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The change of impedance of pure type-I superconductors in the presence of a constant magnetic field 
is investigated theoretically for w::::: 26.. It is shown that the imaginary part of the impedance, found 
accurate to second order in the constant magnetic field increases as w ..... 26.. The effect is related to a 
singularity in the number density of states in pure superconductors. 

It is well known that in pure superconductors the 
number density of states has a singularity at E = A. 
Therefore, the derivative of the conductivity with re­
spect to frequency diverges logarithmically at W = 2 A 
even in the linear approximation. We shall show that in 
the nonlinear case the Singularity in N( E ) leads to a 
logarithmic divergence for the correction A1( q, w) 
~ HoHw to the superconducting order parameter for 
w - 2A and qv > A, where v is the Fermi velocity and 
Hw( Ho) is the amplitude of the variable (constant) mag­
netic field at the surface of the superconductor. For 
small values of qv, A1/2(W - 2A)1/2« qv« A, Adq, w) 
is also proportional to q-1. The latter is associated 
with the fact that, a solution of the equati?n for the 
eigenvibrations of the superconducting order parameter 
exists(l) with w = 2 A and q = 0 for pure superconduc­
tors when collisions are neglected. All this leads to the 
result that the imaginary part of the correction to the 
impedance, which is proportional to H~, diverges like 
ln 3a for Pippard superconductors with not very small 
Ginzburg-Landau parameters K, and in the opposite 
case this correction contains ln2a, where a = I w 
- 2 A 1/ A. It is obvious that both relaxation processes 
and the anisotropy of the energy gap cut off this diverg­
ence at w = 2 A. From the very beginning we shall neglect 
co llisions; therefore, I w - 2 A I cannot take a value 
smaller than the order of the reciprocal of the time T 

between collisions; however, the parameter AT may be 
substantial for pure superconductors. Anisotropy of the 
energy gap leads to a value for a of the order of a (a 
denotes the gap anisotropy parameter, whose value may 
be 10-1 [2))_ Taking account of the smallness of the 
parameter a, a theoretical investigation of a supercon­
ductor's impedance in a constant magnetic field for 
w ~ 2 A and in the isotropiC model is of definite inter­
est. We note that the increase of the correction to the 
imaginary part of the impedance for w ~ 2 A may be of 
additional interest in connection with investigations of 
the energy gap anisotropy in the case of weak anisotropy. 

For pure superconductors the expression for 
A1 (q, w) may be found by various methods. [$-5] In par­
ticular, the following expression is obtained in[5) for the 
case of a superconducting half-space with specular re­
flection from the boundaries: 

where 

e'l'1 
L,(q,OI)I'1,(q, (1)=-2 "SL,(qOl;q,OI,;q,OI') 

nmc 
(1) 

L, (q, (1)= S dp[0I'-4I'1'-(qv)')[N(q, OI)+N(q, -(1))8-' th(8/2T), (2) 

L,(qOl; q,OI,; q,OI,) = S dp(A(q,OI,)p) (A (q,OI,) p) ([ 4e'-28(0I+0I,) 

+0101,+21] (q,v) + (q,v) (qv) ]N(q" -OI,)N(q, -(1)+(01, .... -01 .. 01 .... -(1) 
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+[4e'-2e (01,-01,)-01,01,+ (q,v) (q,v) IN(q,, -OI,)N(-q" 0I,)}e-'th(e/2T), 

(3) 
N-' (q, (1) = (8+0I+ia')'-e'-21] (qv) - (qv)', 

e'=1]'+I'1', 1]=p'l2m-ll, a' .... +O, 

A is the vector potential of the electromagnetic field, 
and div A = O. If the frequencies W1 and W2 vanish 
simultaneously, expression (1) goes over into the ap­
propriate formulas for the static limit, which was in­
vestigated in[6]. However, as was first noticed in[4), 
approaching the limit by letting W1 - 0, W2 - 0, W1/W2 

- 0() no longer gives the static limit. This fact is re­
lated to the neglect of collisions, [4) and in our formulas 
it formally manifests itself in the appearance of terms 
proportional to wi1 in Eq_ (3). For W1'" 0 but W2 - 0 
these terms tend to zero, which cannot be said in the 
case when W1 - O. Therefore, the limit of Eq. (1) as 
W1 - 0, W2 - 0, and W1/W2 - 1 does not coincide with 
the lim it obtained by letting W 1 - 0, W 2 - 0, and 
W1/W2 -00. Assuming that W2 = 0 and W1'" 0 in what 
follows we confine ourselves to the behavior of A1 in 
a static'magnetic field at alternating-field frequencies 

-1 
W1> T • 

Let W2 = 0, i.e., let A(q20) denote the vector poten­
tial of the constant magnetic field in the superconductor, 
and let A(q1W) describe the high frequency field, 
where we assume q1 and q2 to be directed along the z 
axis. We shall investigate type-I superconductors. Let 
us change to a spherical coordinate system in the inte­
grals with respect to dp in Eqs. (2) and (3); then, as 
usual, the integration with respect to the polar angle e 
can be reduced to an integral with respect to t = cos e 
with infinite limits. In this approximation the integrals 
with respect to t are easily evaluated, and as a result 
L2(qw; q1W1; q2W2) takes the form 

"S+a i, (8, 01, q, q" q,) de + :-S' i, (8,01, q, q" q,) e (01-21'1) de (4) 
(8'-1'1')'''(1'1'-(01-8)')''' 1 (8'-1'1,)'1'(1'1'-(01-£)')'1,' 

max(b.,w-6.) t.. 

where Land h are real functions, and ® (x) is the 
step function. We see that in the limit as W - 2A the 
integrand has a singularity at E = A, which leads to a 
logarithmic Singularity in He L2(qw; q1W; q20), whereas 
1m L2(qw; q1W; q20) [Eq. (4) contains that part of the 
expression for Ldqw; q1W; q20) which has an essential 
singularity in the integrand] remains finite because the 
range of integration over E vanishes at W = 2 A. Per­
forming the relatively simple calculations, we find 

i, (1'1, 2f}., q, q" q,) = -4n'(A(q,0I)A(q,O) )m'v' 

x( q'q, _.!!i!...._~) __ l __ th~. 
Iqlq, Iq,1 Iq,lq, (q'+g,') 2T 

Within logarithmic accuracy, we obtain the following 
result for L 2(qw; q1W; q20) in the limit as W - 2A: 

L,(qOl; q,OI; q,O) =i, (1'1,21'1, q, q .. q,) (21'1) -, In a. 
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(5) 

(6) 

1108 



Hence it is clear that L2(qw; qlW; q20) diverges as 
w - 2.<l; however, as already mentioned, our investiga­
tion is valid for frequencies 1 w - 2 b.1 > T- 1• For fre­
quencies 1 w - 2b.1 < T- 1 it is necessary to take colli­
sions explicitly into account; therefore, in our formulas 
a cannot be larger than I::>T at b.T » 1. 

The vector potential of the electromagnetic field in 
(5) is determined in the linear approximation, Le., for 
Pippard superconductors 

2H.lql 
IA(qoo) 1= Iql'+q.' -2H.Y(q, (0), (7) 

where qw is the characteristic Pippard momentum[61, 

which generally depends on the frequency. Substituting 
(7) in (5) we find 

4n'e'm'v' 6. ( q ) 
L,(q,oo}6.,(q,oo}=- " (H,H.)th-lnctF, - , 

c q, 2T q, 
(8) 

where at z > 0 we have 

F z = s~ xdx s~ (z-x)'xdx (9) 
,( ) (x'+1)[(x+z)'+~'l (z'+x') (x'+1)[lx-zl'+~'l . , , 

Here Fd -z) '" F1(z) and (3 '" qw/qo; the quantity F1(z) 
can be expressed in terms of elementary functions; 
however, we confine ourselves to the following limiting 
values: 

F, (z)= {4n/31'3 ~(1+~+~'), 
2/z, 

z=O 

z>~ 
(10) 

For large wave vectors qv > 1::>, T the quantity Ll (q, w) 
essentially does not depend on w or T and is deter­
mined by its static value :[6J 

L,(q, oo}=8nm'vln (q!;c} .. 2nm'vl1)(q, (0), 

where ~o is the coherence length at T '" O. The depend­
ence on the wave vector is slight. The situation becomes 
complicated at small qv < 1::>, and it is no longer possi­
ble to calculate Ll (q, w) at arbitrary temperatures. 

First let us consider the case T« Tc. Assuming 
tanh (E/2T) ~ 1 in Eq. (2), let us first evaluate the 
integral with respect to 11: 

2 ' { q'v't' 
<D(q, oo)=-x S dt -~+nl'q'v't'+46.'-oo'[e(q·v't'+46.'-oo') 

, (11) 
-i8(oo'-46.'-q'v't')] 1 

for qv < I::> and 1 w - 2 b.1 < .<l. Integrating with respect 
to t in Eq. (11) we find 

l1)(q, oo)=2ct"'{- ~ct"'x'+n[x'+ sign (26.-00) j'h+~sign(26.-oo)lnlx' 
3 x 

(12) 
in' [1 +[x'+sign(26.-oo}l"'I--2 8(00-26.) 2', . 

z n- arcsIn x, 
X>l]} 
x<1 , 

where x", qvl w 2 - 41::> 21-1/2. For negative values of the 
expression under the radical sign in (12), it is neces­
sary to set the corresponding terms equal to zero. 

In the other limiting case, T ~ Tc and b. < Tc , we 
,divide the entire range of integration over 11 into two 
parts: 1 TIl < 2 I::> and 111 I > 2.<l. In the first region we 
set tanh (E/2T) ~ E/2T and integrate over 11. Making 
use of the condition I::> > qv, we first integrate with re­
spect to the polar angle and then with respect to 11 in 
the second region, and as a result we find for 4?( q, w) 
an expression that coincides with (12) after multiplying 
the entire expression (12) by 1::>/2T, and after addition­
ally multiplying the first term in the square brackets 
by 
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(13) 

It is clear that the quantity Ld q, w) becomes small at 
small values of qvand 1 w - 21::>1 < 1::>, which leads to 
an increase of I::> d q, w) as q - O. This is due to the 
existence of a solution with w '" 2 b. and q '" 0 satisfying 
the dispersion equation Ld q, w) '" 0 for the natural 
vibrations of the superconducting order parameter in 
pure superconductors Y J 

Expressing b. in terms of the critical magnetic field 
and utilizing the re lations hip (see [5J) 

qo'=nm'v'c-'tl th (M2T), 

we find 

6.,(q,oo} 4 (H,H.) 11)-'( )1 F ( q) (14) 
--6.--==-~ H;q, q,oo na. , q, 

for T« Tc. An additional factor 1 - (T/Tc) appears 
near the critical temperature in the Pippard region 
( K2 < 1 - T/T « 1). Comparison with the results of(5J 
indicates that the principal difference in the high-fre­
quency case at large wave vectors lies in the appearance 
of the logarithmic singularity. However, at small q the 
difference from the static case is more substantial; in 
particular, b.l (q, w) becomes a complex quantity and 
at q v > b. 1/2 \ W - 2 I::> 11/2 we have I::> 1 ( q, w) ~ q -" whic h 
leads to an anomalously large variation of 1::>1 (x)y1 

We note that b.dq, 0) "" HwH-w also'diverges logarith­
micallY,as w - 21::>. The expression for b. 1 (q, 0) is ob­
tained from (8) if we set qo = qw in Eq. (8), and the func­
tion F d z) is replaced by 

F,'(z)= j (z+x) (z+2x)xdx 
, [x'+(x+z}'](1+x') (1+(x+z)') 

(9' ) 
1 S' x(z;-x)dx + S· (x-:;) (2x-z)dx 
z (1+x') (1+ (z-x)') (1+x') (1+ (x-z)') (x'+ (x-z)') . , 

Now let us consider the surface impedance of a 
superconductor in a constant magnetic field. To deter­
mine the correction proportional to Hg to the imped­
ance is it necessary to determine the first nonlinear 
term j 3 (q, w) in the expansion of the current density in 
powers of A. The complete expression for j 3 (q, w) can 
be divided into two parts/ 61 one of which does not de­
pend explicitly on b. t{ q, w) and the other is propor­
tional to I::>t{q, w). Following[41, we shall write out only 
the latter part, which turns out to be decisive in the 
limit as w - 2 I::> : 

j.(q,oo)= 2~ S L,(qoo; q,oo,; q,CIl,) 6., (q" 00,) 6 (q-q,-q,) 

x6 (oo-CIl,-oo,) dq,dq,dCll,doo" (15) 

S d'p ie'p.6. 
L,(qoo; q,CIl,; q,CIl,) = (2n)' 3m'c (A(q,oo,)p){[4e'-2e(oo+CIl,) 

+2Tj (qv)+(qv) (q,v) ]N(q" -oo,)N(q, -(0)+[ 4e'-28 (CIl+CIl,) +0000, 

-(qv) (q,v) IN(q,, -oo,)N(q, CIl)+[4e'+2e (oo,-CJl,)-CIl,oo,-2Tj(q,v) 
-(q,v) (qv) ]N(q" CIl,)N(-q" -CIl,) + 

+(00- -00, 00,- -00" CIl,- -oo,)}e-'th(E/2T}. (16) 

We shall show that L3 (qw; qlW; q20) contains ln a as 
w - 2.<l; hence it follows that j3 (q, w) is proportional 
to the square of a large logarithm, whereas that term 
in the formula for j3(q, w) which does not explicitly 
depend on 1::>1 gives only the first power of the logarithm, 
as can be verified by direct calculation. In view of the 
cumbersome nature of these calculations, we shall not 
present them here. Setting W2 = 0 in Eq. (16), Le., as­
suming the field A(q2w~)to be static, we find 
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ie2m2 v"tHo ~ 
L,(gw; g,w; g,O) = - 12 th-lnaY(g,O) 

nc 2T 

x{~(~+-g-, )-.3..:...-(~+ g+g, )} 
Igl g, g'+g,' Ig,l g, g'+g,' . 

For T « T c' the following expression is obtained for 
the current density: 

. ( )'- icH,(H,H.) I ' F ( g ) 
1, g, w - 6 'H' n a , - , 

n c qo 
(18) 

where 

F,(z)= Sdxdyl5(x+y-z) {_z_(~+_y_) 
Izl y z'+x' 

x (1 z+x )} --r;r -y+ z'+x' Y(y,O)F,(x)fl>-'(g,x,w). (19 ) 

For x - 0, ~-l(qox, w) diverges as w- 2A, and 
within logarithmic accuracy the contribution of the point 
x = 0 to the value of the function F 3 ( z) is given by 

4F,(0)6 
( '+) (Jna+3i). n z 1 g,v 

(20) 

At T F::j Tc a factor 1 - (T/Tc) appears in (18), expres­
sion (20) is multiplied by 2T / A, and the a in expression 
(20) is replaced by \ a Y \. The imaginary part in (20) is 
small in comparison with the real part; however, we 
shall not neglect these small terms since they lead to 
a change in the real part of the impedance. The values 
X"" 1 in the integral (19) will give the following con-· 
tribution to the value of the function F 3 ( z) for z < 1: 

F, (0) z (1-1n z)ln-' (q,~,). (20' ) 

It is seen that, for clearly expressed type-I supercon­
ductors at not too small values of a, expression (20') 
will have larger values than those given by (20). 

It is convenient to express the impedance change 
Z(Ho) - Z(O) in the presence of a magnetic field in 
terms of the complex quantity [4] 

15'(W)=--3~ [Z(H,)-Z(O)]= 3. 4H SdgY(g,W)i,(q,w). 
HIl ~c fool 

(21) 

At w = 0 the quantity 1) 1 (0) is purely real and has the 
meaning of the correction to the penetration depth of a 
static field into the superconductor. Substituting ex­
pression (18) in (21), we find 

15,(00) =~ln2aS·XF,(x)dx 
15. "1'3 n'H,' "X3+~3 

(22) 
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at T « Tc , where 1) = 4/3 f3qo is the penetration depth 
of a static magnetic field o If F3( x) is determined by 
expression (20), then 1) 1 (w) is proportional to In 3 a; in 
the case when expression (20') is largest, 1) 1 (w) 
~ In2 a and the complete effect is entirely connected 
with the singularity in the number density of states at 
E = A • 

Comparing our results with the static case, [6] we 
see that the principal difference as w - 2 A is the 
appearance of In2 a in expression (22) for clearly pro­
nounced Pippard superconductors with K« 1. We note 
that similar expressions, which we shall not present 
here, are obtained for the dependence of the impedance 
on H~ in the absence of a constant magnetic field 'as 
w - 2A. The variation of the impedance in the presence 
of a constant magnetic field has been investigated ex­
perimentally in a number of articles (see, for exam­
ple,[7]); however, as a rule these investigations were 
for w « 2A. The case w F::j 2A was studied in[8]; there, 
however, only the variation of the absorption in the 
presence of a field Ho was investigated, whereas a 
noticeable increase of the correction to the impedance 
can be expected only for the imaginary part, i.e., only 
for the variation of the penetration depth. 
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