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It is shown that the complex energy-gap parameter of an isotropic strongly coupled superconductor 
can be directly determined from the tunnel density of states. A linear second-order integral equation 
is obtained for the electron-phonon interaction' function without resorting to a Coulomb 
pseudopotential or to a cutoff parameter. The equation is solved for a number of pure metals and 
alloys. 

1. The electron tunneling method makes it possible 
to obtain most complete information on superconducting 
properties of materials. There are also prospects of 
using the tunnel effect to determine a number of para
meters that characterize a substance in the normal state. 
Tunneling has in fact become a most precise tool for 
the study of details of the interaction of electrons with 
a lattice, which is the prinCi~a'l intera~tion responsible 
for the superconductivity[l> 2 . It appears that the elec
tron-tunneling method is useful also in searches for 
other superconductivity mechanisms [3 J. At the same 
time, it is probable that not all the possibilities of the 
tunnel effect have been realized as yet, One cannot ex
clude the possibility that further development of the 
quantitative theory of Single-particle tunneling in solids 
and an improvement in the methods of extracting phys
ical information from tunnel data will lead to qualita
tively new results. 

The calculation of the tunnel density of states 

N,(w)~Re [w'-Ll~(w) J''' 
is based on the Migdal-Eliashberg theory[4J, according 
to which the connection between the e,lectron-phonon 
interaction parameters and the energy-gap parameter 
~(w) of a superconductor is described by the system of 
equations [51 

_ 1 "'I ( Ll (v) ) + • 
Ll(w)- Z(w) dvRe [v'-Ll'(v)]''' [K (w,v)-Ill. 

" (1) 

[ 1-Z(w)]w~~IdvRe( v )K-() 
[v'-Ll'(v) ]"' w,v , 

" 
where 

K=(w v)-Idoo (00) ( 1 ± 1 ) ,- ,g, + + + '0+ + '0+ Wq 'V (() ~ Ci)q V-(i)-~ 

Z (w) is a renormalization function, ~o is the energy gap 
in the excitation spectrum of the superconductor, JJ. * 
and Wc are respectively the Coulomb pseudopotential 
and the cutoff parameter introduced in [6J, and g(w) is 
the effective electron-phonon interaction averaged over 
the Fermi surface. The function g(w) and its derivative 
dg(w)jdW describe fully the structure of the phonon den
sity of states. 

MacMillan and Rowell [7J have proposed a method of 
reconstructing g(w) and JJ.* from the tunnel character
teristics by inverting Eqs. (1) with a computer. A 
comparison of the neutron-diffraction data on the pho
non spectra with the tunnel data shows the latter to be 
reliable[sJ. The determination of the function g(w), 
which describes the electron-phonon interaction in 
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metals, from the tunnel experiments is therefore bound 
to attract attention at present. 

At the same time, the cumbersome calculations, 
which call for high-productivity computers I make the 
use of the method of MacMillan and Rowell l7J in the 
analySiS of the tunnel result quite complicated, for it 
is necessary to have six to eight solutions of the system 
(1) for ~(w) in order to find a function 
Re[wj(w2 _~2(W))1I2], that differs from the experimental 
NT(w) with accuracy to 10~3. During each iteration stage, 
JJ. * must be chosen such that the calculated ~o coincides 
with the experimental value of ~o. In these operations, 
JJ. * is in fact a fit parameter that is quite sensitive to 
the experimental valuel ) of ~o and to the cutoff limit 
wc , and influences the calculated function g(w). It is 
not surprising that the values of JJ. * given in various 
papers for the same metals are quite different. 

In this paper we develop a qualitatively different 
approach to the interpretation of the tunnel data. It is 
based on the fact that if the energy- gap parameter 
~(w) is known, then Eqs. (1) become linear and can be 
easily solved with respect to g(w). As the initial data 
for the determination of ~(w) we use directly the ex
perimental tunnel denSity of states. In this operation, 
when g(w) is reconstructed it is not necessary to cal
culate the parameter jJ. * , the determination of which 
is not always justified. 

2. We consider an isotropic semiconductor with a 
single observable gap ~o, In this case (see the Appendix) 
the function 

fl>(z) ~i/[z'-Ll'(z) J'" 

is analytic in the region D that includes the entire Z 
plane, with the exception of cuts (_Xl, -~o) and (~o, +00) 
on the real axis. 

USing the contour L (Fig. 1) (L E D) and Eqs. (A.7) 
and (A.8), we obtain a dispersion relation for ~(z): 

2 ~ v dv 
1m [ 'I -IRe 'I '(2) w'-Ll'(w)] ' " " [v'-Ll'(v)]' w'-v' 

which connects directly the measured tunnel density of 
states nT(w) with Im[w2 _~2(w)rl/2. Expression (2) it 
makes it possible to calculate the function 

00 00 
[w2-Ll2(w)]'" ~N,(oo)+iIm [oo'-Ll'(oo)]'" (3) 

at ~o < w < wT .2 ) With the aid of (3), after Simple alge
braic transformations, we obtain a function ~ (w) that 
corresponds exactly to NT(w). 

Since ~(w) has been determined, we obtain from 
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FIG. I. Integration contour for 
~=;:::::::;~11~~;:::::::;;:::::::;~ z the determination of the dispersion 

relation (2). 

1m (A(W)Z (w» and from (1) for the determination of 
g(w) the following linear integral equation of the first 
kind: 

.-., Re d (00) 
S g(v)Re[d(OO-v)---",-(oo-v)] 

• X [(oo-v)'-d'(oo-v) ]-'1. dv=Im d (00) 

Imd(OO) -S v 
---- dvRe [' '( )]" 

U) 4, 'V -a v I 

XSdoo,g(oo,) (_1 ___ 1_), 
v+oo,+oo v+oo,-oo 

or in operator form 

Ag=LHCg. (4) 

If we use piecewise-linear interpolation for g(w) 
then the integral operator A is represented by a lower 
triangular matrix with a leading diagonal, for which the 
triangular inverse matrix A-' can be calculated rapidly 
and very accurately. Multiplying (4) by A~', we obtain 
a linear integral equation of the second kind: 

Using the identity 

S- vdv 
--,-~--,.,-."..,--,---"" 0 for oo""'d 

., (v'-do')'I,(V'-oo') 0, 

we rewrite (2) in the form 

Im--::-----"..,-
[oo'-d'(oo) ]'/0 

(5) 

(6) 

where NBCS(v) = v/(v 2 _A~)l/2 is the density of the elec
tronic BCS states. It is seen from (6) that an important 
role in the determination of A(W) is played not by 
NT(w) but by the deviation of NT(w) from NBCS(w), 

Thus, the problem of reconstructing g(w) from 
NT(w) reduces to a calculation of the integral (6) and 
to the solution of the linear integral equation (5), and 
a unique solution is obtained, something not obvious 
when the procedure proposed in [7] is used. 

A program for the determination of g(w) can be 
easily written for a medium-class computer (Minsk-22, 
Minsk-32, M-220), and is easy to reach a calculation 
accuracy not worse than obtained in experiment. The 
calculation of g(w) for Pb and Pb9oBi lO , using the tabu
lated data for NT(w) from['o], have shown good agree
ment with the results of[,ol_see Fig. 2. Figure 3 shows 
g(w) for the Bi-Tl alloy investigated in our labora
tory[l1] 3 ). 

3. 1) An integral equation for g(w) was obtained from 
the imaginary part of rp(w) = A(W)Z(W). It does not in
clude the cutoff potential Wc (wc ~ 5Wp) or the Coulomb 
pseudopotential J.l.*. When g(w) is reconstructed from 
NT(w), the Coulomb interaction is therefore taken into 
account not in the static approximation as in (1), but 
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FIG. 2. Comparison of g(w) of lead, reconstructed by the method 
of F 1 (dashed line), with that obtained form Eq. (5) (solid line). 
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FIG. 3. The function g(w) for the alloy Bi65 T135 . 

in the long-wave approximation, when the slight con
tribution of the imaginary part of the Coulomb interac
tion to Imrp(w) can be neglected at frequencies much 
lower than the plasma frequency. The value of J.l. * 
needed for applications, if g(w) is known and Wc is 
specified, is determined from the equation 

doZ(do) =Re cp(do). 

2) From the value of g(w) we can determine, with 
high accuracy, the most important parameters of a 
metal in the superconducting state, such as the critical 
temperature Tc , the temperature dependence of the 
energy gap, the critical magnetic field, the temperature 
dependence of the Josephson current, the energy of the 
low-temperature interaction, etc. [ll. The renormali
zation coefficient 

Z.=1+2 j g(oo) doo 
o 00 

for metals in the normal state determines the change 
of the effective mass of the density of states and of 
the electron velocity near the Fermi surface(2]. 

3) Using g(w), and especially its derivative, we can 
not only find the positions of some of the Van Hove 
singularities, but also determine their type, something 
difficult to do if only the dependence of d21/dE2 on U 
is known(l2]. 

When the position and type of several of the critical 
points of g(w) are known, then it is possible in principle 
to reconstruct the phonon spectrum w = w(k) of the 
investigated material, but this question is beyond the 
scope of the present article. 

4) The dispersion relation (2) is generalized to the 
case when it is important to take into account the 
temperature T: 

1 2 - dv 
1m , -SN,(v,T)--. (7) 

[oo'-d'(oo,T)]I, n 0 oo'-V' 

If the tunnel density of states at a finite temperature 
NT(v, T) is determined, then from (7) and from the 
equation 

Re d (do(T), T)=do(T) 

we obtain the value of Ao(T), which should coincide with
in reasonable limits with the experimentally observed 
gap. We thus obtain a criterion with which to check whe-
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ther the tunnel characteristics have been correctly 
plotted. 

5) In the derivation of Eq. (2) we used rather general 
analytic properties of t.(w) and g(w), properties pos
sessed not only by the electron-phonon interaction. 
Generally speaking, the tunnel density of states NT(w), 
and consequently also t.(w) and g(w), contain contrib
utions of all the interactions of the electron, both in 
the investigated metal and inside the tunnel barrier. 
This imposes "stringent" requirements on the tunnel 
experiment and on the interpretation of the results. 

The effect exerted on NT(w) by the passage of the 
electron in the interior of the barrier can be neglected 
if magnetic impurities that lead to the so called "zero
point" anomalies [1) are not present in the "tunnel." 
The action of the magnetic impurities and of a number 
of other factors, which perhaps are still unknown to us, 
can be excluded by a careful renormalization of the 
tunnel conductivity a(u) = (dl/dU)s/(dI/dU)n [ll. 
The quantitative tunnel information concerning t.(w) 
and g(w) can be trusted only when a(O) ~ 10-3 [ll. For 
junctions of the SI-I-S2 type, there should be distinctly 
observed a region of negative resistance at 

t.~t) -t.;') <u<t.!t) +t.;2). 

If the tunnel junction, the measurement, and the re
duction of the tunnel characteristics are all in accord 
with these requirements, then a quantitative analysis 
carried out on the basis of the obtained value of g(w) 
yields indeed information on the electron-phonon in
teraction, or points to the existence of other interaction 
mechanisms. This question calls for special theoretical 
and experimental investigations. One can hope that ob
jective and detailed data on the experimental situation 
and on the details of the calculation of the tunnel curves 
will contribute to further progress in research on the 
superconducting and normal states of solids. 
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APPENDIX 

From among all the continuous bounded functions 
g(w), we are interested only in the function for which 
the solution of the system (1) is continuous and bounded, 
with the equation 

w=t.(w) 

having at w > 0 a Single root w= t.o. In this case we 
have 

g(O) =0 (A.1) 

and it follows from the system (1)[4) that an analytiC 
continuation of the function t.(w) into the complex z 
plane yields a function t.(z) that is analytic in the do
main D (Fig. 1) with cuts (-"", -t.o) and (t. o, +""), with 

t.(z')=t.·(z), t.(-z)=t.(z). (A.2) 
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We shall show that the function 

1](Z) =z'-t.'(z) 

has no roots in the domain D. 

According to the statements made above, 11(w) has 
only two roots on the real axis, at the points w = ±t.o 
which do not belong to the contour L. Using (8.1) 
and Eq. (1), we can show that on circles with sufficiently 
small radius p, we have the function 11(Pe i 'P) has no 
roots. On semicircles with radius R, at R» wC ' 

It. (z) I ¢:R, (A.4) 

i.e., 11(z) has no roots. We can thus always choose p 
and R such that the function 11(z) has no roots on the 
contour L. According to the well known Cauchy theorem 
the number of roots of 11(Z) inside the contour L is equal 
to the change of the argument of 11(z) after traCing the 
contour L, divided by 21T. Let us examine the change of 
the argument of 11(z) on going along the contour L as 
R _00 and p _0: 
t. arg I'] (z) I. _ m=t. arg 1] (1m z=O) +t. arg 1] (Rei.) +t. arg 1] (z=t.o+pe'·) 

,_0 (A.5) 

+t. arg I'] (z=pe'''-t.o) =0+4n-2n-2n=0. 

Thus, lI(Z) has no roots inside the contour L as p _0 
and R _"", meaning that 11(Z) has no roots in the entire 
domain D. 

The continuous function 11(w) has a single root t.o at 
w> 0 and lim[It.(w)l/w] = 0 at w _"", from which it 
follows that Re t.(w) == t.(w) < w for Iwl < t.o, i.e., the 
function 

i 
4l>(w)=--=~---~ 

I']"'(W) [w'-t.'(w) l'" 
is real on the real axis at Iwl < t.o. 

(A.6) 

We continue <l>(w) analytically into the complex z 
plane through the segment (- t.o, t.o) on the real axis. 
We obtain a function CP(z) that is analytic in the domain 
D, with 

l1>(z) =11> (-z), limll1>(z) 1=0 as Izl-oo (A.7) 

and from the Schwartz symmetry prinCiple it follows 
that 

4l>(z·)=I1>·(z). (A.8) 

OAt the real accuracy -) % with which /',0 is determined, the changes 
in /J. can reach -40% [9]. 

2)Usually wT - 5wD and is so chosen that the conductivities in the 
normal and superconducting states are practically the same following 
a displacement on a barrier equal to wT . 

3)At the first All-Union Conference on High-Pressure Physics and Tech
nology [11], results were also reported on the effect of pressure on the 
function g(w) obtained for the alloys Bi-Tl, Pb-In, and Pb-Bi by the 
method proposed here. 
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