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The problem of accounting for topological restrictions in calculating the statistical integral for a 
closed polymer chain is treated. The topological invariants of knots are discussed. It is shown thai 
the integral invariant proposed by Edwards is absolutely incorrect. The Monte Carlo method is used 
to calculate the probability of knot formation when a polymer chain is closed, and the results of the 
algebraic theory of knots (Alexander polynomials) are used to determine the type of knot. 
Calculations are carried out for two random-walk models on a lattice for chains of length L from 
10 to 150 segments. The first model, which corresponds to a chain having a width close to the 
length of a segment, gives a low probability of knot formation (:> 10- 3). The second model 
corresponds to the case of an infinitesimally thin chain, and it gives a much greater probability of 
knot formation, which increases approximately linearly in the studied range of lengths, and which 
attains a value of ;:::0.4 for L;::: 150. Data were also obtained here on the frequency of formation of 
different types of knots. The possible role of the obtained results in the statistical mechanics of 
polymers and biopolymers is briefly discussed. 

INTRODUCTION 

An important unsolved problem of the statistical 
mechanics of pOlymer chains is how to account for 
topological restrictions in calculating the statistical 
integral for closed chains. This problem was first 
formulated clearly by DelbriickY] Edwards [2] has tried 
to devise a consistent statistical theory of closed poly
mer chains with account taken of topological restric
tions. In devising a theory of this type, one must first 
of all possess an invariant of a knot, i.e., an algorithm 
that answers whether two closed chains are topolog
ically equivalent or not. Edwards(2) has proposed an 
integral invariant of a knot. However, as we shall show 
below, Edwards' invariant is absolutely incorrect. 

In line with this, we have turned to the algebraic 
(group-theoretical) approach. In contrast to the integral 
invariant, a knowledge of which might open up possibili
ties of analytical solution of the problem such as those 
that Edwards [2] tried to realize, the algebraic invariant 
can be used only by applying numerical methods. By 
using this invariant in the current study, we have per
formed computer calculations, by the Monte Carlo 
method, of the probability of formation of different types 
of knots as a chain is generated on a lattice. 

THE INTEGRAL INVARIANT OF EDWARDS 

In order to derive a topological integral invariant of 
a knot, Edwards[2] reduces this problem to that of a 
topolOgical integral invariant for .the linking of two 
closed chains, which has been treated by Gauss. The 
invariant of Gauss has the form 

rh rh [dr, dr; 1 r!2 , 
j' j' r12 

(1) 

where the integration is performed over the contours C1 
and C2 (see Fig. 1a); r12 '" r1 - r2. The integral (1) 
vanishes if the chains 1 and 2 are not linked, and is 
equal to ± 41Tn for n-fold linking of the chains. 1) 

Edwards considers the same expression (1) for a 
single closed chain. However, he integrates both times 
over the same trajectory. In order to prove that this 
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expression can be used as a topolOgical invariant for ·a 
chain containing knots, he presents the diagram that we 
have reproduced as Fig. lb. The diagram shows a chain 
forming a knot. Since the integration over the segments 
1-3 and 2-4 is performed in opposite directions, the 
integrals over these segments mutually cancel as they 
approach one another. Hence, the integral over the en
tire trajectory equals the integral over the two linked 
rings that are obtained after these segments have been 
merged and discarded. Hence, it differs from zero. How
ever, a chain that does not contain a knot can be de
formed into a plane ring for which the integral (1) evi
dently vanishes. The invariant introduced by this method 
is then used in [2] to calculate the statistical integral of 
a closed chain containing knots. 

However, we can easily see that Edwards' treatment 
leads to a paradox. In fact, let us examine the chain de
picted in Fig. 1c. On the one hand, the arguments given 
above for the chain of Fig. 1b that reduce it to two 
linked rings are fully applicable to it. On the other hand, 
it is not a knot, and it can be deformed into a plane ring. 
We see that Edwards' invariant has an evident flaw. 

Edwards' arguments assume that the value of the in
tegral (1) taken over a single closed chain does not vary 
under all possible deformations without self-intersec
tion. Naturally, any topological invariant must possess 
this property. Yet the value of the integral (1) for a 
single closed chain depends substantially on its con
crete form. 

To give a pictorial demonstration of this fact, we 
have calculated the value of the integral (1) for different 
chains arranged on a cubic lattice. In this case, the 
integration by the formula (1) can be completely per-
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formed, and for example, the value of the integral for 
the contour shown in Fig. 2 proves to be the following: 

1 2 1 
12 arctg -=- -4 arctg -=- - 2 arctg ---=- = n. 

Y3 1'6 21'6 

Evidently, a trajectory having a center or plane of 
symmetry makes the integral (1) vanish. The figure 
shown in Fig. 2 is a very simple asymmetric contour on 
a cubic lattice, and for it the integral (1) no longer 
vanishes. Hence there are no grounds for thinking that 
the integral (1) taken over a single closed chain must 
vanish for any conformations of the chain except those 
that have a center or plane of symmetry. Thus, the 
integral proposed by Edwards is not a'topological in
variant at all-its value changes upon Simple deforma
tions of the contour not involving a change of topology. 

THE ALGEBRAIC INVARIANT OF A KNOT 

Knots as mathematical objects first attracted atten
tion in the sixties of the past century. The origin of the 
theory of knots is associated with the name of the 
English physicist and mathematician Tait. (see[3,4]). 
The modern theory of knots is one of the branches of 
algebraic topology. An excellent presentation of the 
fundamental concepts of the theory, as well as a long 
list of the most important studies in this field can be 
found in the monograph of Crowell and Fox.[5] 

One of the major attainments of the theory of knots 
was the creation and rigorous justification of the alge
braic invariant of a knot. Without entering into the 
mathematical details, which can be found in[5], we shall 
present in this section the process of calculating this 
invariant in a form that can be easily programmed for 
computer calculations. 

First let us introduce a set of definitions (see[5]). 
Two closed contours are equivalent knots if they can be 
transformed into one another by continuous deformation 
of the contour without self-intersections. 2) For conven
ience of further discussion, the knot is deformed into a 
polygonal form, in which it is a sequence of a finite 
number of linear segments called sides. The ends of 
these sides are called the vertices. One can represent 
a knot by its projection on some plane, which we shall 
denote as the ~ plane. We shall call a point of this 
plane that contains the projections of more than one 
point of the knot a multiple point. We choose a projec
tion of the knot that puts it into a regular position in 
which: 1) all of its multiple points are double, and 
there is a finite number of them; 2) no double point is 
the image of a vertex of the knot. Then each double 
point corresponds to an intersection. The point having 
the smaller z coordinate is called the undercrossing, 
and the other, respectively, the overcrossing. Figure 3 
shows the regular positions of two knots. The knot a is 
called a trefoil, and knot b, as we can easily see, is 
trivial (it is equivalent to a circle). 
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It will be convenient henceforth to distinguish an 
arbitrary point 0 that is not multiple on the contour of 
a knot in a regular position, and to assign (also arbi
trarily) the direction of passage of the contour of the 
knot. Now we shall move along the direction of passage 
of the contour. Let the point where we are at a given 
moment for some intersection be the undercrossing 
point. We shall call this intersection an underpass, and 
the other case an overpass. As we pass around the 
contour, we meet each intersection twice, once as under
pass, and the other time, as overpass. Now let us num
ber all the underpasses, and we shall consider under
pass No.1 to be the first underpass that we met in mov
ing along the contour from point 0 (see Fig. 3). Evi
dently, we have Rumbered all the intersections existing 
in a given regular position. The part of the contour ly
ing between the (k - 1 )st and k-th underpasses is called 
the k-th generator, and is denoted by xk. The generator 
Xl = xn+l (n is the total number of intersections) lies 
between the first and last underpasses. We shall always 
denote it as Xl (see Fig. 3). The underpasses can be of 
two types (I and II), depending on the direction of the 
overpassing generator (see Fig. 4). Thus, each regular 
position of a knot is characterized by a sequence of 
underpasses, for each of which its type (I and II) and the 
number of the overpassing generator is specified. 

One can represent such a description of a regular 
position as a square matrix, which is called the 
Alexander matrix. The kth row of this matrix corre
sponds to the kth underpass, and it consists of n ele
ments akj (j = 1, ... , n; n is the number of under
passes.) Almost all of these elements are equal to zero; 
only the elements akk, ak k+l and aki differ from zero. 
The latter are equal t0 3) ('i is the number of the over
passing generator of the kth underpass): 

1) when i = k or i = k + 1, independently of the type 
of underpass, 

2) when i"" k, i"" k + 1 for a type I underpass, 

and for a type II underpass, 

The Alexander polynomial t..(t), which is an invariant 
of the knot, is derived from the Alexander matrix as 

~ !y- .0"'-' ~ 
• 0 IS 0 

b 
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follows. One calculates any minor of order n - 1 (the 
result does not depend on the choice of minor), and 
multiplies it by the quantity ±t-m (m is an integer) in 
such a way that the obtained polynomial does not contain 
negative powers, and has a positive free term. 

It is rigorously proved in knot theory that the Alex
ander polynomials 6(t) coincide for equivalent knots, 
Thus, for a trivial knot 6(t) " 1, for a trefoil 6(t) "e 
- t + 1, etc (see[5-71), We should note that the above
cited correspondence between the rows of the Alexander 
matrix and the two types of underpasses (I and II) is 
arbitrary. The only important point is that the given 
assignment should remain fixed as the matrix is com
piled for the whole knot. The interchange I - II for 
all the underpasses does not alter the Alexander poly
nomial 6(t). Yet such an operation corresponds to a 
mirror reflection of the knot. Hence, the given invariant 
does not permit one to distinguish a knot and its mirror 
image, although in many cases these knots prove to be 
topologically nonequivalent (this problem has been dis
cussed in the monograph [5]). 

In the mathematical literature, knots are generally 
classified according to the minimum number of inter
sections in their projections (see[3,4,6,7]). Knots having 
the same number of intersections are arranged in some 
definite sequence, and the corresponding order number 
is added as a subscript to the number of intersections. 
Figure 5 gives the four simplest nontrivial knots and 
the corresponding Alexander polynomials.4 ) This type 
of classification has been carried out for all 84 knots 
having a minimum number of intersections less than 10, 
and the Alexander polynomials have been calculated for 
them (see[6,71). This classification pertains to the so
called simple knots. In addition, various combinations 
can be formed among them (composite knots). Here the 
Alexander polynomial of the composite knot equals the 
product of the polynomials of its constituent knots. 

We should note that the Alexander polynomial is not 
a complete invariant of a knot. There are examples of 
nonequivalent knots that have identical Alexander poly
nomials. Thus, 6(t)" 2e - 5t + 2, both for the knot 6 1 

and for 946. However, such cases happen rather rarely. 
For the 84 simple knots mentioned above, the Alexander 
polynomials coincide for five pairs (see[6,7]). An essen
tial point here is that 6 (t) ± 1 for all 84 of these knots. 
That is, this invariant distinguishes them from the 
trivial knot. Nevertheless, there are nontrivial knots 
whose Alexander polynomials equal unity. fa] However, 
they are very complex. The simplest knot of this type 
(Fig. 6) contains 11 intersections. 

Thus, the Alexander polynomial is an invariant of a 
knot that is most suitable for the purposes of this study. 
On the one hand, the algorithm for calculating it is 
rather easy, and it can easily be programmed on a com
puter. On the other hand, this invariant appears to be 
good enough, and as a rule, it permits one not only to 
distinguish trivial from nontrivial knots, but also to 
distinguish nontrivial knots of different types. 

CALCULATIONS OF PROBABILITIES OF 
KNOT FORMATION 

The fundamental problem of the statistical mechanics 
of knots consists in determining what fraction of all pos
sible closed trajectories consisting of a given number of 
segments belongs to a given topological class. In par
ticular, it is of interest to find out what fraction of 
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FIG. 5. The simplest nontrivial knots; they correspond to the 
following Alexander polynomials: knot 3,~polynomial 6(t) = t2 ~ t + 1 ; 
knot 4, ~ 6(t) = t 2 ~ 3t + 1; knot ), - 6(t) = t 4 ~ t 3 + I' ~ t + I; 
knot 52 ~6(t) = 21' ~ 3t + 2. 

FIG. 6. The simplest nontrivial 
knot for which 6(t) = I. 

these trajectories forms a trivial knot in the range of 
lengths that is typical of actually encountered polymer 
chains. We have used the Monte Carlo method to an
swer these questions. The calculations were run on the 
BESM-6 computer. 

The trajectories on a three-dimensional lattice were 
obtained by modeling with a random walk without self
intersection, Only the closed trajectories were con
sidered among all those having a given length L (more 
exactly, those having a distance between the ends of 
unity, since they can be closed without ambiguity). We 
used a special method, which is described in detail in 
the Appendix, to increase the fraction of closed trajec
tories, We analyzed each closed trajectory by USing the 
algorithm presented in the last section. In practice, we 
calculated the Alexander polynomial A (t) for disting
uishing knots of different types only for two values of 
the argument: t = -1 and t = -2. AnalySiS of the table 
of Alexander polynomials for the 84 types of simple 
knots[6,7] shows that a knowledge of the values 6(-0 
and 6 ( -2) permits one unambiguously to establish 
which Alexander polynomial they correspond to, 

The calculations of probabilities of knot formation 
were performed for two random-walk models. In the 
first model, the random walk without self-intersection 
was directly carried out on a body-centered lattice. It 
turned out that the probability of formation of nontrivial 
knots in this model is very small in the region of chain 
lengths that we studied (~10-5_10-3). Here practically 
all of the obtained nontrivial knots belonged to the type 
31 (trefoil). Such a small probability of knot formation 
might involve the fact that the studied model actually 
corresponds to a "thick" polymer chain for which the 
thickness of a segment is close to its length. In fact, in 
a random walk without self-intersection on a lattice, 
remote segments along the chain cannot approach one 
another to a distance less than the lattice period. 

In line with this, a second model was studied that 
corresponds to a polymer chain conSisting of infinites
imally thin segments. In this model the random walk 
was carried out as follows, Up to the first intersection, 
the random walk was carried out in the usual way with 
backward steps forbidden. When the end of a segment 
fell at an already occupied lattice mode, a new lattice 
was introduced, just like the original one, but shifted 
with respect to it along some randomly chosen direction 
by a small amount (as compared with the lattice period). 
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The random walk was continued along this new lattice 
until the next intersection, whereupon the next lattice 
was introduced, again shifted with respect to the previ
ous one by a small amount. This procedure permits one 
to get trajectories that contain no self-intersections, but 
in which segments that are remote along the chain can 
approach one another to a very short distance. It turned 
out that the probability of knot formation is sharply in
creased in this model. Moreover, in this model one 
gets a great variety of knots of different types. The 
results of the calculations are given in the table and in 
Fig. 7 

First of all we see that the probability of formation 
of a nontrivial knot in the studied length range increases 
almost linearly with increasing number L of segments, 
and it attains a value "'0.4 at L'" 150, without exhibiting 
yet any appreciable tendency to saturation. The fre
quency of occurrence of a knot of a given type among the 
knotted chains declines rapidly with increaSing compli
cation of the knot (increasing number of intersections). 
Here one finds knots having more than nine intersections 
extremely rarely in the studied range of lengths (see 
the last column of the table). This indicates that the 
small uncertainty that can arise in using the Alexander 
polynomial as an invariant of a knot (see the last sec
tion) plays practically no role in our calculations. 

DISCUSSION OF RESULTS 

Thus we have found the probability of knot formation 
upon closing chains conSisting of a number of segments 
lying in the range from 10 to 150. This probability has 
proved to depend substantially, not only on the number 
of segments in the chain, but also on the thickness of a 

Results of calculations of probabilities of formation of nontrivial 
knots of different types for the second model (the "thin" chain) 

Le~gth of I ~:::er I Number I ~noo~a~o~!_of I 
trajectory jectories of knots tion, % 

~ 23S00 0 0 -
10 15180 38 0.25±0.05 98 
12 21380 132 0.6±0.05 95 
16 9700 113 1.2±0.1 85 
20 12560 293 2.3±0.1 83 
30 5950 289 4.9±0.3 77 
40 3000 240 8.0±0.6 76 
50 2500 270 10.8±0.6 67 
60 3450 481 14.0±0.6 66 
70 1460 265 18.1±1.O 60 
80 1340 275 20.5±1.0 58 
90 1120 253 22.7±1.2 62 

100 910 227 2S.2±1.4 58 
110 400 116 29.2±2.3 50 
120 41S 147 35.S±2.4 58.5 
130 520 16B 32.3±2.0 55 
140 430 157 3ti.5±2.3 53.5 

Percent of knots of different types 

! 4 ! ' I 5 !from6!greater 
I ;)1 2 to 9 than 9 

-- - - -- -- --
2 0 0 0 0 
4.5 0 0.5 0 0 

II I I 2 0 
10 0.5 2.5 3 0 
13 I 5 3.5 O.S 
12 5 3 " 0 
16 3.5 7.5 5.5 0.5 
13 4 6 7.5 0.5 
12 3 7 16.5 1.5 
13 6 6 15 2 
13.5 2.5 8.5 12.5 I 
14.5 2.5 6.5 16 2.5 
13.5 2 5 25 4.5 
9 1.5 6 20 5 
9 2.5 II 20 .5 2 
7.5 1.5 9.5 23 5 

FIG. 7. Probability of 
formation of a nontrivial 
knot by a closed polymer 
chain consisting of L seg
ments for the second model 
(the "thin" chain). 
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segment (more exactly, on the relationship between the 
thickness. and length). It would be highly desirable, of 
course, to proceed to greater chain lengths. This is 
limited both by the memory and the speed of the com
puter that we have used. 

However, since there have been no estimates of this 
type at all up to now, the results already obtained can 
be of interest in treating an entire set of problems. 

Let us list some of them. 

1. The problem was discussed in[9] of the possible 
role of knots in the theory of the helix-coil transitions 
in DNA, we can conclude from the results obtained in 
the present study that accounting for knots need not 
lead to substantial corrections in the study of hetero
polynucleotides, but must be extremely Significant in 
studying melting of homopolynucleotides. In particular, 
the theoretical prediction of the possibility of phase 
transitions in the homopolymers must be reexamined. 
However, we cannot do this as long as we lack an 
asymptotic estimate of the fraction of knotted trajector
ies. 

2. The results obtained for the case of an infinites
imally thin chain can be directly applied for estimating 
the probability of knot formation when DNA is closed 
into a ring. This involves the fact that the thickness of 
two-stranded DNA (20 A) is very small in comparison 
with the length of the segment ("'='1000 A). In particular, 
we can conclude that when the DNA of A phage, which 
contains about 150 segments, is closed, about half of the 
molecules must be knotted, Experiments on cyclization 
of A phage DNA in solution have been performed re
peatedly (see[lO]). However, the molecules obtained here 
have not been analyzed, insofar as we know, for forma
tion of nontrivial knots in them. 

3. The problem of knots in polymers has been re
peatedly discussed also in the chemical literature (see, 
e.g.,[ll-13]). One of the ways of synthesizing knotted 
molecules that has been discussed in the literature con
sists in trying to select from a mixture obtained by 
random closing of chains. The results of these calcula
tions show that this method in highly ineffective for the 
case of flexible (Le., "thick") chains. This apparently 
is involved in the failures in attempts to synthesize knots 
based on hydrocarbon chains by the method of random 
closing. 

The authors thank A. M. El'yashevich, S. P. Torskil, 
and A. D. Frank-Kamenetskil for useful discussions and 
advice. 

APPENDIX 

GENERATION OF CLOSED CHAINS ON A LATTICE 

It is highly ineffective to generate all possible chains 
and select the closed ones from them because the prob
ability of closure of a trajectory of a given length in a 
random walk is very small. In order to hasten the 
closure process, we assumed the probabilities of differ
ent directions of the i + 1-st step not to be equal, but to 
be given by a distribution function P(L - i, ri, 0), where 
ri is the radius vector of the end of the ith link of the 
chain, and 15 is a vector characterizing the direction of 
the i + 1-th link. The quantity P(L - i, ri, 0) is a pro
visional distribution function that takes account of the 
fact that the trajectory must become closed at the L-th 
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step. We can easily find the function P( L - i, ri, 0) for 
a body-centered lattice, neglecting the self-intersection 
of the chain. This involves the fact that random walks 
on a body-centered lattice can be reduced to three inde
pendent one-dimensional random walks over the coordi
nates Xl, X2, and X3 with a displacement of ±1 at each 
step. Consequently, the distribution function of the co
ordinates of the end of the trajectory at the k-th step as 
referred to the origin of the random walk is 

1 ' 
P (k x) = - IIc<>-x,lI2 , alt k , (A.1) 

i=l 

In order to calculate the distribution function 
P( L - i, ri, 0), let us examine the remaining part of 
the closed trajectory of length L - i - 1 that joins the 
point of radius vector ri + 0 with the origin, with 0 
adopting a sequence of values. The sought distribution 
function is the ratio of the number of trajectories that 
correspond to a given value of 6 to the total number of 
trajectories that correspond to all possible values of 0, 
Le., 

P(L-i, r;,6)=P(L-i-1, ri+6) rr.Jp(L-i-1,ri+6). 
6 

According to the Chapman-Kolmogorov equation, 

P(L- i, I'i) = 4- LI'(L- i -1, ri+ 6), 
6 

where l is the coordination number of the lattice. Hence, 

P(L-i, ri, 1i)=P(L-i-l, .,+Ii)IIP(L-i, 'i). (A.2) 

Equations (A.1) and (A.2) imply that, for the studied 
body-centered lattice, 

(A.3) 

where Ok = ±1. 

The described method for increasing the fraction of 
closed chains is not fully adequate because the function 
(A.3) does not take account of the rule against self-in
tersection of the chain. Actually a rule against self
intersection was introduced in constructing the closed 
chains. That is, the chain can be extended only to un
occupied lattice nodes (in the case of the "thin" fila
ment, this corresponded to a rule against backward 
steps). In calculating the means by the Monte Carlo 
method, one must ascribe in this case a definite weight 
to each obtained trajectory (see[14, 151)0 This weighting 
factor was calculated as the product (over all the steps) 
of the probabilities that the trajectory will be extended 
at a given step to free lattice nodes. 

Introduction of the stated weighting factors does not 
affect the results obtained for the "thin" filament 
within the statistical error limits, and in this case, the 
probability of knot formation can be calculated simply 
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as the ratio of the knotted closed trajectories to the 
total number of them, as has been done in compiling the 
table. For a "thick" chain, the weighting factors are 
very substantial, and they were taken into account in 
calculating the probabilities of knot formation. 

l)This can be proved by reducing one of the contour integrals by using 
Stokes' theorem to an integral over a surface stretched over the contour 
(see, e.g., [2]). In spite of its great elegance, the Gauss invariant (1) has 
a number of defects. Thus, there are linkings for which it vanishes 
(see [' D. 

2)In the mathematical literature, any closed contour is called a knot. A 
contour that is topologically equivalent to a circle is called a trivial 
knot. 

3)The given relationships hold for all k = I, ... , n under the condition 
of the substitution n + I 4 I. Moreover, we assume that the projec
tion of the knot has more than one intersection en > I ). 

4)Certain knots encountered in daily life also have special names. Thus, 
the know 31 is called the trefoil or overhand knot, and the knot 4, is 
called the figure-eight. 
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