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A system of interacting relativistic Fermi particles of several kinds situated in an external field is 
considered when the temperature differs from zero. Expressions have been obtained for the 
thermodynamic potential and the number of particles in terms of renormalized quantities. 

1. INTRODUCTION 

Renormalization in the theory of a relativistic Fermi
system at a finite temperature T is carried out in com
plete analogy with the usual quantum electrodynamics 
in a vacuum at T = 0[11. All the subtractive terms in 
this case are the same as those in quantum electrody
namics in a vacuum. However, there exists a physically 
observable quantity for a system of Fermi-particles 
for which there exists no analogous renormalized ex
pression in quantum electrodynamics-this is the energy 
of the system (or the thermodynamic potential for 
T 10). From a formal point of view in perturbation 
theory the energy of the system is, apart from a mul
tiplicative factor, the sum of connected vacuum dia
grams. These diagrams all diverge strongly in the 
ultraviolet region. It is not such a simple matter to 
express the vacuum diagrams in terms of renormalized 
Green's functions and the vertex parts. Therefore, even 
in non relativistic theory where there are no ultraviolet 
divergences in order to obtain a convenient expression 
for the energy of the system taking into account the 
shift of the single particle energy levels (Le., in fact a 
mass renormalization) circuitous methods are utilized 
andione tries to express the energy of the system in terms 
of the single particle Green's functions, for example, with 
the aid of integrating over the charge. In relativistic the
ory such a reduction of the energy to renormalized quan
tities is certainly necessary for the elimination of di
vergences. In this case the standard technique, say, 
integration over the bare charge, turns out to be in
convenient since it is unavoidably associated with util
izing unrenormalized (and divergent) quantities. There
fore the derivation of an expression for the energy of 
a Fermi-system taking radiation corrections into ac
count in terms of renormalized quantities is an inde
pendent and important problem. It is specifically in 
this respect that the theory of a Fermi-system essen
tially differs from the usual quantum electrodynamics 
in a vacuum. 

The energy of a homogeneous plasma at T = 0 taking 
radiation corrections into account was first studied in 
a paper by Fradkin [1] where it was shown that in the 
absence of an external field the energy is expressed 
in terms of the renormalized compact operator for 
the polarization. In the paper of Akhiezer and Pe let
minskii [2] a plasma at a finite temperature was con
Sidered, and it was established that in the lowest ap
proximation with respect to e 2 the divergences in the 
expression for the thermodynamic potential are removed 
by a renormalization of the mass and charge. Later in 
our papers[3, 4] renormalized expressions were proposed 
for the energy of the plasma at T = 0 in any arbitrary 
order of perturbation theory in the presence of an ex
ternal field. In particular, we have also demonstrated 
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the relationship of the energy to the renormalized op
erator for the polarization, but in contrast to [1] we 
deal with the total (i1.oncompact) operator for the polar
ization taking into account the intermediate one-phonon 
states. 

In the present article we consider the most general 
case of a Fermi-system of particles of several kinds 
interacting with a quantized electromagnetic field when 
the temperature and the external field are both differ
ent from zero. We obtain expressions for the thermo
dynamic potential and the average number of particles 
of each kind taking into account radiation corrections 
in terms of renormalized quantities. In the absence of 
an external field this expression reduces to a sum of 
vacuum Feynman diagrams with physical values for the 
mass and the charge of the particles provided with de
finite subtractive terms which remove the ultraviolet 
divergences. From our formulas expressions follow for 
the number of particles and the energy of the plasma at 
T = 0 which differ from those of[l]. However, this dif
ference appears only in third order perturbation theory 
and is due to diagrams for the compact polarization 
operator in which photons are emitted by particles of 
different kinds. 

2_ EQUATION FOR THE AVERAGE FIELD AND THE 
CONDITION OF NEUTRALITY 

We conSider a system of charged Fermi-particles of 
several different kinds at a finite temperature T situ
ated in a given stationary external unrenormalized 
electromagnetic field A~). For the sake of Simplicity 
we restrict ourselves to the study of only electromag
netic interactions so that the complete interaction in the 
system is assumed to be of the form 

H,= f d'x j.u(x) (A·(x)+A~O)·(x)). 
%0=0 

(1) 

Here A is the operator for the quantized electromagnetic 
field; jau is the unrenormalized current density for the 
charged particles 

• 1 
j.u(x) = eo 1: ~i 2[1j)i (x), '(.Ii'i (x) J. (2) 

1=1 

The summation is carried out over particles of dif
ferent kinds; ~i are the relative charges; eo is the un
renormalized electron charge. For the sake of simpli
fying the notation we denote by Xo the variable denoting 
reciprocal temperature which appears in (1) and (2) and 
subsequently in the temperature Green's functions. 
The variable Xo varies between the limits from zero up 
to {3 = 1/kT (k is the Boltzmann constant) and it is be
tween these specific limits that in future all integrations 
over this variable with be extended. We shall be inter-
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ested in statistical averages over a grand canonical en
semble. Therefore in addition to the temperature T and 
the external field A~O) our system will also be charac
terized by s chemical potentials Ili for each kind of 
particles. For Ili = A~O) = T = 0 the system reduces to 
the usual quantum electrodynamics in a vacuum. 

Renormalization in such a theory has been described 
in the literature [1, 4]. From a formal point of view it 
does not differ from renormalization in quantum elec
trodynamics in a vacuum. All the subtractive constants 
refer to the values Ili = A~O) = T = O. In future an im
portant role will be played by the renormalized n-photon 
compact vertex parts for the average field A which we 
symbolically denote by IIn(A). They are related to the 
corresponding unrenormalized vertices IInu(A) by the 
equations; IIn = z~/2IInu' where Z3 is the usual renor
malization constant for the photon wave function, while 
IInu (A) is the sum of contributions of Feynman graphs 
with n external photon lines without one-photon inter
mediate states in the external field A. The final renor
malization of II2 (Le., of the polarization operator) is 
accomplished, as is well known, by means of subtrac
tions. The completely renormalized polarization oper
ator II2r is defined by the relation 

(3) 

Here 0(0) and II~O) denote the bare photon propagator and 
the polarization operator for zero values of Ili> A and 
T, Le., for a vacuum; k is the four-momentum of the 
photon. We note that in (3) and subsequently symbolic 
compact notation is used in which all quantities are un
derstood to be matrices in configuration space and with 
respect to the vector indices of the photons. It is under
stood that differentiation in (3) refers to the scalar 
function contained in IIJO). The final renormalization of 
II1 we shall also carry out with the aid of subtractions 
by defining 

II,,(A)=II,(A)-II,(O)-A (~) I . 
aA A_' 

(4) 

The IIn(A) so defined for n ~ 3, II1r and II2 
are finite, contain neither ultraviolet nor infrat;.ed di
vergences and are expressed in perturbation theory in 
terms of renormalized charges and masses of the par
ticles. For n ~ 2 this is well known. For n = 1 this cir
cumstance is a consequence of the identity 

ann (A) . () ( ) aA =-,IIn +, A , 5 

from which it follows that in (4) photon vertices starting 
with n = 3 in fact occur. We note one more important 
identity similar to (5); 

(6) 

Here and in subsequent discussion it is implied that the 
extra vector index on the right-hand side should be set 
equal to zero, and an integration should be performed 
over the coordinates of this extra photon. The index 
(m) on the right-hand side denotes that one should se
lect only those Feynman diagrams for IIn + 1 in which 
the additional photon with zero polarization is joined 
to the line of the particle of kind m. 

In terms of the quantities introduced above the aver
age observable (renormalized) field A satisfies the 
equation [1,41; 

D-' (0) A =D(oJ-lA ("+iIl, (0) +iIl" (A). (7) 
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Here A (0) is the renormalized external field associated 
with the starting field by the relation A(o)= zj/2A~~) 

The quantity O(A) is the complete photon propagator 
for the external field A related to II2r(A) by the 
equation 

D-'(A)=D("-'-II,,(A). (A) 

For a given A (0) equation (7) has solutions for A 
falling off at large spatial distances only under the 
condition 

II, (0) =0, (8) 

Le., only under the condition that the average current 
denSity in the system for a given Ili and T in the ab
sence of an external field is equal to zero. From phys
ical considerations it is natural to assume that this con
dition of neutrality far from the sources of the field is 
satisfied for any real system. Condition (8) imposes a 
relation on the independent parameters Ili and T which 
must be taken into account in determining the thermo
dynamic potential and the average number of particles 
of the system. 

Equation (7) for the observable field A can also be 
rewritten in the form 

(9) 

where the symbol 1o implies zero values for the chemical 
potential, the field and the temperature. 010 is the total 
Green's function for the photon in quantum electrody
namics in a vacuum. Correspondingly j can be inter
preted as the observable current density without taking 
external currents into account which give rise to the 
field A (0). The quantity j is related to III by the equation 

;=i(II,(A)-A ~~'IJ (10) 

It differs somewhat from iII 1r' but it is also finite. 

3. DEPENDENCE OF THE NUMBER OF PARTICLES 
AND OF THE THERMODYNAMIC POTENTIAL ON 
Ili and A 

The average number of particles of kind a is related 
to the vertex III by the equation 

N. = -'-' S d'x II,(.,(xIA). (11) 
e~ • ...-. 

Here we have expliCitly indicated the dependence of 
TIl on the coordinates and the zero vector index of the 
photon. Expression (11) is not renormalizable directly. 
Following the idea of Fradkin (11 we consider instead 
of Na the derivative BNa/Bll m. In differentiating (11) 
with respect to Ilm one should have in mind that III (a) 
depends on Ilm both explicitly, and also through the 
average field A. Therefore, utilizing (5), (6) and (7), we 
obtain 

In expression (12) it is already not difficult to carry 
out the final renormalization. Indeed, the subtractive, 
in accordance with (3), terms refer to vacuum for 
A = 0 and give a zero contribution to the integral (12), 
since in momentum space they must be taken at zero 
photon energy and for its three-momentum tending to 
zero. Therefore in (12) we can simply replace II2(am) 
and II2(a) correspondingly by II2r(am) and II2r(a)' 
Then in the brackets of (12) we shall have the complete 
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(noncompact) renormalized polarization operator 
P(am)(A) with the one-photon intermediate states having 
been taken into account (but without diagrams of the 
bubble type): 

(B) 

Finally we have 

aN. J 00 -a-=-e-'~.-' ~m-' d'x d'YP(.m) (xyIA). 
Jlm %0-0 

(13) 

Formula (13) gives a renormalized expression for 
8Na /8l-t m and can be utilized for the calculation of Na 
a,1d of the thermodynamic potential n. For a given 
temperature T we choose in the space of the variables 
I-ti a certain path l(T) which lies entirely on the neutral
ity surface (8) and which connects the given point 
I-ti, T with the point I-ti = O,T, which, evidently, satisfies 
(8). We then obtain 

N ( . A(" T)-N (0 A(O) T)= ~ J d ,aN.(fL.',A(O),T) 
a 111" at' .i...J J..Lm allm ' 

m=-ll(T) 

and after repeated integration obtain . 
Q(fLi,A(O), T)-Q(O,A(O', T)= - ~ fL.N.(O,A(O', T) 

. 
-~ J dfL.'N.(fL/,A(O),T). 

(14) 

(15) 

Formulas (14) and (15) completely solve the problem 
of determining nand Na in terms of the renormalized 
quantities for arbitrary I-tb if nand Na are known for 
iJ.i = O. The differentials dl-t~ along the path l(T) in 
these formulas are related by the equation which fol
lows from condition (8): 

, 
~~.-'I1::(.)(k=O, A=O)dfL.=O. (16) 

To obtain finally the values of nand Na evidently it is 
required that we know their dependence on the external 
field (for iJ.i = 0). To investigate it we shall proceed 
as follows. We introduce into the theory the numerical 
parameter X, multiplying by it A~) in the initial inter
action HI given by (1) and we study the dependence on 
X of the quantities in which we are interested. 

If the condition of neutrality (8) is satisfied, then 
as X _0 Eq. (7) admits the solution AXIX=O = 0, al
though it is possible that it is not the only one. The 
cases when for X _0 the quantity AX does not vanish 
correspond to spontaneous violation of space symmetry 
(Le., to a phase transition) and are not considered by 
us here. For weak fields this is in any case excluded. 
Thus, we assume that for our system Ax - 0 as A - 0 
(condition of weak inhomogeneity). 

It is now easy to show that 

~= iZ,-' J d'x A~O) (x)I1,"(xIA,). 
a'A "'~o 

(17) 

Differentiating this equation once again with respect to 
X and taking into account the relation 

(18) 

which follows from (7) we obtain 

a'Q/a'A'=z, -, J d'x [A (0) 11,(A,)D (A,)D(O)-l A (0)]. 

~=O 

(19) 

We now take into account that 

I1,D=D'O)-' (Z,D-D(O). (20) 
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Then integrating (19) twice with respect to X between the 
limits from 0 to 1 and introducing the renormalized 
external current je = D[O)-lA (0) we obtain 

I • 

Q(fLl,A (0" T)- Q(fL;, 0, T)= J d'A J d'A' J d'x [j,(D(A,,)-Dlo)j,] 
o 0 "'~o (21) 

+iZ,-' J d3XA~') (x) 11t" (xIA.) 1.-0 +~J d'x [j,(Dlo-Z,-1 D(O)j,]. 
:tG=O 2 =0"",,0 

In this equation only the first term on the right-hand 
side is renormalized. However, the second term is equal 
to zero when the neutrality condition (8) and the condition 
of weak inhomogeneity are satisfied. And the third term 
depends on neither I-tio nor on T and, evidently, is re
lated to the renormalization of external charges. It 
need not be taken into account at all. When this is taken 
into account formula' (21) allows us to obtain 
n(l-tbA (0) ,T) in terms of renormalized quantities if we 
know ()(iJ.i,O,T). 

Differentiating (21) with respect to iJ.a we obtain the 
average numbers of particles Na . Naturally in doing so 
we must take into account also the contribution of the 
second term on the right-hand side of (21) since a 
change in one of the iJ.a violates the condition of neu
trality (8), and outside the neutralitr surface A.\I.\=O 1= 00 
We obtain the sum of two terms N~ + N~2), where 
Nit arises from the first term in (21), is at least quad
ratic with respect to the external field A (0) and is ex
plicitly renormalized: 

N.('I= - j d'A f d'A' J d'x (j, aD (A,,) j,) , (22) 
o 0 Xa=O 81-la 

while N~) is linear with respect to the external field and 
arises from the second term in (21). On taking into ac
count the dependence of TIl on I-ta (both expliclt and 
through the average field A.\) we obtain: 

(23) 

In equation (23) we can replace II2(a) by the com
pletely renormalized polarization operator I12r(a) since 
the subtractive terms give no contr;hution. Therefore 

N;I) =e- I VI J d'x [j,D(O) 11,.(., (0)]. 
:tQ=O 

(24) 

Formulas (14), (15), (21), (22) and (24) completely 
determine the dependence of nand Na on the chemical 
potentials and the external field and are renormalized. 
To obtain finally the values of [I and Na it is necessary 
also to know the dependence on the temperature of at 
least the value of n for A (0) = J.li = 00 Instead of that we 
obtain in the next section an explicit expression for 
() for arbitrary A, J1.i and T in the form of a sum of 
vacuum Feynman diagrams renormalized in a definite 
manner. By means of this we shall not only obtain the 
dependence on the temperature which we lack, but we 
shall in fact carry out the integrations over I-ti and X 
in formulas (14), (15) and (21). 

4. RENORMALIZED EXPRESSION FOR THE THERMO
DYNAMIC POTENTIAL IN TERMS OF VACUUM 
FEYNMAN DIAGRAMS 

We consider the sum of connected vacuum Feynman 
diagrams in an external field A without loop insertions 
which contain as parameters the phYSical charges and 
masses of the particles and without the last integration 
over the temperature which yields the multiplier {3. 
We add to it the subtractive terms for all the internal 
subdiagrams for the polarization of the vacuum and for 
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all the proper masses of the particles in accordance 
with the usual prescription for the elimination of infin
ities i:I Feynman diagrams(5]. In carrying this out we 
must only have in mind the following special features 
of applying the standard technique in our case. First 
of all, all the subtractive terms contain the values of 
the proper mass and of the derivative of the polariza
tion operator with respect to the square of the momen
tum for zero chemical potentials, field and temperature. 
Secondly, the subdiagrams for the proper mass and the 
vacuum polarization in vacuum diagrams refer most fre
quently to the so-called overlapping insertions. The sub
tractive terms must be introduced separately for each 
method of separating out a divergent subdiagram [5]. 

Thirdly, we need not make any subtractions for the sub
diagrams of the vertex part and for the renormalization 
of the wave functions of the charged particles, since 
these subtractive terms, as is well known, mutually 
cancel in diagrams containing only closed fermion loops. 

Thus we denote a definite sum of vacuum diagrams 
with eliminated internal divergences by V*. The quan
tity V* contains also its own divergences. In order to 
liquidate them we carry out additional subtractions and 
define as the finally renormalized quantity 

(25) 

where, as usual, the notation 10 implies fJ.i = A = {3-l = O. 
The quantity V is finite. We verify this on the example 
of a homogeneous plasma in the following section. 
Now we prove that V is Simply related to the thermo
dynamic potential n. 

First of all we note that 
iJV'/iJA=-iTI,. (26) 

This identity is trivial for unrenormalized quantities. 
It is then simply a special case of (5) for n = O. In our 
case we must also take into account the contribution 
of the subtractive terms and the renormalization of 
charge and mass. If differentiation with respect to A 
in (26) iavolves a fermion line which does not enter the 
subdiagram of proper mass or polarization with which 
the subtractive term under consideration is associated, 
then after differentiation we obtain exactly the subtrac
tive term for the corresponding diagram Ill. But if we 
differentiate a fermion line entering the composition 
of the divergent subdiagram under consideration, then 
the contribution from the differentiation of the subtrac
tive term will be equal to zero. But after differentiation 
with respect to A the subdiagrams for the proper mass 
and vacuum polarization will go over respectively into 
the subdiagrams for the vertex and the three-photon 
vertex entering into the composition of TIl. According 
to our prescription no subtractive terms have to be 
made to correspond to them. Thus, as a result of dif
ferentiating the subtractive terms in V* we obtain exact
ly all the subtractive terms for III which realize the re
normalization of mass and charge. We note that the 
renormalization of the mass and the charge for III is 
carried out in a trivial manner, since in III there are 
no overlapping insertions associated with the diagrams 
for the proper mass and vacuum polarization. 

Thus, (26) is satisfied. Taking (10) into account we 
obtain 

1020 

iJVIiJA=-j, 

(iJv'/iJft') A=(iJV/iJft.) A=N,. 
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(27) 

(28) 

From (9) we can conclude "that 

iJA/iJft,=D I ,iJj/Oft, 

and therefore 

(29) 

(30) 

Comparison of (28) and (30) leads to the expression for 
the thermodynamic potential 

Q=- (V++jDloj)+f(A('),T), (31) 

where f(A (0), T) does not depend on the chemical poten
tials. We note that for fJ.i = A(O) = {3-l = 0 and j vanish 
and therefore nlo = f(O,O). Consequently 

Q-QI,=-(V+'/,jDloj)+j(A(O), T)-/(O, 0). (32) 

We first show that f in fact is independent of the 
external field A (0). For this we consider the theory with 
external field AA (0). Then we have 

iJV iJV iJA 
aJ: = 7iAfii: =-jDj •. (33) 

Here we have utilized (18). Differentiating equation (9) 
containing the external field .\A (0) with respect to the 
parameter .\ we obtain 

and further 

iJ' 
-' =D-'lo(D-D'o)j, 
iiI. 

-~ (v +~ jDloj) = j,(D-Dlo)j,. 
iJ~.' 2 

(34) 

(35) 

According to (21) this is exactly the second derivative 
with respect to .\ of the observable part of the thermo
dynamic potential. Taking into account the fact that 
n does not contain any terms linear in A we then find 
that the function f does not depend on the external field 
and is a function only of the temperature f(T). 

We now state the arguments which prove that the 
function f(T) is also independent of the temperature. 
For this we consider the regularized theory in which 
all the Feynman integrals including those for the 
vacuum diagrams converge well. For such a theory with 
finite regularization parameters L we obtain an equation 
analogous to (32) where all the quantities depend on L. 
The quantity 0L can also be represented in the form of 
a sum of unrenormalized vacuum graphs. All the graphs, 
except for those of zero order in the interaction, will 
vanish for 1 fJ.i 1 - 00, if the regularization is sufficiently 
strong (for example, the integration over the three
momenta will be limited to a finite sphere of radius L). 
In (32) we set A= 0 and let 1 fJ.il _00. Then on the left
hand side there will remain only the vacuum graph 
without interaction from 0L and all the graphs for 
~LI 0 which do not depend on the temperature. On the 
right-hand side we shall have j = 0 and of VL there will 
remain only the graph without the interaction from V* 
and all the graphs for -v*1 0 which again do not depend 
on the temperature. Thus, in the limit 1 fJ.il _ 00 the dif
ference fL(T) -fL(O) does not depend on the temperature 
and is consequently equal to zero. But it does not depend 
on fJ.i and therefore is always equal to zero. GOing to 
the limit for L _oa, we obtain the desired result. 

Thus, we find an explicit and renormalized expression 
for the thermodynamic potential for an arbitrary Fermi
system of charged particles in the form 

M. A. 'Braun and T. N. Sibirkina 1020 



Q(f!i, A(O" T)-Q(O, 0, O)=-(v+1/,jDloj), (36) 

where V is the sum of connected vacuum diagrams with
out loops renormalized according to the prescription 
given above, while j is the observable current which is 
also expressed in terms of V. by Eq. (27). Formula (36) 
enables us to obtain the thermodynamic potential 
taking into account the radiation corrections utilizing 
only the physical values of the masses and the charges 
of the particles. In the next section we illustrate the 
effectiveness of this formula using the example of a 
spatially homogeneous plasma. 

5. HOMOGENEOUS PLASMA 

It is of interest to examine in greater detail the 
simplest and practically important case when the ex
ternal field is absent (homogeneous system). 

Since for A = 0 the average numbers of particles 
for Ili = 0 vanish, in order to calculate Na one can 
use formulas (13) and (14). In (13) the integration 
over x can be carried out in a trivial manner for a 
homogeneous system. Setting for the sake of simpli
city the volume of the system equal to unity we obtain 

aN. _2. _I _lpoD --=-e ~a ~m (am) 

iif!m 
(k=O, A=O), (37) 

where k is the four-momentum of the photon. The quan
tity p(~m) can be expressed in terms of the components 
of the compact polarization tensor IT2~(am)' Denoting 
for brevity IT'2°r(am) (k = 0, A = 0) = qam and taking into 
account the structure of the photon Green's function 
for k = 0 and A = 0 (cf.,l,,3]), we obtain 

where we have used the notation 

q.'" .t q.m, q." t q •. 
m=l 

The neutrality condition (16) can be written in the 
form 

Taking (40) into account we obtain the expression 

(38) 

(39) 

(40) 

for the average number of particles Na (a = 1, ..• , s -1) 
in the form 

'-i 

N.=-e-' ~._I.E ~m -I S df!m(q.m-q., qm/q.). (41) 

In this equation we call attention to the fact that as 
a result of the neutrality condition the contribution of 
the noncompact part of the polarization operator (the 
second term on the right-hand side of (38)) is com
plete ly cancelled out. The remaining contribution is 
determined entirely by the compact part. This is ef
fectively equivalent to the situation as if we did not 
take into account the dependence of the average field 
A on the chemical potentials, and in this sense corres
ponds to the approach in [lj to the analogous problem 
for one kind of particles. In our theory necessarily 
several kinds of particles must take part (not fewer 
than two) and this corresponds to the phYSical state
ment of the problem. 

For the simplest case of two kinds of particles it 
follows from (41) 

FIG. 1 

FIG. 2 

and at the same time 

(43) 

Formula (42) becomes simplified if we take into 
account that q'2 is less than qll and q22. In q'2 diagrams 
are included of the type shown in Fig. 1 in which pho
tons are emitted by different particles. Therefore q'2 
is of the order of smallness of (!;11:2e 2)3. And the diag
onal terms qll and q22 are respectively of the order of 
!;~e2 and !;~e2. Therefore in the lowest order in terms 
of q12/q22 we obtain 

(44) 

Here the first term already coincides exactly with 
the result of reference[l] for a homogeneous plasma, 
while the second term gives a correction of relative 
order !;~!;2e4. 

In conclUSion we examine the value of the thermo
dynamiC potential for a homogeneous plasma utilizing 
expression (36), and we confirm that it is finite and 
renormalized. In doing this we restrict ourselves to 
a definite set of graphs shown in Fig. 2. These graphs 
correspond to the approximation of a high denSity 
plasma, and for a nonrelativistic plasma lead to the 
well known Gell-Mann-Bruckner formula. For the 
sake of Simplicity we further restrict our considera
tion to the contribution of particles of one kind (elec
trons). 

A direct summation of diagrams shown in Fig. 2 
yields the expression 

-~ ~_1_ Sd'kSP{ln(1-D(O) I1)-1}. (45) 
2~~ (2,.,)' ., 

The operation of taking the trace refers to the vector 
indices of photons of frequency wn = 27mi//3. The quan
tity IT is a relativistic polarization operator in the low
est approximation with respect to e2 with physical val
ues for the charge and mass of the electron. In order 
to construct V* we provide in (45) subtractive terms 
for internal subdiagrams for the polarization and the 
proper mass of the electron. Addition of subtractive 
terms for polarization subdiagrams leads to the re
placement of each IT by the renormalized polarization 
operator IIr defined in accordance with (3). 

The subtractive term associated with diagrams for 
the proper mass of the electron can be easily obtained 
in explicit form. Taking into account the rules for the 
removal of divergences in diagrams with overlapping 
inserts we obtain 

bVm = ___ 1 -~S d'pSp{bmG(p)}. 
~(2n)' L.. (46) ., 

(42) Here Bm is the proper mass of the electron on the mass 
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shell corresponding to the sum of the diagrams shown 
in Fig. 3. The trace is taken over the spin indices of 
of the electron of frequency wn = i(2n + 1)1T,Ifl + /1-; G(p) 
is the Green's function for a free electron. Carrying 
out a further subtraction according to (25) we obtain 

V =-=!. "'Jd3kSp{ln(1-D{O) II )-1} _1_ 
2~ '-' • (2n)' ., 

+-4.1 ,Jd'kSp{Jn(1-D{0) ll.'O»-1l+1>Vm-,Wmlo, 
m(2n) 

(47) 

with II~) = IIrl o being the usual renormalized polariza
tion operator in quantum electrodynamics for a vacuum 
with T = O. With an accuracy up to its sign expression 
(47) is the expression for the thermodynamic potential 
of the plasma. It is expressed in terms of the renor
malized charge and mass of the electron. We must prove 
that (47) is finite. 

We introduce the notation 

6JdkoF(ko)"'~ '" F(C1ln)-_1_. JdkoF(ko), (48) 
~ '-' 2m 

0, 

where F(ko) is an arbitrary analytic function of the 
variable ko over the whole plane with cuts for real 
values of ko, Ikol > b, while wn are frequencies equal 
to i2n1T/{3 for a photon and i(2n + 1) 1T/3-l + Il for an elec
tron. The difference appearing on the right-hand side 
of (48) can be rewritten in the form of integrals over 
discontinuities in F (ko) at the cuts: 

1 - 1 ~ 
1> JdkoF(ko)=-. ·Jdko[<p(ko)-1]~F(ko)+-. S dko[<p(ko)+1]~F(ko), 

4m 4m 
• (49) 

where for a photon tp(ko) = cot':!. 1/2,'Jko, and for an elec
tron tp(ko) = tanh 1/2{3(ko - Il). For large values of ko 
the expressions in brackets on the right-hand side of 
(49) fall off exponentially guaranteeing that the integ
rals converge well. utilizing the notation in (48) we 
rewrite (47) in the following form: 

V = 2~~~) , 1: J d'k Sp{ln[1-D{O) (ll.-ll~') )/(i-D{') ll~O»]} ., (50) 
1 S d'k (o) 

-2'6 (2n)' Sp{Jn(1-D{') ll. )-1l+.6Vm-6Vmlo. 

The second term in (50) is finite. Indeed, utilizing (49), 
we can represent it in the form of an inteforal over the 
discontinuities of the function Sp{ln(l-D O)n~O») -I} 
situated at Ikol > "4m 2 + k2 • After integration over ko 
an expression is obtained which falls off with increasing 
Ikl 2 as exp [-/3(4m2 +k2)l/2], so that the whole integral 
t5 Jd4k will turn out to be finite. This conclusion applies 
also to other integrals of the type 15 Jd4k which we shall 
encounter later. 

Further, as can be easily seen, the difference 
nr - n~O) falls off as its arguments increase. Therefore 
in the first term divergences can arise possibly in the 
first term in the expansion of the logarithm in a series 
. . (0' (0»)/( (0) (0») 
In terms of the ratIo D (llr - IIr 1 - D IIr . 

Utilizing the explicit expression for IIr we represent 
this term in the form 

1 '" f d'k (0) 1 f d'k (0) 2j3.l..; (2n)' Dlo(ll.-ll, )= -2'6 (2n)' SpDloll. 
w, 

+ 2~,1: (;~)' S d'p, d'p, Sp{,(.G (p,)y,G (p,)D·' (p,-p,) I,} (51) 
lII 71l l.l)'l: 
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- 2(2ni)' d'p, d'p, (2n)' Sp{,(.G(p,)y,G (p,)D·'(p,-p,) lo}. 

Here Dlo = D(O)/(l _D(O)II~O») is the Green's function 
for the photon taking into account the simplest inser
tion for the polarization of the vacuum in ordinary 
quantum electrodynamics. The first term in (51) is 
finite. It will cancel the contribution of order e2 from 
the second term in (50). The second and third terms 
in (51) give on addition a contribution equal to 

d' 
1> S (2~' Sp{~(p)G(p)}, (52) 

where Z;(p) is the proper mass of the electron corres
ponding to the diagram of Fig. 3 with renormalized 
charge and mass of the electron and a renormalized 
photon propagator but without proper subtractions. 
We represent in the usual way 

~(p)=~,(p)+6m+Cp-m)~'lo, (53) 

where Z;r(P) is a finite expression for the proper mass. 
Then the contribution from the second term in (53) will 
exactly cancel the terms t5Vm -oVml o in (50), while 
the contribution from the third term is equal to zero, 
since the function (p -m)G(p) has no Singularities at 
a finite distance and the integral (49) will vanish (for 
a correct proof one must consider the regularized G(p)). 

Thus, all the divergences in the expression for V are 
indeed removed. The final expression for the thermo
dynamic potential taking into account the chosen set 
of Feynman diagrams has the form 

1 1:f d'k (0) (.) Q=- --Sp{ln[1-DI,(ll.-ll. )]+DI.(ll.-ll. )} 
2~., (2n)' (54) 

d' 1 d'k 
_ 1> f-p-Sp{~.(p)G(p)}+-6f--Sp{ln(1-D") ll;') )+DI,ll.'O\ 

(2n)' 2 (2n)' 

The first term in (54) is essentially the usual Gell
Mann-Bruckner expression except that in it a renor
malization of the mass and charge have been carried 
out and in place of the Green's function for the free 
photon the total Green's function is utilized taking 
into account the simplest diagram,for the polarization 
of the vacuum for Il = T = O. The second term in (54) 
evidently corresponds to a change in the electron mass 
as a result of its interaction with photons. The third 
term is of order e4 and does not depend on Il. 

We recall that in the lowest order in e 2 correspon
ding to the simplest diagram from the series under 
conSideration (the first diagram in Fig. 2) renormal
ization and elimination of divergences have been car
ried out previously in [2]. The method proposed by us, 
as has been shown, enables us to obtain the thermo
dynamic potential in any arbitrary order of pertur
bation theory. 
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