperature can be 
considerably lower than that which follows from the BCS 
formula. In certain cases, apparently, this temperature 
can become equal to zero. 

The appearance of the superconducting transition at 
low temperatures can be understood from the following 
considerations. In the one-dimensional case, fluctua­
tions of the phase of the order parameter destroy the 
long-range order, but short-range order exists over a 
certain distance rc' As the temperature is lowered, rc 
increases and the probability of an electron hop from 
filament to filament over the length rc increases. The 
system becomes three-dimensional and a superconduct­
ing transition occurs in it at those temperatures for 
which this probability becomes sufficiently large. 

In the one-dimensional case, interaction of the elec­
trons with phonons facilitates not only the superconduct­
ing transition but also the transition to the dielectric 
state (the Peierls transition). Treating these transitions 
simultaneously makes the problem considerably more 
complicated and leads to the necessity, even in the self­
consistent field approximation, of solving complicated 
"parquet" equations[2,3J • Since we wish to study the 
influence of the phase fluctuations on the superconduc­
tivity, we have considered a model in which the Peierls 
instability does not arise. In this model, there are a 
large number of conducting bands in each filament. Such 
a model gives a quantitative description of systems in 
which superconducting metal, in the form of thin fila­
ments with a cross section of a few atomic units, is 
situated in a dielectric asbestos matrix [4J• It is possi­
ble that it is applicable to those superconductors which 
have a i3-tungsten structure, in which all five sub-bands 
of the d-band are conducting. 

In this model, the correlation function at zero tem­
perature and with no hopping has a power-law depend-
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ence on the coordinates. The dependence of the exponent 
on the number of bands is found. An analogous situation 
exists in scaling theory, in which the assumption of a 
large number of fields permits one to find the form of 
the singularity at the phase-transition point [5J. This 
same exponent appears in the dependence of the transi­
tion temperature on the hopping probability. 

2. CHOICE OF MODEL 

We shall consider a system of parallel filaments. Let 
there be n bands in each filament. The one-electron 
states in each filament are characterized by the longi­
tudinal quasi-momentum and the band index. In the case 
of metallic filaments with a cross-section radius of a 
few atomic units the different bands correspond to dif­
ferent states of the transverse motion. We assume the 
hopping probability to be small. We shall not elucidate 
the nature of the actual mechanisms of attraction be­
tween the electrons. We assume that the interaction is 
described by an effective potential V(r - r/), which in­
cludes the Coulomb repulsion. The Hamiltonian of such 
a system is of the form 

H= ~e.(p)a,.+(p)a,.(p)+ ~ T'j.~a,.+(p)a;,(p) 
i,a.,p i,j,a.,P,p (1 ) 

+ S V (r-r') 1jJ+ (r) 1jJ+ (r') 1jJ (r') 1jJ (r) d'r d'r', 

where 

T,;.~=T,~.,. 1jJ(r) = ~ u.(r-r,)e'P'a,.(p). 
i,a.,p 

The indices i, j label the filaments; 0', i3 define the band 
indices and spin-state indices; uO'(r - ri)exp(ipx) are 
the eigenfunctions of an electron in a filament. 

The second term in the Hamiltonian describes the 
hopping of electrons from filament to filament. Near the 
Fermi surfaces, the electron energies EO'(P) are equal to 

e. (p) =v. (Ip I-p.), 

where v 0' and PO' are the longitudinal velocity and mo­
mentum at the Fermi surface in the O'-th band, and p is 
the longitudinal momentum of the electron. 

We shall consider the case when the hopping ampli­
tude Tij O'i3 equals zero. The BCS equation determining 
the superconducting order parameter t;:,. 0' is written in 
the form 

6 - T ~ V ~ S 6, dp 
.- -;.l...J .'.l...J w'+e,'(p)+ 6,' , , . (2) 

where 

Va, = S V(r-r')u.(r)u .• (r')u'(r)u.'(r')d'rd"r'. 
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The states O! and -O! are conjugate in time. The V 0!{3 all 
have the same order of magnitude, and, therefore, we 
shall assume for the estimates that they are all equal to 
the same value, A. Thus, in the self-consistent field ap­
proximation, for the superconducting-transition tem­
perature TcO we obtain the equation 

f.. ~ 1 ffiD f..n ffiD 
1=-,,,,,-In-=-ln_ 

1t Va Teo 1tVo Tca' • 
(3) 

We shall see that the Peierls transition does not arise 
in the case when the number of bands is large, and the 
corrections to the interaction, which have a Kohn singu­
larity when the momentum equals 2PF' are small. The 
singularities in the "zero-sound" channel lead to a re­
normalization of the effective interaction, which, at fre­
quencies of the order of wo' takes the form -A 
+g0O!,-O!' where 

g 

For frequencies less than Wo and for an arbitrary 
number of bands, the self-consistent field approximation 
corresponds to the "parquet" equations 

where 

I 

r.,'I= V.,'I- S [r.:lr .. "+2r:' _.r:~ _.6,,_. 
• 

6 = In __ ,-ffi_D-;;-c:::--;­

max(e, p'/2m) 

(4) 

For large n, the most important term in the integrand 
in (4) is the first term, in which the summation is per­
formed over all the bands. Allowance for only this term 
is equivalent to the BCS approximation and yields Eq. (3) 
for the transition temperature. In the next order in lin 
we obtain for the transition temperature, in place of 
formula (3), 

1 = f..n+lgl In~ 
TWo T ' 

Thus, for An » jgj the "particle-hole" channel can be 
regarded as a perturbation. 

3. FLUCTUATIONS IN ONE·DIMENSIONAL SYSTEMS 
FOR Tco-T ~ TeO 

Fluctuations of the superconducting order parameter 
~ in the one-dimensional case lead to the disappearance 
of the phase transition. For temperatures close to TcO' 
these fluctuations can be described by means of the 
Ginzburg-Landau equation. The free energy F for fluc­
tuations that vary slowly with distance has the form 

F[ti]=~S dx [Alti,(x) I'+cl ati~~x) I' + : lti,(x) I']' (5) 

In formula (5) the integration is taken along a filament 
and the sum is taken over all the filaments. The coeffi­
cients A, Band C in our model are equal to 

B= 7W)_n_ 
8n.! voTeo2 t 

(6) 

The velocities vav and Va are of the same order of mag­
nitude. 

Using (5), we can write an expression for the correla-
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tor (~(x)~ * (0) by means of continuous integrals: 

(A,(x)ti:(O»= Sti,(xM:(O)exp (_ F[ti~X)] ) Dti(x) 

[ S ( F[ti (x)] ) ] -I 
X exp - T Dti(x) , 

Calculating the continuous integral by Feynman's me­
thod [6J, we obtain for large distances x 

(ti, (x) ti,' (0) )-e-I'I/", 

where rc1 is proportional to the spacing between the 
levels of the anharmonic oscillator [7J • 

(7) 

(8) 

Thus, in the one-dimensional case a phase transition 
does not occur and the correlator falls off exponentially 
with distance. Below we shall be interested in the region 
of temperatures not too close to TcO' where the devia­
tions of j~ j2 from the value ~~T) = -AlB that minimizes 
the free energy are small, Calculating these deviations 
by means of the formula (7), we obtain 

(Itil- tio)'-tio'T,~ In(T,o-T)"', (9) 

It follows from the formula (9) that fluctuations of the 
modulus can be neglected when 

1 
(T,o-T)IT,;»-.! ' 

n' 
(10) 

Nevertheless, even when the condition (10) is fulfilled, 
the expression (8) indicates the absence of long-range 
order, this absence being due to the strong phase fluc­
tuations [8J • 

The possibility of electron hops from filament to fila­
ment has little effect on the fluctuations of the modulus, 
but has a strong influence on the existence of the long­
range order. We shall assume below that the condition 
(10) is fulfilled and shall study fluctuations of the phase 
of the order parameter for constant modulus in a model 
with hopping. 

4. REGION OF CLASSICAL FLUCTUATIONS 

Let each filament be in the superconducting state. 
The modulus of the order parameter experiences small 
deviations from its equilibrium value, and we do not take 
these into account. 

starting from the expression (1) for the Hamiltonian, 
we can find the free energy of phase fluctuations that 
vary slowly along the filaments, for a nonzero hopping 
amplitude Tij 0!{3' This energy is the sum of the energy 
of the motion of the electrons along the filament and the 
tunneling energy: 

F[<p]= S [N.::) ~ ( :x ",,(x) r + ~ W,,(1-COS(<P'(x)-<p,(x»))] dx, 

, ',I (11) 

where Ns(T) is the linear density of "superconducting 
electrons," determined by the formula 

T _ 2mvavn ii nTti.'(T) 
N.( )---n-£"'; [(2k+1)'n'T'+ti.'(T)P" 

k=_oo 

(12) 

The mean effective mass m equals 

The tunneling energy Wi" which is analogous to the en­
ergy of Josephson juncti~>ns, can be expressed in terms 
of the hopping amplitude Tij O!/3 as follows: 

~ , N.(T) w,,= £..,;IT,jaal ---. 
a. mL'avVa. 

(13) 
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The temperature dependence of W is not the same as in 
the Josephson effect, This is connected with the fact 
that the spacing between the bands is greater than the 
order parameter Do. 

The formulas (12), (13) are valid for clean super­
conductors. Impurities change the coefficients Ns in the 
usual way. More important is the influence of impuri­
ties on Wij' A term proportional to the impurity concen­
tration is added to the hopping amplitude Tij • 

The total free energy ff of the system is connected 
with the free-energy functional F[q1] by the following re­
lation: 

S ( F[ep) ) 
9'"=-Tln exp --T- Dep. (14) 

The expression (14) for the free energy of the system 
is valid for sufficiently high temperatures, when the 
fluctuations become classical. We shall indicate the 
limits of the classical region later, 

The exact calculation of the continuous integral in 
(14) with a functional F[q1] having the form (11) is im­
possible. However, we can show that a system having 
the free energy (14) possesses a phase transition. In 
order to estimate the temperature Tc of this transition 
in order of magnitude, we shall use the self-consistent 
field method. In this method, the value of the order 
parameter (cos q1) is determined from the equation 

[ S ( P[ep)) 1-' s (P[ep) ) <cosep)= exp --T- Dep cosepexp --T- D<p, (15) 

where 
P[<p)= S[ :~ (::r -w<cos<p)cos<p ldx, 

(16) 

The transition temperature is found from the condition 
for which a nonzero solution of Eq. (15) appears, Near 
the transition point the order parameter is small, and 
we can expand in it in the right-hand side of (15). After 
this, we obtain 

1 = ~ S <cos <p(O) cos <p(x»,dx. (17) 

The averaging in (17) is performed for W = O. The 
correlator appearing in formula (17) is a Gaussian in­
tegral and equals 

<eilJ«(I)-fljl(;d)o=e-lxIJT~, 

where 
r,=N, (T) I2mT. 

Substituting (18) in (17), we find 

To'=N. (T,) Wi2m. 

(18) 

(19) 

(20) 

For a low hopping probability, Tc is small compared 
with TcO' In this case, Ns(Tc) coincides with the linear 
electron denSity N, and W coincides with its value W 0 at 
zero temperature. Then the relation (20) takes the form 

To'=NW,/2m. (21) 

If this probability is not too small, so that 

(22) 

the transition temperature is close to TcO and Eq. (20) 
is written as follows: 

T,,-T, = V T,,'m ""~. 
ToO 2W,N nT,; (23) 
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In the derivation of (23) it was assumed that the condi­
tion (10) is fulfilled. 

An analysis in the framework of self-consistent field. 
theory does not prove the existence of a phase transi­
tion. In our case, however, we can convince ourselves 
that the transition temperature is correctly determined, 
in order of magnitude, by the formulas (20)-(23). In 
fact, for T2 » Ns(T)W/m, the free energy can be calcu­
lated by expanding (14) in a series in W. The correction 
to the linear energy-density ff' of an isolated filament 
has, in this case, the form of a series in the small 
parameter: 

9'"' =--' - 1-- --'- + N W' 3 WN ' ) 
16m ( T ) ( 128 ( 2mT') .... 

(24) 

The numerical coefficients have been obtained for a 
square lattice and nearest-neighbor interaction. It can 
be seen from (24) that for WNglm T2 « 1 the free energy 
has no singularities. 

In the region of low temperatures T « Tc the phase 
fluctuations are small and in formula (11) we can expand 
cos(q1i - rpj) as a series in its argument. The fluctua­
tions then become three-dimensional and the mean order 
parameter (Do) equals 

<Ll)= Ll,(T) (1-1 ~, + ... ). (25) 

For a square lattice and nearest-neighbor interaction, 

1= _1_ S' S' . dq,dq, 
(2n)' , , (sin"q,+sin'q,)'" . 

Thus, for temperatures below Tc the order parameter 
does not vanish. For very small W the transition tem­
perature is low and the estimates obtained are incorrect 
because of the neglected contribution of the quantum 
fluctuations, which lead to a further decrease of the 
transition temperature. 

5. PARTITION FUNCTION OF THE SYSTEM WHEN 
QUANTUM FLUCTUATIONS ARE TAKEN INTO 
ACCOUNT 

To calculate the contribution of the quantum fluctua­
tions we shall start from the general expression for the 
partition function Z in terms of the Hamiltonian: 

z=Sp exp( -R!T). (26) 

Using the form of the Hamiltonian (1) we rewrite the ex­
pression (26) as follows [9J : 

Z=SpS[exp (- ~O)T,exp(-TR(-r'Ll)d-r)]DLl(r,r',r), (27) 

where T T is the chronological operator, In formula (27), 

ii, = 01:, e. (p)a,. + (p)a •• (p) + 1:, T,;o~a •• + (p)a;, (p), 
i,a,p i,i,a.,a 

.,. SS[ Ll(r,r',-r)Ll'(r',r,-r) -
H(-r,Ll)= V(r-r') +Ll(r,r',-r).p(r,'t)ip(r',-r) 

(28) 

+Ll'(r',r,'t).p (r',-r).p(r,'t) ld'rd'r', 
.p(r, -r)=e'H'.p(r)r'H" i1i(r, -r)=e'H'.p+(r)r,n,. 

We can convince ourselves of the equivalence of (26) and 
(27) by expanding the exponential in (27) in a series in 
the term that is linearly dependent on Do and calculating 
the Gaussian integral. We represent the expression (27) 
in the form 

Z = S exp(-F[Ll (r, r', 't) )DLl (r, r', -r). (29) 
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The functional F[~] is found from (27) by cal£ulating the 
trace over the fermion operators. Although H in (28) 
depends quadratically on the fermion operators, because 
of the arbitrary dependence of ~ on T it is impossible to 
calculate this trace in general form. We shall be inter­
ested in small deviations of the functional F[~] from its 
minimum value. The point of the minimum is determined 
from the equation 

(30) 

Hence it follows that the value of ~ that minimizes the 
functional F[~] is equal to 

/l(r, r')=V(r-r') (1jJ(r)1jJ{r'». (31) 

In the absence of hopping, Eq. (2) follows from formula 
(31). 

It is important that Eq. (31) determines only I~ I. In 
formula (29) the integration is performed over the real 
and imaginary parts of~. It is convenient to change to 
integration over the modulus I~ 1 and over the phase cp. 
If the condition (10) is fulfilled, the dependence of the 
functional F on the modulus is steep and the integration 
over I~ 1 in (29) can be performed by the method of 
steepest descents. Therefore, the modulus I~ 1 is as­
sumed below to be independent of the coordinates and 
equal to its value determined from Eq. (2). 

The integration over the phase cp in (29) cannot be 
performed by the method of steepest descents, since the 
dependence of F on cp is flat. Only those fluctuations for 
which the phase cp is a slow function of the coordinates 
and of the "time" T are important. For these flat fluc­
tuations, the functional F[ cp] can be written in explicit 
form: 

F[<jl]= Sf .E --} K,fiJ,(x)¢j(x')dxdx' dT 

'.' 
+ S [ :~ (~:')' + .E W,j(i-cos(<jl,-<jlj» ]dXdT. 

(32) 

'.j 
The last two terms in (32) have the same meaning as in 
(11). The coefficient Kij in the first term of the formula 
(32) represents the susceptibility, since the time deriva­
tive of the phase is equivalent to a scalar potential. If 
the interaction between the electrons is weak, only the 
Coulomb interaction, because of its long-range charac­
ter, influences the susceptibility, The expression for the 
Fourier component of the static susceptibility has the 
form 

where n is the compressibility of the ideal electron gas, 
V q is the Fourier component of the Coulomb interaction, 

II = ~ V - ~ 4tee' (34) 
Vote' q-~(qJ. +x)'+qll" 

and IC is a reciprocal-lattice vector. Below, values ql 
~ d-1 and qll «ql will be important, where d is the dis­
tance between filaments. Therefore, with logarithmic 
accuracy, we have 

K 
n 

tevo+ne'ln(dla) , 
(35) 

where a is the thickness of a filament. 

This form of the coefficients in the first two terms of 
the functional (32) leads to the correct expression for 
the pair correlation function (cp(O, O)cp(x, T» and the 
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collective-excitation spectrum, coinciding with the ex­
pression that is obtained by summation of the diagrams 
for the two-electron Green functions [loJ. 

Appearing in the exponent in formula (29) is the 
classical action as a function of the imaginary "time" T. 

The functional integral is reduced by Feynman's method 
to the trace of an operator: 

Z=Sp exp( -H efdT) , (36) 

where 
Heff= Sf .E 2K,j-'p,(x)pj(x')dxdx' 

i,i 

(37) 

The denSity operator p and phase operator <p satisfy the 
following commutation relation: 

(p,(x)~j(X')]=6,,6(x-x'). (38) 

For the subsequent calculations it is more convenient to 
use the continuous integral (29) with the functional F[ cp] 
defined by formula (32). 

6. EFFECT OF QUANTUM FLUCTUATIONS ON THE 
TRANSITION TEMPERATURE 

We now examine how the quantum fluctuations influ­
ence the superconducting-transition temperature. As in 
the classical case, the interaction between the filaments 
will be taken into account in the self-consistent field ap­
proximation. For the superconducting transition tem­
perature we obtain, in analogy with formula (17), the 
equation 

I/T 

1=W S dT S dx(cos <jl(O, O)cos <jl(X,T»o. (39) 
o 

The correlation function appearing in this expression is 
of the form 

(expli<jl{O, 0) - i<jl (x, T») >, 

= exp {-E... ~S dq[i-COS(WnT+qX)]}. 
te £.... Kwn'+Nq'lm 

(40) 

", 

In the limiting cases, the expression (40) equals 

(exp{i<jl(O, 0) -i<jl(x, T) Po 

l(~)"exp{-~}, IxITy_N ::>1, 
Tea rc mK 

[T,o'(T,+N~)]-', IxlTY :K<1, 

TT-1 
(41) 

TT<1 

where 
i (KN ) -'I, (vo e' d ) 'I, 

a.=- ~ = --,-+--In- , 
1C m Vavn nnVav a 

(42) 

and rc is given by formula (19). 

At short distances the correlation function does not 
depend on the temperature and falls off with distance ac­
cording to a power law. At large distances the correla­
tion function, as in the classical case, depends exponen­
tially on the coordinates. The quantum effects corre­
sponding to the terms with wn f. 0 in formula (40) lead 
only to a pre-exponential factor. 

Substituting the expression (40) into (39), we find the 
transition temperature 

Te- ~ --
_ (WN) 'I, ( WN ) '/'(1-.) 

2m Tc/m (43) 
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Thus, allowance for the quantum fluctuations leads to an 
extra factor, less than unity, in the formula for Tc' 

The expression (43) gives a value for the transition 
temperature that is lower than the lower limit for the 
transition temperature that was obtained by Dzyaloshin­
skit and Kats [llJ. This discrepancy is connected with the 
fact that quantum fluctuations were not taken into account 
in the latter work. 

If Wand, consequently, Tc are not too small, so that 

ct In (T"IT,) ¢:1, (44) 
the second factor in (43) is close to unity, and the form­
ula (43) goes over into the classical formula (20) for Tc ' 

In a model with a large number of bands, the param­
eter O! is small. The Coulomb interaction increases O!. 

For O! ~ 1 the expression (43) is incorrect. However, in 
the spirit of scaling theory, we assume that the correla­
tor (40) also has a power form for O! ~ 1. An analogous 
situation occurs in classical two-dimensional sys-
tems [12J. The expression (43) for Tc preserves its form 
if by the value of O! we mean the power in the correlator 
(41). If O! < 1, there is a superconducting transition for 
arbitrarily small W. If O! > 1, the integral in (39) is de­
termined by the short distances and depends weakly on 
the temperature. In this case, there exists a critical 
value Wc ~ mT~o/N at which the transition temperature 
Tc vanishes. For W less than this value, there is no 
superconducting transition at any temperature. For W 
much greater than WC' the condition (22) is fulfilled and 
the transition temperature is close to TcO' 

It may be thought that the estimate given above for 
the transition temperature is also valid when the number 
of bands is small. It is clear that in this case too, for a 
small hopping probability, a transition exists if, and only 
if, the integral of the pair correlation function 
(1/1'(0,0)1/1'(0, O)I/I(x, T)I/I(X, T)o diverges at zero tem­
perature in the absence of hopping. The "parquet" ap­
proximation is inapplicable for the calculation of this 
correlator, and it is necessary to sum all the diagrams. 
The following possibilities can present themselves: 

1. The effective interaction tends to a certain con­
stant. In this case the correlator has a power form, with 
an index, of order unity, determined by this constant. 
The convergence of the integral of the correlator is de­
termined by the magnitude of the index. 

2. The effective interaction tends to infinity. An 
analogous situation occurs in the theory of the Kondo 
effect [13J. In this case, the correlator falls off exponen­
tially and the integral of the correlator converges. 

When the number of bands is large, the first possibil­
ity is realized. The correlator has a power form, with 
exponent given by formula (42). The case with a small 
number of bands requires further study. 

7, EXPANSION IN THE LIMITS OF LOW AND HIGH 
TEMPERATUR ES 

In the preceding section, all the estimates for the 
temperature were obtained in the self-consistent field 
approximation. The proof of the correctness of these 
estimates can be carried through, as in Sec. 4, by ex­
panding the physical quantities in a series in a small 
parameter for high and low temperatures. 

We introduce the Green function Gij(x, x') by the 
formula 
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G,;(x, x') =(cp,(x)cp;(x'», (45) 

where 
(cp,(x)cp;(x'»= J cp,(x)cp;(x') 

x exp(-F['I'])D'I' [J exp (-F['I']) D'I' ] _t. 

(46) 

The functional F[cp] in (46) is defined by the expression 
(32). 

To calculate the integral in (46), we expand the ex­
ponential of the cosine in a series in (CPi - CPj)' Each 
term of this series is a Gaussian integral over cpo For 
such averages Wick's theorem is fulfilled and each aver­
age of a product is broken down into a product of pair 
averages of the form 

GOi;(x, x') =('1" (x) 'I';(x') ),=G,(x, x')Il,;. (47) 

In formula (47) GOij is the bare Green function. In the 
momentum representation it is equal to 

G ( iw) = 1 (48) 
,q, n 'I.Kw.'+Nq'/4m 

Any term of the series can be represented graphically 
in the usual way [14J. The simplest diagrams for the 
self-energy part :E are shown in the figure. 

In the limit of low temperatures compared with TC l it 
is sufficient to confine ourselves to the simplest graph 
(see Fig. a) in the expression for :E. For the function 
G(q, iwn) we then obtain the equation 

_.( .) ( 1 ,1 N ,) 
G" q"wn =Il,; TKwn +Tm q 

+ (WIl,;-W,;)exp { - ~ ~ J G,,(q, iw n ) ~~ }. 

(49) 

". 
With the same accuracy, we find the form of the mean 
order parameter 

(!l)=!l,(e'O)= !l,exp {- ~ ~ J G .. (q, iron) ::}. (50) 
". 

Solving Eq. (49) and substituting the solution into (50), 
we have 

( 
WN a/"'_a, T 

(!l)=!l, T"'m) (1-1r;+"')' (51) 

Allowance for the next diagrams in :E and in the ex­
pression (50) for (.6 > leads to corrections of the next 
order in O! and in T/Tc' Consequently, for low tempera­
tures the mean value of the order parameter .6 can be 
much smaller than the value that follows from the BCS 
theory, but for O! ~ 1 and T ~ Tc it does not vanish. 

At high temperatures, the free energy can be found by 
expanding the expression (29), with the functional F[cp] 
defined by the formula (32), in a series in 
W(1 - cos(CPi - CPj))' The correlators which then appear 
are calculated by means of the relations (40) and (41). 
At the important large distances, they differ from their 
classical values only by an extra factor. It is this factor 
which will appear in the coefficients in the expansion of 
the free energy. As a result, for Tc ~ T ~ TcO we ob­
tain, for a square lattice and nearest-neighbor interac­
tion, 
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_ 1 ( T ) ,. N ( W ) 2 ( 3 (T,) ,-,. ) iT --- - - ~ 1-- - + 
16 T" m T 128 T ... 

(52) 

In this temperature region, the free energy is expanded 
in a series and has no singularities in the temperature. 

The expansions made for T« Tc and T ~ Tc show 
that the expression (43) gives a correct estimate for the 
superconducting-transition temperature. 

8. CONCLUSION 

Thus, for a high transition temperature in quasi-one­
dimensional systems, a comparatively high probability 
of electron hops from filament to filament is necessary. 
This may be achieved by the inclusion of impurities. 
When (22) is fulfilled, the transition temperature is 
close to TcO' In the opposite limiting case, it is consid­
erably lower and can even vanish. At the transition point 
all the physical quantities have power singularities. The 
resistivity at this point vanishes. In the model consid­
ered, with a large number of bands, the resistivity is 
also low at temperatures appreciably above the transition 
point. In fact, near TcO the conductivity a of the fluctua­
tional pairs has the form 

a = 0.02 e'vav f[ 71'1, ( T-T" )] • 
T, T,. 

where .he function f(x) has the following asymptotic 
forms [15 ,16] : 

x-+-oo. 

(53) 

(54) 

When the condition (10) is fulfilled, the conductivity a is 
considerably greater than the conductivity of the normal 
metal. 

We have considered above the usual pairing, in which 
the attraction between electrons in one filament is the 
strongest. In quasi-one-dimensional systems the oppo­
site case is possible: the attraction between electrons in 
neighboring filaments is the strongest. Electrons in the 
same filament can even repel each other. In isotropic 
systems, e.g., in ~e, such interaction leads to pairing 
with nonzero angular momentum. In quasi-one-dimen­
sional systems with such interaction, it may be thought 
that a superconducting phase transition exists even in 
the absence of hopping. The nature of this state requires 
further study. 

1134 SOy. Phys.-JETP, Vol. 39, No.5, December 1974 

1 L. D. Landau and E. M. Lifshitz, Statisticheskaya fiz­
ika (Statistical Physics), Nauka, M., 1964 (English 
translation published by Pergamon Press, Oxford, 
1969). 

2 Yu. A. Bychkov, L. P. Gor'kov and I. E. Dzyaloshin­
skil:', Zh. Eksp. Teor. Fiz. 50, 738 (1966) [Sov. Phys.­
JETP 23, 489 (1966)] • 

31. E. Dzyaloshinskil:' and A. 1. Larkin, Zh. Eksp. Teor. 
Fiz. 61, 791 (1971) [SOV. Phys.-JETP 34, 422 (1972)]. 

4V. N. Bogomolov, Fiz. Tverd. Tela 13, 815 (1971) [Sov. 
Phys. -Solid State 13, 672 (1971)]. 

5 S. Ma, Phys. Rev. Lett. 29, 1311 (1972); R. A. Ferrell 
and D. J. Scalapino, Phys. Rev. Lett. 29, 413 (1972). 

6 R. P. Feynman and A. R. Hibbs, Quantum Mechanics 
and Path Integrals, McGraw-Hill, N. Y., 1965 (Russ. 
transl. Mir, M., 1968). 

7V. G. Yaks, A. 1. Larkin and S. I. Pikin, Zh. Eksp. 
Teor. Fiz. 51, 361 (1966) [SOV. Phys.-JETP 24, 240 
(1967)] . 

8 T. M. Rice, Phys. Rev. 140, A1889 (1965). 
9 J. Hubbard, Phys. Rev. Lett. 3, 77 (1959); R. A. 
Stratonovich, Dokl. Akad. Nauk SSSR 115, 1097 (1957) 
[Sov. Phys.-Dokl. 2, 416 (1958)]; A. V. Svidzinskil, 
Teor. Mat. Fiz. 9, 273 (1971) [Theor. Math. Phys. 
(USSR) 9, (1971)]. 

lOV. G. Yaks, V. M. Galitskil:' and A. I. Larkin, Zh. Eksp. 
Teor. Fiz. 41, 1655 (1961) [Sov. Phys.-JETP 14, 1177 
(1962)] . 

111. E. Dzyaloshinskil and E. I. Kats, Zh. Eksp. Teor. 
Fiz. 55, 2373 (1968) [Sov. Phys.-JETP 28, 1259 (1966)] • 

12V. L. Pokrovskil and G. V. Urmin, Zh. Eksp. Teor. 
Fiz. 65, 1691 (1973) [Sov. Phys.-JETP 38, 847 (1974)]; 
V. L. Berezinskil and A. Ya. Blank, Zh. Eksp. Teor. 
Fiz. 64, 725 (1973) [SOV. Phys.-JETP 37, 369 (1973)]. 

13 K. G. Wilson, Proceedings of the 24th Nobel Sympos­
ium, Stockholm, Academic Press, 1974. 

14 A. A. Abrikosov, L. P. Gor'kov and 1. E. Dzyaloshin­
skil, Metody kvantovol teorii polya v statisticheskol:' 
fizike (Quantum Field Theoretical Methods in Statisti­
cal Physics), Fizmatgiz, 1962 (English translation 
published by Pergamon Press, Oxford, 1965). 

15 L. G. Azlamazov and A. 1. Larkin, Fiz. Tverd. Tela 
10, 1104 (1968) [SOV. Phys.-Solid State 10, 875 (1968)] . 

16 D. E. McCumber and B. I. Halperin, Phys. Rev. B1, 
1054 (1970); J. S. Langer and V. Ambegaokar, Phys. 
Rev. 164, 498 (1967). 

Translated by P. J. Shepherd 
234 

K. B. Efetov and A. I. Larkin 1134 


