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The problem of the conditions for the onset of the Cooper instability and for the occurrence of the 
structural transitions involving a doubling of the lattice constant is investigated in the framework of 
the electron-phonon model of superconductivity. It is shown that in the strong-screening 
approximation for the degenerate Fermi system the conditions for the existence of both types of 
instabilities reduce to the inequality ps 2 < N 2p F I (for an isotropic phonon spectrum), where p is the 
density, s is the (renormalized) velocity of sound, N is the electron concentration, PF is the number 
of states per unit energy interval at the Fermi level, and the relation between the quantities T c and 
T p (the Cooper-pairing and Peierls-doubling temperatures) is determined by the degree of 
three-dimensionality (the magnitude of' the overlap integral U for neighboring conducting chains), i.e., 
by the deviation from flatness of the Fermi surface. This criterion can be refined by allowing for 
logarithmic corrections due to the effects of tight binding, phonon-frequency softening near the 
structural instability point, and three-dimensional interactions. The transition temperatures T c and 
T p are estimated in an electron-phonon interaction model in which the deformation and Coulomb 
effects are taken into account in a self-consistent manner (a generalized "jellium" model or a 
"two-boson" scheme). 

1. INTRODUCTION 

The purpose of the present paper is to analyze the 
conditions for the existence of superconductivity and 
structural transitions due to electron-phonon interac­
tions in conducting solids. In our view, this problem 
has not been satisfactorily solved even for the simple 
metals, and is a particularly preSSing problem in the 
case of the intermetallic compounds with the J3-tungsten 
structure(1,2), laminar structures inter grafted with 
certain organiC materials(3) and TCNQ-based quasi­
one-dimensional compounds I4 ]. Interest in the last class 
of substances, which possess practicallyone-dimen­
sional metallic conductivities, is due at present to the 
prospects of obtaining high-temperature superconduc­
tors[5]. A distinctive feature of the (quasi-one-dimen­
sional) compounds (1,4,5] is the strong temperature de­
pendence of the lattice characteristics, a dependence 
which is closely connected with the order-disorder phe­
nomena in the electron system. 

In 1964 the present author[6] proposed a model for 
describing the electron-phonon interaction in metals 
which practically unites the elements of the so-called 
"jellium" model [7] and the ordinary (Frohlich) elec­
tron-phonon scheme[S]. A distinguishing feature of the 
proposed approach is, in the language of the theory of 
elastic waves in metals[9], the allowance for the long­
range Coulomb fields connected with the lattice defor­
mations and not conSistently describable in the frame­
work of the purely phonon scheme. In fact, we have to 
introduce two Bose fields[lO] that describe the metal­
lattice vibrations: the field of the phonons and that of 
the "photons" (Le., the longitudinal electric oscilla­
tions) interacting with each other and with the electrons. 
In such a scheme we can describe in a self-consistent 
manner the effects of the phonon-induced attraction be­
tween the electrons and the Coulomb repulsion due to 
the exchange of the quanta of the boson fields. In con­
trast to the simple jellium model(7), the present scheme 
leads to the conclusion that there exists at the fre­
quency w '" 0 a nonvanishing electron-electron interac­
tion whose sign is determined by the relation between 
the experimentally determinable parameters (Le., by 
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the renormalized elastic constants of the lattice and the 
density of electron states at the Fermi surface )1). On 
the basis of this, a "criterion" for superconductivity 
was proposed in the papers[6] which, as was demon­
strated in[6, 12], reproduces quite well the experimental 
situation for many metals. 

The aim of the present paper is to extend a similar 
approach to substances possessing substantial aniso­
tropy-in particular, substances possessing two- or 
one -dim ens ional conductivity. In the latter case, be­
sides undergoing a superconducting tranSition, the 
electron-phonon system turns out under certain condi­
tions to be unstable against a doubling of the lattice 
constant (the Peierls-Frohlich instability [13,14]). This 
instability is connected with the appearance of a "soft" 
phonon mode, Le., with the softening of the lattice, 
which, on account of the results of[6], facilitates an in­
crease in the interelectron attraction. Thus, both phe­
nomena should be considered in a consistent fashion. 

It should be noted that in the strictly one-dimensional 
model[15] the phenomena of lattice-constant doubling 
also manifest themselves in the appearance of logarith­
mically diverging diagrams at the vertex part of the 
electron-electron scattering. At the same time, accord­
ing to Dzyaloshinskil and Kats [16], the existence of cor­
relation between the one-dimensional chains is neces­
sary for the appearance of long-range superconducting 
order. The model considered by us is not a strictly 
one-dimensional model, but includes (although weak) 
three-dimensional interactions between the conducting 
chains in the crystal. As to the phonon spectrum, it is 
fully three dimensional. The conditions under which the 
present model satisfies the adiabaticity criterion are 
discussed. In spite of the presence of the chain-chain 
interaction, the structural transition (Le., the Peierls 
instability) can occur. In this respect, our treatment 
differs from Bychkov, Gor'kov, and Dzyaloshinskii's 
work(15], in which a scheme with a direct (and not an 
electron-phonon) interaction is studied. 

The contents of the present paper are as follows. In 
Sec. 2 we construct an electron-phonon interaction 
scheme, which we call the "two-boson" model and 
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which takes the deformation and Coulomb effects into 
account in a self-consistent manner. In the long-wave 
{k - 0) limit, it reproduces the results of the classical 
calculation based on the ideas used in[6] (with the excep­
tion of the generalization to the anisotropic case). Thus, 
for k - 0 the results of the classical and quantum 
treatments coincide, but at large momenta there appear 
new distinctive features-the Migdal-Kohn anomalies in 
the phonon dispersion[17-19] and the corresponding (to 
these anomalies) change in the interaction between the 
charges. In Sec. 3 we study the distinctive features of 
the electron-electron vertex part (K) of the two-body 
interaction. We determine the poles of K on the tem­
perature axis that are connected with the Cooper 
(T = Tc) and Peierls (T = Tp) instabilities. The higher 
of these temperatures determines the nature of the 
phase transition that occurs in the system. We find the 
conditions for the existence of the pOints Tc and Tp 
(the conditions for the occurrence of superconductivity 
and lattice instability) and the relation between these 
quantities. The latter problem is analyzed in greater 
detail in Sec. 4, where the logarithmic corrections to 
the above-indicated criteria are due to the effects of tight 
binding and phonon-frequency softening near the struc­
tural transition point and to the role of three dimension­
ality (the deviation from flatness of the Fermi surface) 
are considered. 

2. THE THEORY OF THE ELECTRON-PHONON 
INTERACTION (THE TWO-BOSON MODEL) 

There exist at present several approaches to the 
determination of the electron-electron interaction 
strength in solids. In the Simplest variant, which was 
proposed about the time the first papers based on the 
BCS model appeared, the interaction is assumed to be 
additively made up of two uncoupled parts: attraction 
due to purely deformation effects in the Frohlich model 
and (screened) Coulomb repulsion. Since the two terms 
are computed in the framework of different model ap­
proximations, the resulting interaction turns out to be 
largely ambiguous, and does not allow the establishment 
of a reliable criterion for superconductivity. Moreover, 
the two terms are actually not independent, since the 
"deformation" interaction is also partly electromag­
netic in nature. This is especially apparent in the so­
called "jellium" model, in which the two terms cancel 
each other out-at least for low frequencies[7]. In the 
jelly model the attraction is purely electromagnetic, and 
it does not take into account the residual interactions 
between the core electrons of the deformed ions-inter­
actions which are of nonelectrostatic (exchange) origin. 

Following the arguments employed in the analysis of 
elastic-wave propagation in metals[91, we can construct 
a self-consistent phenomenological scheme that takes 
into account electromagnetic interactions, as well as 
other types of interaction (called, for brevity, deforma­
tion interactions) and that is valid in the limit of long 
(compared to the lattice constant) wavelengths. We shall 
then assume that the scheme under consideration can 
be extended to the case of large k. The basis for this is 
the fact that the interaction does not have a singularity 
as k - 0 and can, upon the introduction of a reasonably 
defined cutoff at large momenta, describe the real situ­
ation. It would not have been difficult to introduce phe­
nomenological form factors A (k) that decrease with 
increasing k, but such an approach is not constructive 
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and does not, in the framework of the phenomenological 
scheme, give Significantly new results. 

The determination of the electron-electron interac­
tion strength in the quantum scheme amounts to the 
computation of the Green functions for the Bose parti­
cles that carry out the transfer of energy and momentum 
between the electrons. In accordance with the foregOing, 
we shall consider a system that is a combination of 
three fields: the fields of 1) the electrons, 2) the elastic 
lattice vibrations (phonons) with a bare w~ -dispersion 
law (0' is the polarization index), and 3) the "photons"­
the oscillations of the electromagnetic field. We shall 
represent the Green functions of the corresponding 
fields as shown in Fig. 1a. 

We represent the interaction between the systems 
1)-3) in the form 

H'n.=H"+H,,+H,,, (2.1 ) 

where Hij is the Hamiltonian coupling the subsystems 
and j to each other. Without specifying-for the 
moment-the form of the terms Hij, let us note that a 
methodological difficulty encountered in such a scheme 
is that it is impossible to introduce (bare) longitudinal 
field oscillations in the absence of interactions. Never­
the less , all that we shall need is the noninteracting­
photon Green function, whose form is known from quan­
tum electrodynamics. Considering the simplest two­
particle scattering diagram shown in Fig. 1b, which 
corres ponds to the Coulomb interaction, we find that 
this function has the form 41Te 2/k2. 

Let us represent the interaction Hamiltonian H 12 in 
the form 

H.,= .E S d'np.+(r)A ik au, ¢.(r), 
11 ax .. (2.2) 

where I/!~( r) is the operator that creates an electron at 
the point r (J is a spin component): 

¢.+(r)= ~ ~ ap.+~lp(r), 
l'V .i-J 

u is the quantized phonon field: 
. 1 

U (r) =-~ .E --=(e.ab.aeik'-e • ."b.a +e-"'); 
l'V 'a 1'2pCil.a ' 

a + and b + are electron and photon creation operators, 
and the eka's are unit polarization vectors. Aikaui/axk 
is the change in the energy of the electron in the elastic­
deformation field (Aik is the strain tensor in the 
laboratory frame of reference [9]). Below we shall set 
Aik = AoOik and assume that the phonon spectrum is an 
isotropic line spectrum. In such a model the electrons 
interact only with the longitudinal vibrations. The 
changes due to the role of the anisotropy effects will 
be discussed below. 

Similarly, the terms H13 and H23 in the formula (2.1) 
can be written as 

(2.3) 
H,,=Ne S d'rcpdivu. 
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Here cp is the scalar potential of the electromagnetic 
field. As can be shown, owing to the condition s « vF 
(s is the velocity of sound), the electric field in the 
metal can be assumed to be irrotational (curl E = 0), 
while the magnetic field H = 0 (we are dealing here 
with variable fields accompanying the elastic deforma­
tion). The form of the first term in (2.3) is obvious; as 
to the second term, it is simply the energy of the excess 
charge arising in the medium upon the deformation of 
a positive ion core (pi = Ne div u) in the field of the 
potential cp; N is the equilibrium electron concentra­
tion. 

Decomposing cp in terms of plane waves in exactly 
the same way as was done for the phonons, and introduc­
ing the new operators 

1>.' = A,k (b.+b_.+) , ¢.'=c.+c_.+, 
Y2poo.' 

"'-"-- -

----- + -----0----- + 

+ ---~--+ --~--

~--+~--+ 
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~ 
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we represent Hint in the form 

H"" = Y~ Ea:+ •. o/Lp.(4).'+ 4>.') + 8 ~ <1>.'<1>_.', 
p' • (2.4) H H T >--< + >--< + r-< 

where :: is a constant: 
3=NIAo. (2.5) 

The interaction (2.4), which is depicted by the dia­
grams shown in Fig. 2, is the basis of our subsequent 
investigation. In accordance with the formula (2.4) the 
vertices of the diagrams of Figs. 2a and 2b are each 
equal to unity, while the vertex of the diagram of Fig. 
2c is equal to the quantity:::, (2.5). Further, introducing 
in the usual fashion the Green functions for the Fermi 
(G) and Bose (Dij) fields (i, j = 1, 2), and denoting the 
polarization operator by II, we construct the Dyson 
equations shown in Fig. 3. In these diagrams, the func­
tions Du , D22, D12, and D21 are respectively represented 
by wavy, wavy-dashed (a wavy line that changes into a 
dashed line), and dashed-wave lines. For example, the 
first equation in Fig. 3 has the analytic form 

Writing out the remaining equations, and solving the 
corresponding system, we obtain 

D,,'(i-IlD,,') D,,'(i-IlD,,') 
D .. = , D" = ---'-;,----~-

[ ... J [ ... J 

D,,'D,,'(Il+3) 
D,,=D,,= L .. J 

where 

(2.6) 

[ ... J = (i-IlD,,') (i-nD,,') - (Il+3)'D,,'D,,'. (2.7) 

USing the techniques of thermodynamics[81, we obtain 

4"e' 
D221)=~, G=_i_ 

ioo-£p' 

n(k)=2J d'pG(p)G(p+k), 

(2.8) 

(2.9 ) 

where w denotes disc rete frequencies, which are even 
for the Bose field and odd for the Fermi field, k is the 
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FIG. 5 

four-dimensional momentum (k, w), and we have intro­
duced the symbolic notation 

{lS d'p 
T ~ (2,,)''''' S dip. 

The expression (2.9) corresponds to the Simple 
electron loop (Fig. 4a). The question of the allowance 
for higher-order diagrams like those shown in Figs. 
4b and 4c will be discussed in the following section. 

The total interaction between the electrons is given 
by the sum of the diagrams shown in Fig. 5. Using (2.6) 
and (2.7), we obtain 

(2.10) 

Further, we must perform an analytic continuation 
to real frequencies. Since we are interested in the 
transferred-energy region w ~ sk « vFk, we can set 
w = 0 in the expression for IT (k, w). 

Let us set IT (k, 0) = IT ( k) and first consider the 
long-wave region. For ka « 1, we have 

S d'p an p 

TI(O)=2 (2,,)' a;-=-P" (2.11) 

where the quantity p F is the density of electron states 
at the Fermi surface. Substituting (2.11) into (2.10), we 
find 

i A,'k' , ( k') 
D(k, 00)=-- [O.,-2NA,)k'-poo'---,-] [(A,k'-POO-) i +-4-'-

~ ~ u~ 

(2.12) N'k' A 'k' ] -, 
-2NAok'+----'- , 

p. 4"e' 

where ,1,0 = ps~ is the ''bare'' elastic modulus of the 
medium (p is the lattice density). The formula (2.12) 
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was obtained earlier(6) by another method. From it we 
can find the expressions corresponding to the jellium 
and Frohlich models. 

Setting Ao = A 0 = 0 in (2.12), we obtain in the case of 
a quadratic dispersion law for the electrons the expres-
sion 

mv,2 pro2 

D (k w)-
I , - 3N pw'(1+k'v;/3w,')-NmvF'k'/3' 

(2,13) 

where vF is the Fermi velocity and Wo = (47TNe~m)1/2 
is the plasma frequency. This expression coincides 
exactly with the two-charge interaction potential in the 
jellium model(7). The pole of (2.13) gives the dispersion 
law for the elastic waves: Wk = sk for k - 0 and wk 
- (47TNe~M)1/2 = const for k - 00 (M is the mass of 
the unit cell), For W - 00 the formula (2.13) describes 
the screened Coulomb potential: 

41le' 
Dc(k)=limDI(k,w)=-,--" k.'=41le'pF. 

._~ k-+k. (2,14) 

If, on the other hand, we set the electron charge 
e = 0 in (2.12), then we shall have the phonon Green 
function in the Frohlich model(8): 

Ao'k' 
D,(k,w)= '(' -A' )k' pw - r.o 0 PF 

(2.15) 

The quantity A. = Ao - A~PF is the renormalized elastic 
constant of the lattice in the approximation under con­
sideration. 

Returning to the general case, we note that in the 
long-wave limit the expression (2.12) gets simplified 
and assumes the form 

1 ('i.0-2NA.)k'-pw' 
D(k, w)= ( 2NA +N' I)k' , p, 1.0 - • p. -pw 

(2.16) 

The formula (2.16) can be obtained by formally set­
ting the electron charge e = 00 in (2.12). The expression 
(2.16) is valid provided k « ks, where ks is the inverse 
Debye (Thomas-Fermi) screening radius given in (2.14). 
Although in the approximation under consideration the 
magnitude of the charge does not enter into the formula 
(2.16), we see, nonetheless, that this expression differs 
significantly from the phonon Green function (2.15) in 
the Frohlich model. The formula (2.16), in contrast to 
(2.15), describes both the phonon (attraction-related) 
and Coulomb (repulsion-related) effects in the long-wave 
approximation (just adding the Coulomb potential (2.14) 
to (2.15) would not have been the correct procedure). 
The fact that the Coulomb effects are taken into account 
in (2.16) can also be seen from the fact that for 
W _00 (2.16) coincides with the limiting form 47Te~k~, 
(2.14), of the Coulomb potential. Analysis of the expres­
sion (2.16) led in(6) to the establishment as a conse­
quence of the condition for superconductivity in metals 
the condition for the function D( k, w) to be negative at 
W = 0: 

ps'<N'/p" (2.17) 

where s is the renormalized sound velocity, which, 
according to (2.16), is determined by the relation 

ps'=A,0-2NAo+N'p,-1 (2.18) 

The latter quantity should clearly be positive. Notice, 
however, that this cannot, generally speaking, be said 
of the bare constants Ao and Ao. Although methodolog­
ically this requires an explanation, we can assert that 
Ao and Ao can be consistently assumed to be both posi­
tive and negative. 
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In the anisotropic case the form of the function 
D(k, 0) can also be easily found (in the long-wave limit). 
This is most easily done by resorting to the "classical" 
method expounded in (6). The result has the form 

D(k,O)=(l-ng)!PF, n=klk, 

where g(n) is a vector determinable from the matrix 
equation 

~kjl is the renormalized elastic-modulus tensor: 

'i.;'jj='i.~p-N A;}/Jjl-N A,6" +N'p, -16;,6,. (2.19 ) 

The condition for the function D(k, 0) to be negative 
has the form (cf. (2.17)) 

.E (ne.)'/ps.'>PFIN', (2.20 ) . 
where sa( n) are the (renormalized) velocities of the 
elastic waves. 

As can be seen from (2.17) and (2.20), in order for 
the electrons to attract each other, the density of 
states of the Single-particle excitations should be suf­
ficiently low and the electron concentration N should 
be high. This is possible in the case of suffiCiently 
broad bands with small effective masses. In(6) it was 
shown that the condition (2.20) is, as a rule, satisfied if 
the metal is a superconductor, and not satisfied for 
metals that do not go over into the superconducting 
state. The above-employed approximation, according to 
which the deformation-interaction constants Aik are 
assumed to be independent of the electron momentum p, 
can be justified if we neglect the variation of the elec­
tron dispersion in the band and consider only the dis­
placement of its edge at the given point of the crystal 
as a result of the local deformation of the medium. 

As essential difference between the above-considered 
scheme and the ordinary electron-phonon interaction 
model consists in the necessity for the consideration of 
two boson fields-one elastic and the other electromag­
netic. The topological structure of the diagrams in 
Figs. 2 and 3 is such that they cannot be reduced to a 
single boson field (save, perhaps, as a purely effective 
field). The "two-boson scheme considered in the pres­
ent paper is a synthesis of the traditional Frohlich 
model and the jellium model. 

Let us proceed to consider the effects that obtain 
when the momentum transfers are not small (Le., when 
k ~ PF). As shown in[17,18J, the polarization operator 
(2.9) has a singularity at the point k = 2PF, where PF 
is the Fermi momentum. This singularity is strongest 
in the one-dimensional case, Le., for the plane electron 
Fermi surface[191. For the strictly one-dimensional 
case at low temperatures 

(2.21 ) 

i.e., II ( 2PF) tends logarithmically to infinity as T - O. 
The expression (2.10) for the interaction between two 
charges assumes the form 

D(k w)- ('i.0- 2NAo)k'-pw' (2.22) 
, - pF[('i.o-2NAo)k'-pw']L(k,)+N'k' ' 

where the function L( k) is the ratio II (k)/II (0). Like 
(2.16), this formula is valid when the screening is 
strong (i.e., for k« ks ). As can be seen from (2.22), 
in the long-wave (k-O) limit the elastic properties of 
the metal do not depend on the direction of the vector k, 

I. O. Kulik 1099 



since L( 0) = 12). As k increases, there arises an 
anisotropy due to the presence of atomic chains (paral­
lel to the z axis) effecting a one-dimensional conduc­
tivity. 

The phonon-dispersion law is, according to (2.22), 
given by the expression 

PIJ.lk'= (Ao-2NAo) k'+p,-'N'k'L -, (k,) (2.23) 

and has a singularity at kz = 2PF 3). In this connection it 
is significant that in the one-atom-per-unit-cell case 
under consideration the point 2PF coincides with the 
boundary l1/a (where a is the lattice constant in the z 
direction) of the one-dimensional Brillouin zone. 

The important question of the corrections to the 
polarization operator due to the higher-order diagrams 
will be discussed in the following section, since it is 
closely connected with the general problem of the sta­
bility of the electron-phonon system. 

3. THE STABILITY OF THE ELECTRON-PHONON 
SYSTEM AND THE CONDITION FOR SUPER­
CONDUCTIVITY 

We shall analyze here the behavior of the electron­
phonon system at low temperatures. It is known that a 
system of interacting Fermi particles becomes at suf­
ficiently low T unstable against pairing, which can be 
described as the appearance of a pole in the vertex 
part of the electron-electron interaction in the case 
when the sum of the 4-momenta of the impinging parti­
cles vanishes, Le., when Pl + P2 = 0[8]. 

Let us consider the two-particle Green function 

~(1, 2; 3, 4) =<T1p(1)1jJ(2)ip(3)ip(4)>, (3.0 
where the numerals number the interacting particles. 
The perturbation-theory series for I§ contains the dia­
grams shown in Fig. 6, in which the wavy line corre­
sponds to the total electron-electron interaction (2.10). 
Beside the number of each diagram is indicated the 
sign with which the corresponding expression obtained 
with the aid of the rules of the diagrammatic technique 
enters into I§. 

The diagrams 1-3 (and those similar to them) cor­
respond to the Cooper effect, i.e., to the pairing of 
states with momenta p and -po The vertex part of 
such diagrams satisfies the equation depicted by Fig. 7; 
whence 

K, (p, k)=D(k)-J d'qD(q)G(p+q)G(-p-q)K,(p+q, k-q). (3.2) 

Here we have used the four-dimensional notation used 
in (2.9). Kdp, k) is the vertex function K(Pl, P2; Pl 
+ k, P2 - k) for Pl = -P2 = p. Noting that the momentum 
sum p + k for the quantity Kl has the same value on 
both sides of Eq. (3.2), we obtain an equation for the 
pole (T = Tc) as the eigenvalue of the homogeneous 
equation 

cp(p)+ Jd'p'D(p-p')G(p')G(-p')cp(p')=O. (3.3) 

This is none other than the gap equation in the electron-

I--'-J 1 : ! : J ; : ! : r J f~-lI 

: --........-..lj 2 q 2 , 
,I (-J ZI+J JI-) l/(+} 

':C" 1 : ! L 
q I 

.! } J 1'1' 
q 

- , .J q . Z J _ v 

51+) 71-) 8{+} 

FIG. 6 
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/1, XP'+1r AXA+1r p, 
/(z = Ir + 

h- h h~ h 

FIG. 8 

phonon model of the theory of superconductivity[20]. 
The product G(p)G( -p) guarantees a logarithmic 
Singularity of the kernel of (3.3). 

If, on the other hand, we sum the diagrams 1, 2, etc., 
in Fig. 6 in which the upper and lower lines are directed 
in opposite directions, then we obtain for the value of 
the vertex part K2 corresponding to these diagrams the 
equation depicted by Fig. 8, or, analytically, 

K,(p" p,; k)=D(k)- J d''l D(q)G(p,+q)G(p,-k+q)K,(p,+q,p,; k-q). 

(3.4) 
Under the condition when p 1 - P2 + k = K = (2PF, 0) 

(Le., at zero frequency and for the wave number kz 
= 2PF) in the one-dimensional case this equation also 
has a logarithmic singularity, whose position is deter­
mined by the equation 

1jJ(p) + Jd'p'D(p-p')G(p')G(p'+K)1jJ(p') =0. (3.5) 

On account of (2.8), we have 

1 1 (3.6) 
G(p)G(-p)= CJ)'+s:' G(p)G(p+K)=- CJ)'+sP' 

provided the spectrum ;p has the property 

(3.7) 

In the one-dimensional case, the last equality is always 
fulfilled in the vicinity of the point ; p = 0, i.e., near 
p = ±PF, which leads to a logarithmic singularity of the 
kernel of Eq. (3.5) similar to the Cooper instability. 
Notice that the kernels of Eqs. (3.3) and (3.5) have dif­
ferent signs; therefore, if the interaction D should be 
negative (attractive interaction) in order for the Cooper 
effect to appear, then "pairing" in the channel (3.5) 
appears when the interaction between the electrons is 
repulsive (and the electron-hole interaction is attrac­
tive). The phenomenon[lS] under consideration is 
reminiscent of the Keldysh-Kopaev effect[211-the exci­
ton pairing of carriers from different bands-and, like 
the latter effect, is extremely sensitive to small devi­
ations from the ideal form (3.7) of the spectrum. For 
example, when the Fermi surface differs slightly from 
the ideal shape-the plane-in the strong-binding ap­
proximation, instead of a logarithmic singularity of the 
integral (3,5) of the form In (wiT) (w is the character­
istic cutoff energy), we obtain (at temperatures T « U) 
an expression ~ln (wIU), where U is the wave-function 
overlap integral for neighboring chains. The interpola­
tion expression for the Singular part of (3.5) that is 
valid for any arbitrary relation between U and Twill 
be (see the Appendix): 

1 -Jd'pG(p)G(p+K)"" __ PFln_w_. 
2 T+U (3.8) 
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FIG. 9 

Thus, we see that in a quasi-one-dimensional system 
(V « w), only the Cooper singularity of the vertex part 
remains when T « V, which allows us to not consider 
the specific problem of the summation of the "parquet" 
diagrams [15] 4) • Besides this problem, however, there 
arises in the electron-phonon model the possibility of 
the appearance of a second pole, since the function D( k) 
itself becomes infinite at some value of T. The sym­
bolic solution to Eq. (3.2) 

K,=DI(1+(DGG» 

has a pole at the point at which the denominator 
vanishes (T == Tc) and at the pole of the quantity 

(3.9) 

D(T == Tp). Of course, only the higher of the two tem­
peratures Tc and T p' which determines the point of 
reconstruction of the state of the electron-phonon sys­
tem, has a direct meaning. Below we shall estimate the 
temperatures Tc and Tp and find the conditions for the 
existence of the points Tc > 0, Tp > 0, and Tc > Tp. 

1. The computation of Tp is simpler. The pole of 
the function (2.22) at w == 0 and kz == 2PF is determined, 
according to (3.8), by the equation 

EF 
pFln T+U (ps,'-2NAo)+N'=O, (3.10 ) 

where So == ~ is the renormalized velocity of sound. 
Introducing the renormalized velocity s according to 
Eq. (2.18), we obtain ps~ - 2NAo == pS2 - N 2pt, from 
which it is evident on the basis of (3.10) that the pole of 
D on the temperature axis exists only when the follow­
ing conditions are satisfied: 1) pS2 < N2pF (cf. (2.17)) 
and 2) the overlap integral V (V == I V I) is sufficiently 
small. 

A schematic form of the phonon dispersion law for 
the case when the wave vector is directed along the z 
axis is shown in Fig. 9 for the cases when: a) pS2 
> N2pF and b) pS2 < N2PF' If the above-formulated 
conditions are satisfied, then w( 2PF) vanishes at 
T == Tp. Vpon further lowering of the temperature the 
frequency becomes purely imaginary, which implies a 
lattice instability. The temperature of this instability 
is determined by the equation 

(3.11) 

It can be seen from (3.11) that V has the meaning of 
a "depairing" factor (in analogy to superconductivity[23]) 
that lowers the critical temperature of the transition. 

2. Let us now proceed to estimate Tc' The expres­
sion (2.22) can be represented in the form Dph + DC, 
where 

Dc(k)=D(k,oo), Dp.=D-Dc. (3.12) 

The "Coulomb" potential DC is positive and de­
creases as we approach the point kz == 2PF; Dph de­
scribes the interelectron attraction. In the loose-bind-
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ing limit the gap equation (3.3) 

d' , (' ') 
ljl(p,w)=-T~f-p-D(p-p',w-w,)1jl P ,w 

~ (2n)' w"+~p.' (3.13) 

is determined by the value of D at the point w == w' 
== 05). Allowing for the fact that the characteristic pho­
non frequency WD is low compared to the Fermi energy 
E F, we obtain 

(3.14) 

where the angle brackets denote averaging over the 
Fermi surface. The quantity D( k, 0) is, according to 
(2.22), equal to 

ps'-N'p,-' 
D(k,O)= N'+p,(ps'-N'PF ')L(k,) , (3.15) 

where for I kz - 2PF I « PF, we can, in analogy to (3,8), 
approximate L( kz ) by 

L(k,) '" In PFV, 
T+I (k,-2p,) Iv,+U . 

(3.16) 

It can be seen that in the case when V - 0 the 
quantity D(k, 0) is negative when the inequality pS2 
< N2pp, which is the condition for superconductivity in 
the framework of the model under consideration[61, is 
satisfied. Neglecting, further, the dependence of D on 
kz, we obtain for the Cooper interaction constant de­
fined in (3.14) the expression 

(3.17) 

This expression can be refined by allowing for a 
temperature dependence in the formula (3.15). It shOUld, 
however, be noted that since the "softening" of the 
phonon spectrum occurs in a narrow range of wave­
vector values (I kz - 2PF I ~ TI VF), these corrections 
are, generally speaking, not very large. 

It can be seen from (3,17) that the loose-binding case 
is realized when the quantities pS2 and N2pF (the 
elastic constants of the lattice and the electron gas) are 
close in value. In the jellium model these quantities co­
incide [7], but this is not so in the general case, in 
which, moreover, there does not exist any a priori pre­
scribed relation between pS2 and N2pp. 
4. CONCLUSIONS 

The main result of the investigation carried out 
above amounts to the assertion that the criteria for 
superconducting and structural transitions require, as 
a necessary condition, the fulfilment of the close in­
equality (2.17) (or, in the more general case, (2.20)): 

(4.1) 

where p is the lattice density, s the velocity of sound, 
N the conduction-electron density, and p F the number 
of states per unit energy interval at the Fermi level, 
and that comparison of the expressions (3.11), (3.14), 
and (3.17) enables us to determine the regions of the 
values of the parameters s, PF, N, and the overlap 
integral V (the ratio vi EF determines the extent to 
which the Fermi surface deviates from the plane sur­
face) where the superconducting transition precedes the 
structural instability. Notice that the inequality (4.1) 
can also be rewritten in another form: 

Mw'<Nflv"l}, (4.2) 

where Z? is the mean square of the phonon frequency, 
while the numerical coefficient 7j ~ 10 corresponds to 
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the Debye model of the phonon spectrum. In a more 
realistic picture of the solid body, this coefficient can 
be different, but we hope that the relation (4.2) (like 
(4.1) reflects the general tendency toward the appear­
ance of low-temperature transitions: the decrease of 
the vibrational frequency of the lattice, the increase of 
the electron density, the decrease of the effective 
electron mass (the growth of the Fermi velocity). 

The relation (4.1) can be refined by taking into ac­
count the role of the three-dimensional interactions and 
the logarithmic corrections due to the fact that the 
Coulomb part of the potential (2.22) (see (3.12» falls off 
more slowly than the phonon part. This leads to the 
condition for superconductivity 

(4.3) 

and the condition for a structural transition 

ps'<N'p, -I (1 1) 
In(epIU) . 

(4.4) 

Comparison of these formulas with the formula (4.1) 
shows that (4.3) is a weaker, and (4.4) a stronger, con­
dition than (4.1). It follows from this that a supercon­
ducting transition can, in principle, occur in the absence 
of a doubling of the lattice constant. A more typical 
situation is the one (in particular, for the A-15 group 
of compounds [2]) in which both transitions exist; in this 
case the scale of the quantity Tp is, generally speaking, 
greater than that of Tc (cf. (3.11) for U = 0 with (3.14», 
although this is not a hard and fast rule. The relation 
between the quantities Tc and Tp depends essentially 
on the degree of three dimensionality of the system, i.e., 
on the relative role of the interaction between the one-
dimensional chains. 

A detailed experimental investigation of the above­
introduced quantities S2 (or w2 ), PF' and U as func­
tions of the parameters of the quasi-one-dimensional 
(e.g., organic) crystals[S] is desirable, for this will en­
able us to tackle the problem of the purposeful altera­
tion of the properties of a substance with a view to in­
creasing the critical temperature of the transition to 
the superconducting state. 

In conclusion, I express my deep gratitude to L. P. 
Gor'kov for a useful discussion of the paper and for 
critical comments. I am also grateful to V. M. Kontoro­
vich for a joint discussion of the problems of lattice 
dynamics and to Yu. V. Kopaev for his comments and 
for pointing out to me a number of papers on the subject 
touched upon here. 

APPENDIX 

Let us compute the phonon polarization operator, 
taking into account the interaction between the chains. 
In the tight-binding approximation, we choose the dis­
persion law in the form 

f;p~-eQcos ap,+U(p.L'b'-<p.L'b'» , 

where a is the lattice constant in the direction of the z 
axis, vF = aEo is the Fermi velocity, and U is a quan­
tity of the order of the integral of the transition of an 
electron between neighboring conducting chains (b is 
the characteristic lattice constant in the direction of 
the transition). Substituting (A.1) into the formula (2.9) 
and integrating over the unit cell of the reciprocal lat­
tice, we represent II in the form 

(A.2) 
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to 1 1 

L""TL S df;S dx 6'-(iro+qvF +Ux)" (A.3) 
til _"0 (. 

where q = I PF - ~kzl21 « PF, PF = 1T12a is the Fermi 
momentum, and U = 41TU. For q = U = 0 the integral 
(A.3) is equal to ln (Eo/T), for T = 0 and U = 0 to the 
quantity ~ln(Eo/qvF). If we assume for the moment 
that U = 0, then we find 

T' 
(A.4) 

T'+(qvp )' 

where 

() Sw In I[ 1-A(1+x')] 1 
'" A = dx. , (e"+1) (e-·.+1) 

(A.5) 

The parameter It varies from zero to unity, and the 
quantity c:p ('\'), which is of the order of unity, is then 
small compared to the large logarithmic quantity in 
(A.4). To the same degree of accuracy (neglecting 
terms ~1), we can replace the logarithm in (A.4) by 
ln (Eo/(T + qVF). A similar estimate can be made in 
the general case, i.e., when U"" O. Neglecting terms of 
the order of unity (which affect only the value of the 
preexponential factor in the determination of T p), we 
obtain for T, qVF, U « Eo the expression 

L(T, q, U) "" In T+IU~~qvF 

1)Notice that in the framework of the jellium model the inequality O(k, 
0) < 0 violates the stability condition I/e(k, 0)';;; 0 [11] (e(k, w) is the 
permittivity) for the system. In the present case, however, it is neces­
sary to introduce a few response functions-both electromagnetic (of 
the e) and deformation types of response functions-as a result of 
which the stability condition assumes a more complicated form. The 
negative ness of the electron-electron interaction function for w = 0 is 
not, as can be verified, inconsistent with the requirement that the 
energy be a minimum. 

2)This is due to the model chosen by us, in which the phonon spectrum 
is isotropic. The quasi-one-dimensional properties manifest themselves 
only in the characteristics of the electron dispersion, i.e., in the shape 
of the Fermi surface. 

3)Upon allowance for the three-dimensional interactions this singularity 
is smoothed out (see Sec. 3). 

4) A similar result was also 0 btained in [22]. There arises in the computa­
tion of the corrections to a polarization operator of the type of the 
diagram in Fig. 4b an additional small quantity of the form In(wO/U)/ 
In(eF/U), since the characteristic "cutoff" energies for the diagrams in 
Figs. 4a and 4b are different-in the first case it is the Fermi energy eF. 
while in the second case it is the maximum phonon energy ~wO. Thus, 
we see that there appears in the problem an adiabatic small parameter 
wO/eF ~ (m/M)Y2, which is analogous to the Migdal theorem [17] for 
three-dimensional systems. An important difference is that in the one­
dimensional case this smallness is only logarithmic. 

5)In this approximation, we can neglect the logarithmic renormalization 
of the Coulomb potential Jl ~ Jl/[ I + Jlln(eF/wO)] (see, for exam­
ple [11]). The refinement connected with the allowance for such a re­
normalization (the tight-binding effects) is discussed in Sec. 4. 
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