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The fluctuations near the spinodes of first-order transitions that are accompanied by crystal-symmetry 
changes and that allow the introduction of a characteristic transition parameter "l are considered. It 
is shown that in the low-symmetry phase the mean square of the spatially homogeneous fluctuations 
in "l differs by a finite value from the mean square of the extremely long wavelength spatially 
inhomgeneous fluctuations. The corresponding "gap" vanishes at the second-order phase transition 
point. and is finite at the spinode of the low-symmetry phase, in which, in contrast to the critical 
points, the long-wavelength "l fluctuations remain finite. The existence of the gap is explained by the 
relation between the "l and density fluctuations, which, in a solid, are accompanied by the 
appearance of shear deformations if the fluctuations are spatially inhomogeneous. The singularities of 
the frequency spectrum of the fluctuations near the spinodal are investigated. The question of the 
nature of the light-scattering anomaly observed in the a",,/3 transition in quartz is briefly discussed. 

A system undergoing a first-order phase tranSition 
can, as is well known, be in a metastable phase, owing 
to supercooling or superheating. In the P-T diagram 
there exist lines (spinodals) separating the region of 
metastable states from the regions where one or 
another phase is absolutely unstable (see the figure). 
It is natural to expect that the anomalies in the proper­
ties of a substance near a spinodal are the same as the 
anomalies in the properties near the critical points of 
the substance (in particular, near its second-order 
phase tranSition points). Indeed, the latter also lie on 
the boundary of the region of absolute instability of the 
phase, and it is precisely this circumstance that under­
lies the high fluctuation level, which, in its turn, is the 
cause of the major "critical anomalies" (see, for ex­
ample, (11). The idea that critical points and spinodes 
are similar is used in the analysis [2) of experimental 
data on the "tails" of the critical anomalies observed 
in many first-order phase transitions [2-4). 

The object of the present paper is to draw attention 
to the fact that in the case of solids such an analogy is 
incomplete, and that the fluctuations near spinodes can 
be significantly different in nature from the fluctuations 
near critical points. As will be shown below, the mean 
squares of only the spatially homogeneous fluctuations 
diverge at the spinodes, whereas the spatially inhomo­
geneous fluctuations (no matter how long their wave­
lengths) remain finite. In other words, the magnitudes 
of the fluctuations expressed as functions of the wave 
vector k have "gaps" at k=O. As is well known, such 
gaps do not exist at critical points. 

1. Let us first carry out a qualitative analysis. We 
shall be interested in first-order transitions for which 
a transition parameter 1/ can be introduced in the same 
manner as is done in the Landau theory [5). The spa­
tially homogeneous fluctuations in 1/ diverge at the 
spinodes of the high- and low- symmetry phases. Let 
us first verify that the spatially inhomogeneous fluctua­
tions at the spinodes of the low-symmetry phase are 
finite, i.e., there is a gap in the fluctuation, spectrum. 
The symmetry of the low-symmetry phase does not 
change when 1/ is varied. Consequently, 1/ should vary 
in proportion to the other quantities whose variation 
also does not change the symmetry. Of these quantities 
we shall be interested in only the density p. 
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T 
Phase diagram for a substance undergoing first- and second-order 

transitions: I) the low-symmetry phase, 2) high-symmetry phase; T cis 
the second-order-transition temperature, Tt the thermodynamic tempera­
ture of the first-order transition, TSI and TS2 are respectively the tempera­
tures at the spino des of the low- and high-symmetry phases, Ttc is the 
temperature corresponding to the tricritical point, and TS1 * and TS2* are 
the temperatures at which stability against inhomogeneous fluctuations 
is lost (see Sec. 3). 

There is always a gap in the denSity-fluctuation 
spectrum of a solid. The point is that, in contrast to the' 
homogeneous fluctuations, the inhomogeneous p fluctu­
ations are accompanied by shear deformations, and, 
consequently, the magnitudes of these fluctuations are 
determined by different elastic moduli: by the coeffi­
cient of hydrostatic compreSSion in the first case and 
the coefficient of uniaxial compreSSion that does not 
change the transverse dimensions of the body in the 
second. In fact, the inhomogeneous density fluctuations 
in a solid are longitudinal acoustic Debye waves, the 
square of whose velocity is proportional precisely to the 
coefficient of uniaxial compression. It is clear that ow­
ing to the linear coupling between A1/ and Ap, the 1/-fluc­
tuation spectrum also contains a gap. The magnitude of 
this gap depends on the coefficient of proportionality 
between A1/ and Ap. The latter is proportional to the 
equilibrium value 1/0 of the transition parameter (in the 
symmetric phase, where 1/0=0, the linear coupling does 
not exist). It is clear, therefore, that the gap vanishes 
at a second-order phase transition point, but has a finite 
value at the point where the low-symmetry phase loses 
its stability in the first-order transition (1/0"" 0). 

Let us now derive in the framework of the Landau 
theory expliCit expressions for the fluctuations in the 
characteristic transition parameter and the strains in the 
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Jow-symmetry phase. We shall, for simplicity, restrict 
ourselves to the case of a one-component parameter 11, 
and we shall not consider explicitly the anisotropy of the 
crystal. The expression for the thermodynamic potential 
then has the form 

a; ,+ ~ '+ 1 '+ ' + K '+ ( 6..), ~=~'+Z-Tj 4Tj BTj· rTj Ull Z-U" !1 U"-SUIl , ( 1) 

where K is the coefficient of hydrostatic compression, 
11 is the shear modulus, r is the coefficient attached to 
the mixed term, which reflects the coupling between 11 
and uik. Let us compute, on the basis of (1), the second 
derivatives of ~ with respect to 11 at constant stresses 
olk and constant T, i.e., ~~~, and with respect to ull 
at constant T and constant generalized force conjugate 
to the quantity 11, i.e., ~~~: 

~.:T=2Tj,'(~,'-4a;1)''', ~uu=K(~"-4a;1)'i (~"-4a;1)'f'+~] _I; (2) 

the equilibriunf value 110 of the transition parameter is 
equal to 

-~,+(~,'-4a;1)'f. 2r' 
Tj.= 21 '~'=~-K' (3) 

The expression under the radical sign in (3) vanishes 
at the spinode (T = Ts1) of the low-symmetry phase. As 
can be seen from (2), this leads to the vanishing of the 
second derivatives of ~: ~~~ and ~~~ (the isothermal 
modulus of hydrostatic compression); both of these 
quantities are proportional to (TsCT)1/2. The specific 
heat and the coefficient of thermal expansion have a 
temperature dependence similar to that of the isothermal 
compressibility, i.e., they increase in proportion to 
(Ts1-T)-1I2. With the quantities (2) are related the mean 
squares of the fluctuations in 11 and ull: 

«~Tj)'>=TV-I~.:T, «~ulI)'>=TV-I~u.'T (4) 

(V is the volume of the system), from which it follows 
that these fluctuations diverge at T-Ts1. 

Let us now consider the spatially inhomogeneous fluc­
tuations. In computing them, we should bear in mind that 
the independent variables are not the components of the 
strain tensor, but the components of the displacement 
vector. Adding, moreover, the term %o(grad 11)1/2 to the 
expression (1), and proceeding further in the usual 
manner [51, we find 

<Tj (k)t] (-k) >=TV-'(~.:'+16W'Tj.2/3KKHk2)-', (5) 

k'(Uk(k) u.(-k}>=TV-' (ell u F+'I,!1)-', (6) 

k<iu.(k)Tj(-k)+ K.c.>=2rTj.K-'(1') (k) 1')(-k», (7) 

where K = K + %11, 11(k) and u(k) are the Fourier trans­
forms of the functions 11(r) and u(r), and uk is the 
component of the vector u(k) in the direction of the 
vector k; the quantity ok2 has been neglected in the 
expression (6), since we shall henceforth be interested 
in only long-wavelength fluctuations. It is evident that 
as k -0 the expressions (5) and (6) do not go over into 
the expressions (4). Thus, a gap exists in the fluctua­
tion spectrum of not only p, but of 11 as well. The mag­
nitude of this gap for 11 is, as can be seen from (5), 
proportional to 11~ and 11. It is therefore different from 
zero at the point where the low-symmetry phase loses 
its stability only for first-order phase transitions 
(110 '" 0) and only in solids (11 '" 0). 

Let us estimate quantitatively the influence of the 
gap on the 11-fluctuations for the ferroelectric transition 
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in BaTi03 [6]. Let us assume the following values for the 
coefficients [6] (in esu; T) == p): da/ dT = 7.4 X 10-5 , f3 = 10- 12 , 
y = 2 X 10-21 , i'::; 1, K = 1.4 X 1012 , 11 = 0.4 X 1012 , K = 1.9 X 1012 , 
and TS1-Tt = 5 "K (Tt is the thermodynamic transition 
temperature). As estimates show, the second term in the 
expression (5) is comparable to the first term when 
Ts1-T::;2-3°, and is roughly 1.5 times less than it at 
T=Tt. Notice, however, the tentative nature of the es­
timates: the anisotropy of the elastic and striction 
constants of BaTi03 are not taken into account in them. 

2. Let us now consider the temporal characteristics 
of the 11 and p fluctuations near the spinode of the low­
symmetry phase. Let us compute the spectral densi-
ties [5] (11(k. W)11(-;-k, -w) and (p(k, w)p(-k, -w). The 
spectral intensity of scattering of any radiation by the 
11 and p fluctuations is, as is well known, proportional 
to these spectral fluctuation densities. For light scat­
tering, which is the only one to be considered below, the 
vector k can, as a rule, be assumed to be small!), which 
is taken into consideration in writing down the expres­
sions given below. Since in the asymmetric phase the 11 
and p fluctuations are coupled, the spectral density 
(11(k, w)p(-k, -w) should, generally speaking, also be 
taken into account in the analYSis of the spectrum of 
the scattered light. Such a refinement does not, how­
ever, alter the final results, and will not be carried out 
here. The functions (11(k, w)11(-k, -w» and 
(P(k, w)p(-k, -w) are, as is well known [5], proportional 

I to the generalized susceptibilities, which are determin­
able from the corresponding equations of motion. The 
equation for 11 has the form 

(-mw2+iToo+~""u')t](k, oo)+2rt].iku.(k, oo)+a;'Tj.T'(k, w)=/.(k, 00), (8) 

where <I>~~ is the second derivative of <I> , (1), with re­
spect to 11 at constant uik and constant T; T'(r, t) is 
the deviation of the local temperature from its equi­
librium value; a'=da/dT. Here we have allowed for 
terms of up to second order in w; this is quite sufficient 
in the region of not too high frequencies, which is the 
most interesting region. Equation (8) should be supple­
mented by the equation of motion for the elastic strains 
Uik and the entropy-balance equation. Choosing the x 
axis along the direction of the vector k, we have 

.. ao= K ' pu==Tx' axx= u:a:+r"l, 

as aT ,at] a'T 
Taf=C .. at:-Ta; Tj·Tt=x ax' ' 

(9) 

(10) 

where K is the thermal conductivity coefficient. In 
writing down (9) and (10) we assumed the coefficient of 
thermal expansion of the high-symmetry phase to be 
equal to zero; this assumption has practically no effect 
on the results. From (8)-(10) we find an expression for 
the inverse susceptibility a- 1(k, w) corresponding to 
11 (11(k, w)=a(k, w)f(k, w)): 

4r'Tj 'k' a;"1') 'iw 
a;-'(k,w)=-moo'+iloo+~: • +T •. (11) 

-poo'+Kk' iwC .. +"k' 

Let us introduce the characteristic frequencies: 
'_ellu, + Ta;'Tj.' _ ",u8 

mcoo - lJTJ -c:-- "II,...." 

poo.'=Kk', w,C.=xk'. 
(12) 

If the damping constant is sufficiently small, then the 
fluctuations are OSCillations, and, what is more, since 
in real cases WI, W2« Wo, the frequency of these oscil­
lations are close to woo The quantity Wo is thus what is 
generally called the "soft-mode" frequency. The tem-
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perature dependence of Wo is determined by the quantity 
cI>~~ (see (12)), which is finite at T=Ts l • Consequently, 
the "soft-mode" frequency remains finite at the spinode 
of the low-symmetry phase. This conclusion applies 
equally well to phase transitions in solids as in liquids, 
since in deriving the expression (12) we took into con­
sideration the fact that the elastic deformations do not 
have time to follow the oscillations in 1). Let us recall 
that the oscillation frequency vanishes at a second­
order phase transition point (see, for example, (7)) 

For low frequencies (w < WI, W2) the expression (11) 
gets simplified: 

Since (5) 

a-'(k, w) =-mw'+iyw+0])"aT+16W'1jo'/3KK. (13) 

T 
(1j(k, w)1j(-k, -wP =-'Ima(k, w), 

l'tW 

-when ml/ 4 exceeds the sum of the last three terms in 
(13), the function (1)(k, w)1)(-k, -w) has a maximum at 
W = O. If J.1. = 0, then the magnitude of this maximum in­
creases as T -Tsl like (T-TsI)-l, while the width de­
creases as (T - TS1)1/2. Consequently, the total intenSity 
of scattering of light by the TJ fluctuations increases in 
proportion to (T - Ts1) -1/2 . 

Thus, if the shear modulus is sufficiently small, then 
there is enhanced scattering of light near the spinode, 
this enhancement occurring largely on account of the 
increase in the intensity of the unshifted component. At 
the same time the side maxima corresponding to the 
frequency Wo exist right up to the spinode. This differs 
significantly from what obtains near second-order phase 
transition points, where the Raman components con­
nected with the 1) fluctuations merge as T- Tc (8). 

A similar result is valid for the spectral composition 
of the light scattered by the density fluctuations. The 
Raman frequency in this case is given by 

(14) 

Since cI>~~ ex: (T -TS1)1/2 and Cfu-C1)uex: (T - Ts1)-1/2, the 
modulus remains finite at T = Ts1. At J.1. = 0, there is an 
enhancement of the scattered-light intensity 
Ipex: (T-Ts1)-1/2, an enhancement which, near the spin­
odal, occurs owing to an increase in the unshifted 
component. 

The system (8)-(10) can also be used to analyze the 
1)-relaxation-induced anomalies in the velOCity and co­
efficient of absorption of sound (9]. Eliminating 1)(k, w), 
we find from Eq. (9) that 

k' =pw' iYW+0]).:8 

K iyw+0])~~+16!Lr'1jo'/3KK' 
(15) 

The quantities 

,(US=y (0])"U8) -', ,(a8=y (0]).:s+16!Lr1jo'/3KK) -, (16) 

have the meaning of the corresponding 1)-relaxation 
times in the inhomogeneous case. For second-order 
transitions, rfS - 00 as T - T c. The anomaly in the 
so-called relaxation absorption of sound (9) is connected 
precisely with this circumstance. On the-other hand, 
as T -Ts1 not only do the quantities rfS remain finite, 
but so also does the quantity cI>~. 

3. Let us discuss the results. The finiteness of the 
long-wavelength fluctuations of the characteristic param­
eter (and, consequently, the finiteness of the correla-
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tion length) at the spinode indicates that the fluctuations 
do not cause the thermodynamic quantities (e.g., the 
specific heat) to diverge at this pOint, i.e., it indicates 
the finiteness of the so-called fluctuation or correla­
tion corrections 00,11]. Nevertheless, in the low­
symmetry phase; the specific heat and the quantities 
similar to it do diverge as T - Ts1, this being due to 
the temperature dependence of 1)0 (the Landau theory 
considers only the contribution that such a dependence 
makes to the anomalies). It is not difficult to verify, 
USing the expression (1), that the specific heat varies 
like (Ts1-T)-1/2 as T -Ts1. 

It must follow from the above arguments, if we carry 
them over to the high-symmetry phase, that there is no 
gap for the 1) fluctuations in the high-symmetry phase. 
Neverthe less, the spatially inhomogeneous fluctuations 
also remain finite at the spinode of this phase, i.e., a 
gap nonetheless exists, this being due to the influence 
of the critical fluctuations on the temperature depen­
dence of the thermodynamic quantities. Allowance for 
such influence (this requires the consideration of the 
interaction between the 1) and p fluctuations - an inter­
action which, in the high-symmetry phase, can only be 
nonlinear) leads to the conclusion that the loss by the 
high-symmetry phase of its stability occurs not as a re­
sult of the growth of the 1) fluctuations, but as a result 
of the vanishing of the modulus of hydrostatic compres­
sion at a higher temperature 02,13]. Naturally, the 1) 
fluctuations are finite at this temperature. Also finite 
are the p fluctuations, owing to the existence of the 
above-indicated gap. 

Thus, loss of stability in a solid occurs at the spinodes 
only for one and two degrees of freedom of the system: 
loss of stability against the homogeneous p fluctuations in 
the high-symmetry phase and against the homogeneous 1) 
and p fluctuations in the low-symmetry phase. We can at­
tain the points at which the inhomogeneous long-wave­
length fluctuations diverge by "clamping" the crystal. In 
the figure the temperatures of these points for the low­
and high-symmetry phases are denoted by TSI and TS2' 
Let us emphaSize, however, that the values of these tem­
peratures depend on the "clamping" conditions, e.g., on 
precisely which value of the density p is fixed. Using 
the results of (13], we can verify that the long-wavelength 
p fluctuations diverge at T = TS2 (in the high-symmetry 
phase), since the modulus of uniaxial compression van­
ishes at this point, while the 1) fluctuations still remain 
finite. The situation is, apparently similar to that ob­
taining at T = TSI' 

Let us discuss the possibility of attaining the spin­
odes in an experiment. A general method of preparing 
metastable phases consists, as is well known, in elim­
inating as many of the nucleation centers of the stable 
phase as possible. This in a solid may just require the 
prevention of the nucleation of the new phase on the 
surface of the sample. Indeed, the appearance of a nu­
cleating center of a new phase inside the old one leads 
to the deformation of the crystal, the energy connected 
with this deformation being proportional to the volume 
of the nucleating center (14). This circumstance inhibits 
the growth of even an arbitrarily large nucleating center 
inside the sample, making supercooling or superheating 
inevitable. If the first-order transition is near enough 
to being of second order (Le., if it is sufficiently close 
to the critical point), then a nucleating center of the new 
phase does not grow even at the spinode. Nucleation on 
the surface can be eliminated by creating in the crystal 
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a nonuniform temperature field in such a way that the 
temperature at the center of the crystal is lower (or 
higher) than the temperature at its periphery. Further­
more, such a temperature distribution, which has al­
ready been experimentally realized [15), effects (if the 
crystal is sufficiently large) a partial "clamping" of 
the internal region of the crystal, the "clamping" being 
complete in the case of an infinitely large shear modu­
Ius. Thus, there arises the possibility of getting near 
to the temperatures T~1 and T~2' 

Let us again touch upon the distinctive features of 
light scattering near the tricritical point determined by 
the conditions a=O and f31=0 (see the figure). Here we 
actually assume that the influence of the critical fluctua­
tions on the temperature dependence of the coefficients 
of the thermodynamic potential is negligible. Under con­
ditions when this influence is substantial the presence of 
the shear modulus leads to the conversion of the second­
order transition into a first-order transition [I3), and 
the concept of a tricritical point itself loses meaning. 
As follows from (2) and (3), for the transition corre­
sponding to this point, 1/2rx (Ttc-T)1/2 and q,O"T rxTtc-T. 
Consequently (see (5)), (1/(k)1/(-k)rx (Ttc- T):lIln if k is 
sufficiently small, which, as has already been noted, is 
practically always the case. Of the same form is the 
temperature dependence of the intensity of scattering of 
light for the cases when the coefficient of proportionality 
between the change ~n in the refractive index and il17 
does not vary with temperature. This is the case if the 
symmetry of the crystal admits of a linear dependence 
on 17 of the permittivity tensor Eik, which describes the 
optical properties of the medium. A more typical case 
is the one in which the dependence of Eik on 1) can only 
be quadratic. In this case [IS) ~n = 17o~17 and 

1-< (~n)2)-'lo'('l(k)'l(-k». (17) 
Taking into account the above-given temperature de­
pendences of 17~ and (17 (k)17(-k), we can verify that the 
intensity of scattering of light remains finite as T - Ttc. 
This does not agree with the results obtained in [IS, 7 ), 
where the presence of the shear modulus is not taken 
into account. The conclusion is reached in these papers 
that the intenSity of scattering of light increases in pro­
portion to (Ttc-T)-1/2, and attempts are made to explain 
on this basis the sharp increase (by roughly a factor of 
104) in the intensity of scattering of light in the region 
of the a """f3 transition in quartz [17). Such an explana­
tion is evidently incorrect. To solve the problem of the 
nature of the strong anomalous scattering near the 
a """ f3 transition in quartz, it is necessary to take into 
account the contribution of the scattering by the static 
inhomogeneities to the total scattering intensity, as well 
as the fact that the true temperature dependence of the 
coefficients of the thermodynamic potential is different 
from the dependence given by the Landau theory. 

The author is grateful to V. L. Ginzburg, D. G. 
Sannikov, and A. A. Sobyanin for a discussion of the 
present paper. 
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0This assertion ceases to be valid when the correlation length of the 
fluctuations becomes comparable to the wavelength of the light, i.e., 
in the immediate neighborhood of the points where the system loses 
its stability against inhomogeneous fluctuations-the critical points, 
for example (for other examples, see Sec. 3). 
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