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We investigate the macroscopic instabilities of a semiconductor electron-hole plasma in a quantizing 
magnetic field, obtained as a result of monochromatic optical pumping. It is shown that the 
character of the instability depends on the ratio of the carrier lifetime T R to the energy relaxation 
time T .. At TR < T, the instability is due to the absolute negative conductivity of one of the types of 
carrier across the magnetic field. In the absence of an external electric field the instability can set in 
if the ambipolar diffusion coefficient of the carriers is negative. If the ambipolar diffusion coefficient 
is positive, the instability threshold in an external electric field is determined by the value of this 
coefficient. If T R > T" then instability due to the decrease of the rate of carrier generation and to the 
increase of the electric field can set in under conditions when magneto-optical oscillations of the 
absorption coefficient are observed in crossed electric and magnetic fields. 

1, The present paper is devoted to a study of the in­
stabilities of an electron-hole plasma of semiconductors 
under conditions of interband absorption of light in 
strong magnetic fields, when the carrier spectrum is 
quasidiscrete, i.e., when the conditions 

(1) 
are satisfied, where Wc is the cyclon frequency of the 
electrons, m and M are the effective masses of the elec­
trons and holes, and v is the characteristic frequency of 
the collisions with the impurities and the phonons. The 
possibility of such instabilities is due to features of the 
density of states when relations (1) are satisfied, and to 
the specifics of the energy distribution of the carriers. 

The energy distribution of the carriers generated in 
interband transitions depends essentially on the ratio of 
the carrier lifetime TR to the energy relaxation time T E" 

For electrons in a number of semiconductors, for ex­
ample in InSb, it is possible to have both TR > T E and 
TR < T E' depending on the doping and on the tempera­
ture [1, 2J. At TR < T E the energy distribution of the 
photoelectrons can deviate strongly from equilibrium. 
The last condition is usually impossible to satisfy for 
holes, and therefore the energy distribution of the holes 
remains close to quasiequilibrium. 

Under monochromatic illumination, the energy dis­
tribution of the photoelectrons, if their lifetime is short 
in comparison with the energy relaxation time, is close 
to a I) -function. In strong magnetic fields, this photo­
electron distribution leads to an absolute negative con­
ductivity (ANC) of the photoelectrons transversely to the 
magnetic field t2-4J • 

However, a monoenergetic (I)-likei electron distribu­
tion is generally speaking unstable [5 • The reason why 
such a distribution can be unstable is that the system of 
monoenergetic electrons constitutes an aggregate of op­
posing electron streams. The presence of such streams, 
if their intensity is high enough, can lead to two-stream 
instability. This instability greatly broadens the elec­
tron distribution function and this in turn can cause the 
ANC to vanish in a transverse electric field. 

If the concentration of the strongly non-eqUilibrium 
photoelectrons is high enough, so that their plasma fre­
quency exceeds the plasma frequency of the thermalized 
carriers (in particular, holes), the monoenergetic dis­
tribution of the photoelectrons is stable if 
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(2) 

where wp is the plasma frequency of the photoelectrons 
and vR = vI{' The stabilization conditions become much 
weaker at high concentration of the quasiequilibrium 
carriers. The criterion of the stability assumes in this 
case the form 

w"" (n/n,) '''<v, (3) 

where wpT is the plasma frequency of the thermalized 
carriers, nT is their density, and n is the concentration 
of the photoelectrons. 

We assume that the photoelectron distribution is 
monoenergetic at TR < TE, assuming by the same token 
that the stabilization conditions are satisfied, In this 
case, as already noted, the transverse conductivity con­
nected with the photoelectrons is negative. 

If the absolute value of the contribution of the photo­
electrons to the conductivity exceeds the contribution of 
the holes, then the homogeneous state of the electron­
hole plasma turns out to be unstable because of the nega­
tive total conductivity [6J • However, a homogeneous 
carrier distribution may turn out to be unstable also if 
the contribution of the photoelectrons to the conductivity 
is relatively small, so that the total conductivity of the 
electron-hole plasma is positive. In the absence of an 
external electric field, this instability is possible if the 
coefficient of ambipolar diffusion is negative [7J, The 
homogeneous distribution is unstable in this case against 
quasi-neutral perturbations of the electron and hole 
density. The reason for this instability lies in the possi­
bility of enhancement of the density fluctuations as a re­
sult of the negative ambipolar diffusion of the carriers. 

On the other hand, if the coefficient of ambipolar 
diffusion is positive, then the instability is possible olily 
in the presence of an external electric field. The insta­
bility threshold, as will be shown below, is determined 
in this case by the value of the ambipolar diffusion co~ 
efficient, This instability in an external field is analog­
ous to the well known instability in a system with two 
types of carriers, one of which has negative differential 
conductivity[8J • However, unlike the latter, this insta­
bility has practically no threshold. 

It should be noted that such a situation has, besides a 
lower threshold, also an upper threshold value of the 
electric field. The presence of the upper threshold is 
due to the fact that in strong electric fields the conduc-
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tivity connected with the non-equilibrium photoelectrons 
becomes positive. This occurs when the effective energy 
relaxation time, which depends on the electric field, be­
comes comparable with the lifetime of the nonequili­
brium carriers, as a result of which the monoenergetic 
distribution becomes much broader and the electrons 
populate the bottom of the Landau subbands. 

The electric field at which the photoelectron mobility 
reverses sign can be estimated in the following manner: 
In an electric field, the effective energy relaxation time 
is 

(4) 

where "E2 = Y2(sH/c)2(1 + va/vif\ and va are respectively 
the frequencies of the interaction with the impurities and 
with the acoustic phonons, and s is the speed of sound. 
Assuming that Teff ~ TR' we get for the critical field 

Ecr-E('r.i'rR) 'I,. 

In InSb we have at helium temperatures "E 
~ 0.1-1 V/cm[9J . For TE ~ 10-7_10-9 sec [lO,llJ and 
TR ~ 10-10 sec [2J we obtain Ecr ~ 3-30 V/cm, which 
agrees well with the experimental data [2J 0 

(5) 

Finally, in a transverse electric field, in the case of 
interband carrier generation, another type of instability, 
also due to negative differential conductivity of the elec­
tron-hole plasma, becomes possible. This instability 
takes place when the carrier lifetime is long in com­
parison with the relaxation time of their energy. This 
situation is realized in practice much more frequently. 
The photoelectron distribution function does not differ 
from Maxwellian in this case, at least qualitatively, and 
the conductivity via the photoelectrons is positive. 

The physical nature of this instability consists in the 
following: It is well known r12J that the interband ab­
sorption coefficient of light in quantizing magnetic fields 
is an oscillating function of the frequency of the light 
and on the magnetic field intensity. These oscillations 
are due to the presence of singularities in the density of 
states when relations (1) are satisfied. The oscillations 
of the absorption coefficients lead to oscillations of dif­
ferent physical quantities, and primarily to oscillations 
of the carrier density and to ensuing oscillations of the 
photoconductivity. In crossed electric and magnetic 
fields the oscillation pattern shifts towards lower fre­
quencies or lower magnetic fields [13J. In this case the 
rates of photoelectron and photohole generation become 
functions of the electric field. If the light frequency n 
is chosen such that dQl/dn < 0 (QI is the interband ab­
sorption coefficient), then the generation rate, and conse­
quently also the carrier density, will decrease with in­
creasing electric field. Under these conditions it is 
natural to expect the appearance of an instability analog­
ous to recombination instability [14J . 

2. We proceed to a quantitative description of the 
instabilities considered above. As the initial model we 
consider an intrinsic semiconductor in crossed electric 
and magnetic fields. The extrema of the valence band 
and the conduction band of the semiconductor are located 
at one point of the Brillouin zone, so that the principal 
role in the photon absorption is played by direct inter­
band transitions. We assume the condition (1) of quasi­
discreteness of the carrier spectrum to be satisfied. For 
simplicity we assume that the dispersion for both bands 
is quadratic and isotropic. The latter assumption im­
poses a limitation on the electric field intensity. At not 
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too large magnetic quantum numbers, this limitation 
takes the form [15-17] 

,/, (m+M)c2(E!H)2~tlg, (6) 

where c is the speed of light and 6 g is the width of the 
forbidden band. We also assume that the light intensity 
is not too large, so that the restructuring of the energy 
spectrum, due to frequent interband transitions, can be 
neglected (see, e.go, [18J ). 

Unless otherwise stipulated, we neglect thermal car­
riers. As to the energy distribution of the photoelec­
trons, we assume that it can be both monoenergetic and 
close to equilibrium, depending on the relation between 
the energy relaxation time and the recombination time. 
The holes, on the· other hand, will always be assumed to 
be in quasi-equilibrium. 

To describe processes whose characteristic frequenc­
ies are not too large1), if we confine ourselves to poten­
tial oscillations, we can use the continuity equations for 
the electrons and holes and the Poisson equation. These 
equations, assuming all the quantities to depend only on 
the coordinates transverse to the magnetic field, take the 
following form: 

an a {(n) a (n) } n --- nl''' E. +-(D" n) =g(E)--, at dXi ax. , 'rR 

a p a {(p) a (p) } P -.. -- +-_ - PI'" E.--(D," p) =g(E)--, 
rJt ax, ax" ' 'r. 

aE, = ~(p-n). 
ax, x 

(7) 

(8) 

(9) 

Here n, /-l~), Di~) and p, /-li~) D~) are respectively the 

concentrations, mobilities, and diffusion coefficients of 
the electrons and of the holes, Xi = {x, y}, 

(n,p) (n,p) 

J1·x,x =J.LIIY =J.Ln,Pl 

and K is the dielectric constant of the lattice. The mo­
bilities and diffusion coefficients that enter in Eqs. (7) 
and (8) depend, generally speaking, on the electric field. 
We shall neglect this dependence, however, unless other­
wise stipulated. 

The term g(E) describes the generation of the car­
riers. If it is assumed that the carrier generation is 
due to transitions between zero-level subbands of the 
Landau valence band and conduction band, then 

N (tl (E) ) g(E)=-p -- , 
TIl We 

(10) 

where N is a quantity proportional to the radiation inten­
sity, p(z) is the dimensionless density of states in the 
zero-level Landau subband of the conducting band, 
6(E)/wc = (; + E2/E'2, and 

Q ( tl g ) i ( m ) 2H'nO), 
b=--;;;:- i-kg -T i+ M ' E'=(m+M)c" 

In the absence of collision damping of the electron spec­
trum we have p(z) ~ z-112. In the presence of this damp­
ing, the square-root singularity becomes somewhat 
smoother. Owing to the conditions (1), however, this 
singularity is quite strong, and the maximum absolute 
value of the ratio (d p/dz)/p turns out to be of the order 
of Wc /v »1. 

We linearize Eqs. (7) and (8) relative to the perturba­
tions of the homogeneous distribution. Then, taking Eq. 
(9) into account we obtain for perturbations of the type 
exp [i(kx - wt)] (the x axis is directed along the external 
electric field) the following dispersion equation 
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1 = ___ G_Ik...,.-_iA....:.p--::--,-:c-
w-kup+i(v.+Dpk') 

Glk+iA. 

w+kun+i(VR+Dnk') 
(11) 

Here 
41te dg(E) 41teg(E}-tR 

G=7~' .An,p= x }.t1l,P, 

Un, p=lJ.n,pE 

are the reciprocal Maxwellian relaxation times and drift 
velocities of the electrons and holes. We note that the 
dispersion equation (11) does contain explicitly the Hall 
parts of the mobilities. The reason is that we are con­
fining ourselves to perturbations with wave vectors 
directed along the external electric field, Le., directed 
across the drift of the plasma as a whole. In the more 
general case, when the projection of the wave vector ky 
on the direction of the Hall drift is different from zero, 
it is necessary to replace kun,p in (11) by k· un,p' where 
the drift velocities un and Up now depend both on the 
diagonal and on the Hall components of the mobility ten­
sor. This, however, leads to a change in the real part of 
the frequency of the oscillations that build up. In addi­
tion, a term G cos elk appears in (11) instead of G/k 
(e is the angle between the wave propagation direction in 
the electric field). This dependence leads to higher 
thresholds of the considered instabilities with respect 
to the electric fieW for oblique waves (e F 0). 

3. We consider first the situation in the absence of an 
external electric field. It follows from (10) that in this 
case G = O. There is likewise no carrier drift, un = ~ 
= O. The dispersion equation (11) has in this case the 
following roots: 

where 
a= (2VR+An+A p) + (Dn+Dp) k', 

b=4{VR (vR+t.n+Ap) +[ vR(Dn+Dp) 
+ (A.Dp+ApD n) lk'+DnDpk'}. 

(12) 

If the total conductivity of the electron-hole plasma is 
negative, then it follows from (12) that the homogeneous 
carrier distribution is unstable if 

(13) 

This is the known instability due to the ANC [6J. It has 
an aperiodic character (Re w = 0). Notice should be taken 
of the stabilizing role of recombination, which suppres­
ses the instability if the ANC has a sufficiently small 
absolute value. 

More easy to realize in practice, however, is the 
situation in which the total conductivity of the system 
is positive, inasmuch as in strong magnetic fields, even 
at equal carrier denSities, the mobility of the (heavy) 
holes has a larger absolute value than the mobility of the 
electrons. 

In this case we obtain from (12) the following insta­
bility condition: 

AnDp+')..pDn<-VR{ (Dn+Dp) +2 [ DnDp( 1+ An:RAP )l,,), (14) 

The increasing perturbations in this case are those 
whose length satisfies the condition 

-ct-l'ct'-p<k'<-ct+l'ct'-~, 

where 

Since the right-hand side of the condition (14) is 
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(15) 

negative, for the existence of instability it is necessary 
to have at least 

(16) 

At large photoelectron and photohole concentrations 
(An + Ap »vR)' the condition (16) is in fact an exact 
instability condition, since the right-hand side of (14) is 
close to zero in this case. 

The inequality (16) is none other than the condition 
that the ambipolar diffusion coefficient be negative 

(17) 

Thus, the physical nature of the considered instability 
lies in the possibility of negative ambipolar diffusion of 
the carriers into the region2 ) of quasineutral fluctuation 
of the carrier density. The quasineutrality of the stable 
perturbations can be easily verified directly from the 
dispersion equation (11). Indeed, neglecting in (11) the 
unity term in comparison with the right-hand part, we 
obtain 

(18) 

from which it follows that the unstable perturbations are 
those for which 

(19) 

which coincides with the lower limit of the instability 
region (15) at An + Ap »vR' 

The condition (16) can be conveniently represented in 
the form 

(20) 

Since the holes are thermalized, they satisfy the Einstein 
relation. On the other hand, the calculation of f..tn/Dn 
under the assumption that the photoelectrons populate 
only the lower Landau subband, yields 

~= __ e_~ 
Dn 2Eo' 

(21) 

where Eo is the energy of the produced photoelectrons. 
The dimensionless factor s is determined by the broad­
ening of the photoelectron distribution function. For a 
monoenergetic distribution we have s = 1. Taking the 
Einstein relations for holes and expression (21) into 
account, we obtain from (20) the following instability 
criterion: 

(22) 

Here T is the effective hole temperature (which gener­
ally speaking differs from the lattice temperature). 

4. We now proceed to investigate the instabilities of 
a homogeneous carrier distribution in an external elec­
tric field. We first neglect the diffusion. Equating the 
real and imaginary parts of (11) separately to zero at the 
stability limit, we obtain 

Re w VR (up-un) 
VpIF-k -= 2VR+Ap+An 

(23) 

(Vph is the phase velocity of the growing waves) and the 
following instability criterion: 

G(Un+Up)+VRP.n+Ap+VR) <0. 
(VR+An) (VR+Ap) 

It follows from (23) that at high carrier densities 

(24) 

(An + Ap »vR) the phase velocity of the growing waves 
is much smaller than the drift velocity of the carriers. 
At f..tn = f..tp we have vph = 0, i.e., the perturbations in-
c rease ape riodic ally. 
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The instability criterion (24) is satisfied in two cases: 
a) either if 

b) or if 

G (Un+U p) +VR(I.. +l.p+VR) >0, 
(VR+l.n) (V.+l.p) <0, 

G(u.+U p) +VR (1..+l. p+VR) <0, 
(VR+l.n) (VR+l. p ) >0. 

(25) 

(26) 

The conditions (25) can be satisfied if the conductivity 
via the photoelectrons is negative (,"n < -vR)' In this 
case, even if G < 0, instability is possible (if An + Ap 
» vR) up to fields 

E<Ecr '=H[liv/(m+iIf)c'J"'. (27) 

An estimate of the critical field for InSb at H ~ 1012 Oe, 
M ~ 5 X 10-28 g (heavy holes), and v ~ 1011_1012 sec-1 

yields E~r ~ 50-150 V/cm. If this estimate is compared 
with the estimate of the critical field at which the depen­
dence of the mobility of the photoelectrons on the electric 
field becomes significant (An reverses sign) (see formula 
(5)), then it can be easily seen that the main cause of the 
stabilization of the instability in strong electric fields is 
the reversal of the sign of the photoelectron mobility, 
and not the decrease in the rate of carrier generation 
with increasing electric field. This is all the more cor­
rect when the rate of carrier generation increases with 
increasing field (G > 0). 

It follows from (25) that the instability in question has 
no threshold, but this is true only if diffusion is neglec­
ted. If diffusion is treated in the dispersion equation (11) 
as a perturbation, then the following instability criterion 
results: 

un+u p > [_ VR(D.+D p )+(I..+l. p )DA]'j, (2VRHnHp). (28) 
(v fi+l.n ) (vR +l.p ) 

In the case when D A > 0 and An + Ap »vR we obtain 
from (28) an expression for the threshold field 

_ [ 4neg'tR I 1 + 1 I ] 'I, 
Ethr- -- - - DA 

X ft. ftp 
(29) 

At DA < 0, the instability has no threshold and consti­
tutes, in the absence of an electric field, the already 
considered ambipolar instability. 

As noted above, the considered instability in an ex­
ternal electric field is analogous to the instability in a 
system with two types of carrier, one of which has nega­
tive differential conductivity [8J. However, unlike the 
latter, the threshold of this instability is quite small. 
The instability sets in immediately as soon as the elec­
tric field reaches a value sufficient to produce an inde­
pendent drift of electrons and holes. 

Finally, as follows from (26), the homogeneous dis­
tribution of the carriers may turn out to be unstable also 
in the case when the conductivity of both types of car­
rier is positive (An > 0, Ap > 0), a situation realized 
in practice much more frequently. This is possible if 
the generation rate, and consequently also the carrier 
denSity, decreases with increasing electric field (G < 0)0 
The instability criterion (26) then takes the form 

dIng VR 
--+1+--<0. 
dInE I.,+),p 

(30) 

In the case of large carrier densities (An + Ap »vR) 
it follows from (30) that such an instability is possible 
in electric fields E > E~r' where E~r is given by (27). 

In the case of large carrier densities this instability, 
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just as ambipolar instability, has a quasineutral charac­
ter. Indeed, for quasineutral perturbations, the disper­
sion equation (11) has the following solution: 

[ dIng] 
Ol=-ivJ! 1 + dInE • 

from which it follows that if An + Ap »vR the condition 
for the buildup of the instability coincides with the 
criterion (30). 

It should be noted that, owing to the rather high 
threshold of such a magnetooptical instability, the de­
pendence of the mobilities and of the diffusion coefficients 
of the carriers on the electric field cannot be neglected 
when this instability is considered. Since the diffusion 
has practically rro effect on the instability threshold (the 
criterion (30) was derived neglecting diffusion), it 
suffices to take into account the dependence of the mobil­
ity on the electric field. The mobility of the electrons 
and holes in the dispersion equation (11) should then be 
replaced by the differential mobilities 

ft~if (E)={Ju.(E)/{JE. ftpdif (E)={Jup(E)/{JE. 

where un(E) and up(E) are the drift velocities of the elec­
trons and holeso 

In the case of carrier heating by the electric field, the 
dependence of the differential mobility on the electric 
field is determined by the mechanisms for the scattering 
of the momentum and energy of the carriers [19J. In par­
ticular, in the case of scattering by impurities and 
acoustic phonons, the differential carrier mobility is 
always positive in the classical limit (nwc < T, where T 
is the effective carrier temperature) and is negative in 
fields E > V2E (E" is given by (4)) in the quantum limit 
(nwc > T) [20J. 

At j.L ~if (E) > 0 and j.L dif (E) > 0 the analysis of the 
instability does not diffl, at least qualitatively, from 
that given above. In particular, the instability criterion 
(30) takes in this case the form 

!!:!!....q(E),+1+~<0, 
dE g I. n +Ap 

where 
Un (E) +up (E) 

q (E) ft~if (E) +ft~f (E) 

The case when the differential mobility of one type of 
carrier is negative 3 ) reduces to the previously consid­
ered instability of a system with negative photoelectron 
mobility in an external electric field. The instability 
threshold is determined in this case by the relation (if 
the differential electron mobility is negative) 

g(E)ft~if (E)< __ x_ VR'. 
4ne 

We note that the mechanisms that lead to the instabil­
ity connected with the negative mobility or to the mag­
netooptical instability tend, as follows from the criteria 
(25) and (26), to stabilize each other. 

In conclusion we note that the presence of thermal 
carriers (holes) exerts a stabilizing influence on the 
instabilities considered above. Thus, for example, the 
criterion of ambipolar instability (20) with allowance for 
the thermal carriers, takes the form 

ft,/Dn<-'lftpID .. 

. where T/ = 1 + nT /gTR' and nT is the density of the 
thermal holes. In the case of magnetooptical instability, 
the sensitivity threshold increases by a factor .fi/. 
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The authors are sincerely grateful to Professor 
E. I. Rashba for useful remarks. 

!)It can be assumed that the expressions obtained below for the incre­
ments are valid up to the momentum-relaxation frequency. 

2)In the case of negative fluctuations, the carriers will diffuse from the 
fluctuation region. 

3)This situation is possible, for example, for carrier scattering by impuri­
ties and acoustic phonons if hwc > Tn and flW cm/M < T p' where Tn 
and T p are the effective temperatures of the electrons and holes. 
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