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The interaction between two many-electron atomic particles is considered for strong collisions, when 
the inner electron shells overlap. Owing to the pronounced nonadiabaticity of the collision, the 
system cannot be described by separated terms, and a large number of states are involved in the 
interaction. It is suggested that the behavior of the system at small internuclear distances be 
described by a small number of energy bands. Each band corresponds to a certain state of the inner 
shells and possesses a certain width, since the state of the outer shell is not fixed and may vary. 
This description is justified since the energy change following transitions of the inner electron is 
much greater than both the bandwidth and the nonadiabatic perturbation. Transitions between bands 
are therefQre possible only if they are close to each other or intersect. Such transitions are analyzed 
by solving a model problem in which the bands are represented as a set of discrete terms. 
Transitions between terms of different bands in the intersection region, and also transitiQns between 
terms of a given band resulting from nonadiabatic coupling, are oonsidered. Transition probabilities 
are obtained for a single traversal of the band-intersection region. The behavior of the bands for 
Kr-Kr and Ar-Ar systems is determined on the basis of the experimental data and by employing 
the model. The model explains the high probability of formatiQn of inner vacancies, the singularities 
in the differential scattering cross sections, and the satisfactory applicability of adiabatic interaction 
potentials for the description of scattering in deep collisions Qf atomic particles. 

I. FORMULATION OF PROBLEM 

The interaction of multielectron atoms and ions in 
deep collisions is connected with overlap of the internal 
electron shells; the characteristic approach distances 
of the nuclei are 0,1-1 A. Collision energies on the 
order of tens of keY are conSidered, when the relative 
velocity of the nuclei is lower than the velocity of the 
external electrons. Experimental study of these colli­
sions has revealed, for complex atomic particles, a 
discrete structure in the spectra of the inelastic energy 
losses Q[ll. The loss spectra consist in most cases of 
well resolved lines Ql with energies of tens and hun­
dreds of eV. There is every reason for assuming that 
the presence of several lines in the loss spectrum is 
due to the formation of vacancies in the internal shells 
of the colliding particles (see, e.g.pl). 

A structure was observed earlier(3l in the total dif­
ferential scattering cross sections a( ~) (summed over 
all channels). Singularities in the form of maxima were 
observed on the a( ~) curves, which decreased smoothly 
with increasing scattering angle ~. This phenomenon 
was investigated in detail for a large number of colli­
sion partners[4-6l. In terms of the universal coordinate 
p = a(~) sin ~ and T = To~, all the results, regardless 
of the initial kinetic energy To of the particles, fit ap­
proximately one curve (see Fig. 1a), thus indicating a 
rather weak dependence of the interaction forces on the 
relative particle velocity. The singularity in the scatter­
ing becomes manifest at a constant value of T, i.e., it 
is connected with reaching of a definite closest-approach 
distance RD. 

950 Sov. Phys.·JETP, Vol. 39, No.6, December 1974 

An analysis of the scattering data for different pairs 
of particles shows that the characteristic approach 
distances at which the singularities appear coincide 
with the distance at which internal vacancies begin to 
be produced in the colliding particles. The data shown 
in Fig. 1 for Kr+-Kr collisions illustrate this connec­
tion. As shown in[2l, in the case Kr+-Kr the line QI cor­
responds to excitation of the outer shells of the colliding 
particles, while the lines QII and Qm correspond to 
excitation of the outer shells and to the simultaneous 
formation of one or two 3d vacancies. The existence of 
a well localized region of inter-nuclear distances, the 
reaching of which is accompanied by formation of inter­
nal vacancies, shows that the probable excitation mech­
anism is the crOSSing of the terms. Fano and Lichten[7,Bl 
attribute, within the framework of the molecular orbitals, 
the crossing of the terms to the "advancement" of the 
orbital corresponding to the internal electrons. 

Under the considered conditions, a complete descrip­
tion of the system requires that account be taken of a 
large number of states, since each of the lines in the 
loss spectrum is connected with participation of several 
electrons in the interaction, and with a multiplicity of 
transitions for each of the electrons. Estimates show 
that the value of the non-adiabatic perturbation due to 
the motion of the nuclei greatly exceeds the distance be­
tween neighboring terms corresponding to different 
configurations of the external shells, i.e., the region of 
the interaction of these terms is not localized. The 
presence of a sufficiently tight binding between the 
electronic and nuclear subsystems signifies that the 
electron energy, at a certain internuclear distance, is 

Copyright © 1975 American Institute of Physics 950 



1,0 

b 

I m ---, ",----

\ " \ I 
\ III 
\ I 

'(t\ 
I >. \ 

T, keV-deg. 

J,' \ 
I I ! I I <".( \.:-., ! I I ! ! ! I 

10 3 r, keV-deg 

FIG. 1. Angular dependences of the scattering cross sections (a) and 
of the relative probabilities for the excitation of different inelastic-loss 
lines: QIo QU, and Qm (b), for Kr+-Kr collisions. Dashed curves-data 
of [3,4,61, solid curves-data of [51. 

no longer fixed, i.e., the concept of an individual term 
becomes meaningless. At the same time, the change of 
the system energy in transitions of internal electrons 
greatly exceeds the nonadiabatic perturbation. There­
fore only the states that differ in the configuration of 
the internal electrons can be regarded as different 
states of the system. Thus, a system of two atomic 
particles in the case of deep collision can be described 
with the aid of several energy bands, each of which cor­
responds to a definite state of the internal shells. 

For a simplified analysis it is useful to introduce the 
concept of effective terms, each of which describes on 
the average the behavior of a corresponding band. The 
scattering singularities were qualitatively explained[6) 
as being the result of the crossing of two effective 
terms: in the case of crossing there exist trajectories 
that correspond to scattering by a potential with a break, 
and this leads to the appearance of peaks of the "rain­
bow" type in the corresponding cross sections. 

As applied to individual terms, the crossing model 
makes it possible, as is well known, to solve the in­
verse scattering problem, i.e., to reconstruct the course 
of the terms from the experimental data. In final analy­
sis, this is caused by the fact that the probability of the 
transition between the ground I-I' and excited 2 -2' 
terms in the case of forward and backward passage 
through the intersection point He are equal, P 12' = P 2'1' 
As a result the probability of excitation of the system 
after the collision is expressed by the known formula 
W = 2P12' (1 - P 12,), which enables us to determine 
P 12' from the experimental data on W, and the behavior 
of the system is thus known at all R > Ro. 

The maximum inelastic transition probability W for 
crossing of individual terms is 0.5. Experiments[l,2) 
have shown, on the other hand, that in deep collisions 
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the probability of the transition of the system to an ex­
cited effective term approaches unity. The only possible 
reason is that the condition P 12' = P 2'1 is not satisfied 
is the crossing of the effective terms. Experiment 
makes it possible to find the probability of the transi­
tion of the system to various final states W, but the 
probabilities of the transition between the terms for a 
single passage through the intersection point remain 
unknown in this case, i.e., the behavior of the system in 
the region Ro < R < Rc turns out to be unknown. To go 
from a qualitative explanation to a quantitative descrip­
tion, and in particular to a reconstruction of the course 
of the effective terms, it is necessary to construct a 
model that makes it possible to determine the transition 
probability for a single passage through the region of 
intersection of the effective terms. 

II. APPROXIMATION OF INTERSECTING BANDS OF 
TERMS 

1. Transitions in Intersection of Bands 

For convenience in calculation, we represent the 
energy bands corresponding to the effective terms in 
the form of bands of individual terms (Fig. 2). We con­
sider the probability of the transition of a system from 
the states I-I' to the states 2 -2' in the first passage 
of the intersection region. Let r be the number of 
terms in the band 1--1' corresponding as R _00 to the 
effective term of the ground. state, let s be the number 
of terms in the band 2-2' corresponding to the effective 
term of the excited state, and let p be the probability of 
the transition on going through one intersection of the 
individual terms. We assume for simplicity that p is 
the same for all the intersections. The number of chan­
nels that differ in the combinations of the final charges 
of the particles, say in K+ -Kr colliSions, is approxi­
mately 40 (particles with charges from 1 to 7 are ob­
served)[3). Inasmuch as the particles in each of these 
channels can be in different excited states, the number 
of terms in the bands will be much larger. We note that 
under the considered conditions we not only have a large 
number of terms in the bands rand s, but also s » r, 
since an internal vacancy can be produced in a large 
number of ways as a result of the transition of an in­
ternal electron to free discrete levels or to the continu­
ous spectrum. 

Demkov and OSherov[9] considered the case of inter­
section of one term with a band of parallel terms and 
have shown that an arbitrary ratio of the magnitude of 
the interaction and of the distance between the terms, 
the probability of the transition from the initial state to 
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FIG. 2. Intersection of bands of 
terms. Thick line-most probable 
trajectory of motion of the system 
in the intersection region. The cross-

I hatched areas near the bands are the 
initial and final distributions of the 
term populations. Rc-intersection 
region, Ro-turning point. The 
dashed line shows the displacement 
of the cen ter of the population dis­
tribution as a result of the nonadi­
abatic interaction. 
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any final state can be calculated as the product of the 
probabilities of the corres ponding transitions. 

In the case of intersection of two bands of terms, a 
contribution to the population of any level of the band 
2-2' is made by many different trajectories of the 
representative point (in the coordinates U and R), so 
that interference terms must appear in the calculation 
of the probability of the transition from the k-th term 
of band I-I' to the l-th level of band 2-2'. However, 
recognizing that in real collisions the phase differences 
accumulated on passing over different interfering tra­
jectories can be arbitrary, and that the number of such 
trajectories is large, we can neglect the contribution of 
the interference terms. Using the deductions of Demkov 
and Osherov, we shall assume that in the case of the 
intersection of two bands of terms the probabilities of 
the transitions from any initial state to any final state 
can be calculated as a product of the probabilities of the 
corresponding transitions in the intersection of the in­
dividual terms, naturally, by summing over all possible 
trajectories. 

Let us consider a situation wherein the system ex­
periences many transitions on going through the inter­
section region, and let us ascertain the conditions for 
the realization of this situation. The average number of 
intersections that the system passes through prior to 
the first transition is 

M=p+2p(1-p)+3p(1-p)'+ ... +np(1-p)n-l+ ... (1) 

Summing, we obtain M = l/p. Thus, the condition of 
interest to us is 

s>r>1Ip. (2 ) 

Since the system makes an approximately equal number 
of crOSSings with the terms of each of the bands when 
this condition is satisfied, the center of the population 
distribution of the terms of band 1-1' will shift in the 
intersection region along the "diagonal" (see Fig. 2). 

Detailed computer calculations have shown that in­
deed at sp > rp ~ 3 the initial distribution of the popu­
lations of the term of band 1-1' is projected along the 
"diagonal" on the terms of the band 2-2' with a certain 
broadening that depends on the value of p (Fig. 2). If (2) 
is satisfied, the probability P 12' of the transition be­
tween the bands depends mainly on the ratio r/ s, and 
at s> 3r ~ 9/p we have P 12, "" 1 and Pll' "" 0 regard­
less of the initial distribution of the populations of the 
terms of band 1-1'. 

If no significant change in the populations of the 
terms of the band 2-2' takes place during the time 
between two passages through the intersection region, 
then it is easily seen that if condition (2) is satisfied an 
inverse "diagonal projection" on the terms of the band 
1-1' occurs, and, depending on the initial population of 
the terms and the value of the broadening, the transition 
probability will assume values in the interval 12 < P 2 , 1 
< 1. 

This result is in sharp contrast to the experimental 
data[l,21, according to which the probability of the 
transition to the final state 1-1' after collision is equal 
to zero. This means that account must be taken of the 
possible change in the population of the terms of the 
band 2-2' during the time between two successive pas­
sages through the intersection region. The reason for 
this redistribution of the population may be nonadiabatic 
transitions between terms of one band. 
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2. Transitions Between Terms of One Band 

The system of equations for the expansion coeffic­
ients of the wave function of the system in the complete 
set of adiabatic functions for an infinitely discrete 
equidistant spectrum was considered by Presnyakov 
and Urnov[lOl. 

i1i~=-~ an(t)Cmnexp[-iwo(n-m)t], (3) 
iJt £...; 

where Cmn = < m \ ilia/at \ n) and nwo is the distance 
between neighboring terms. 

In our case, the need for conSidering a strongly ex­
cited multielectron system makes the exact calculation 
of Cmn exceedingly difficult, and we confine ourselves 
to a model solution. Let A be the characteristic dis­
tance over which an appreciable change takes place in 
the wave function, and then the nonadiabatic interaction 
is of the order of nV/A, where v is the velocity of the 
incident particle. When measured in the scale of the 
characteristic internuclear distance, the matrix ele­
ments Cmn are slowly varying functions, so that it is 
natural to assume in the model calculation that they do 
not depend on the time. Assuming that direct transitions 
are possible between the terms separated by a distance 
nwo\ m - n \ and does not exceed liviA, and assuming 
an exponential decrease of the matrix elements with in­
creasing liwo \ m - n \, we chose Cmn in the form 

Cmn = ~ exp (- w~1. Im-nl) exp (i'l'O 1:-=-:1)' (4) 

where the last phase factor takes into account the 
Hermitian character of the operator C. 

Making in (3) the substitutions 

bm=am exp(-iwomt), t'=otl1., 

we obtain a system of differential equations with con­
stants coefficients, which is convenient for calculations: 

obm L:' { . m-n} . --=i bnexp -,(lm-nl+!(Po-1--1 -I'(mbm, 
at" m-n 

(5 ) 
n_1 

where r = woA/ v. 

In the case of large r (i' » 1), perturbation theory 
can be used and the redistribution of the term popula­
tions is negligible. At small i', the strong-coupling ap­
proximation can be used, and in the scale t' = vt/A the 
solution does not depend on 'Y. Numerical calculations 
have shown that at y2 < 0.1 during the time t' "" r the 
distribution center shifts by r/2 (it is assumed that at 
the initial instant of time only the lower levels of the 
band are populated). In order to satisfy the condition 
P 2, 1 "" 0 as the particles move apart after passing 
through the intersection region, it is necessary that 
during the time t~ between two passages through the 
intersection region the center of the population distribu­
tion shifts by an amount 

to'/2'('>3r 

(it is understood that s » 3r). 

For the situation of interest to us (e.g., Kr'-Kr, 25 
keY), depending on the impact parameter, we have 

(6 ) 

t' ;S 2 and livh. ~ 6 eV, while the distance between 
neighboring terms is nwo = ~Q/s, where ~Q ~ 40 eV 
is the linewidth in the spectrum of the inelastic energy 
losses[21. Then 'Y = ~QA/snv "" 7/s, and the conditions 
(6) and 1'2 < 0.1 will be satisfied at s > 22 (s > 3r). 

This requirement is easily satisfied in the collisions 
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in question, meaning that the redistribution of the term 
population during the time t~ can be very large. In this 
case, taking the relation s» r into account, the calcu­
lation of the transition probabilities for the backward 
passage through the intersection region yields the 
values P2'2 i:::l 1 and P Z'I ~ O. We recall that in the ab­
sence of population redistribution we had 12 < P Z'I < 1. 

In the case when one term intersects a band we can 
no longer speak of "diagonal projection" of the initial 
distribution of the populations, since (2) is not satisfied, 
but at sp > 3 and in the presence of strong population 
redistribution during the time t~ the transition proba­
bilities will be the same as in the case of the intersec­
tion of two bands of terms, i.e., P 12, = 1 and P 2'2 ~ 10 

III. APPLICATION OF THE INTERSECTING-BAND 
MODEL 

1. Effective Interaction Potential 

The obtained transition probabilities enable us to de­
scribe the behavior of the system at all distances R. 
The approach at R> Re occurs via the effective term 
1-1'. A transition to the terms of the band 2 -2' takes 
place in the intersection region. When the particles 
move apart, the system is in the state 2. This model 
explains in natural fashion the high probability of forma­
tion of internal vacancies close to 1000/0, which was ob­
served in experiment. Thus, the trajectory 1-2'-2 is 
the fundamental one at Ro < Re (Fig. 2). 

We note that at R < Rc the term 2-2' is the adia­
batic term of the ground state. This means that as the 
particles approach each other the system moves all the 
time along the adiabatic term of the ground state, 
passes along the same term from the turning point Ro 
to the intersection point Re, and only at R> Re does 
the separation of the system follow the adiabatic term 
of the excited state. The scattering is determined 
principally by the course of the potential near the turn­
ing point. It is therefore clear that in our case, even in 
the presence of intersections, the scattering will be 
close to that desc ribed with the aid of the adiabatic 
potential. The influence of the separation along the ex­
cited terms will be noticeable only in those cases when 
the turning point is close to the corresponding intersec­
tion point. 

With decreasing Ro and on passing through the suc­
ceeding intersection points, owing to a more rapid 
Coulomb repulsion of the nuclei in comparison with the 
inelastic losses, the role of this effect should decrease. 
This conclusion agrees well with the results of experi­
ment[3-6), according to which only the formation of the 
first vacancies in the internal shells correlates with the 
noticeable Singularities in the scattering, while the 
formation of the succeeding vacancies with decreasing 
Ro causes only very weak deviations from the smooth 
course of the a( J) curves. 

Since it is now clear why the main course of the cross 
sections can be successfully described with the aid of 
an adiabatic potential, it is useful, in the comparison 
with experiment, to choose the best theoretical model. 
Such a comparison is shown in Fig. 3. Here Uexp is 
the potential reconstructed by us from the experimental 
data using the Firsov procedure. To calibrate the cross 
sections we used the results of Loftager's absolute 
measurement[5) . 
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the experimental data (Uexp) with the theoretical models (UB-Bohr 
potential [11), Up-Pirsov potential [12), Uc-Czavinszky potential [14)). 

It is seen from the figure that the Bohr potential 
frequently used in the calculations [11 J 

Z,Z,e' (R ) _ a, ~o 529 A (7) 
U B = -R- exp - -;;;;' aD - (2,"'+Z,';')'I.' a,. , 

is in good agreement with experiment only at very 
small distances. In much better with experiment is the 
potential obtained by Firsov[12j in the form 

Z,Z,e' (R) O,8853a, (8) 
UF~~'f! -;;; , a,'= (Z,'I'+Z,'I.)'/, • 

where <p is the Thomas-Fermi screening function. 

Nikulin p3j has calculated the potential within the 
framework of the statistical theory, using quantum­
mechanical electron densities; his potential agrees well 
with the Csavinszky potential[l4 J: 

2,Z2e'[ (a) (~)]' U c ~ -- a exp - - R + b exp - - R , 
R OF (iF 

(9 ) 

a+b~l; a~O.7111; a~O.17:;; ~~9."a, 

This potential describes the scattering most accurately. 

2. Reconstruction of the Effective Terms 

Knowing the transition probabilities for single pas­
sage through the intersection region, we can reconstruct 
from experiment the course of the effective terms of 
the system. Since, as already established in[l,2), three 
lines are distinctly represented in the energy-loss 
spectrum, it is natural to consider a model of three 
intersecting terms. The model of intersecting terms 
makes it possible to distinguish in each separation 
term the most important trajectory (see Fig. 4): 

I) 1-2'-1, 
II) 1-2'-2, 

III) 1-2'-3'-:'\, 

(10) 

We note that no scattering by the terms I-I' and 
2-2' takes place at R < Re1 and R < Rc2, respectively, 
meaning that their behavior in these regions can be ob­
tained only by extrapolating the corresponding sections 
at R > Re. It is well known that to reconstruct the po­
tential on the section R > Ri it is necessary to know the 
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deviation function J(H) at J:5 J(Hi), so that the course 
of the term 1-1' at H 2: Hc 1 can be reconstructed 
immediately by using Firsov's procedure. The thresh­
old angle of the excitation of the line QII in the energy­
loss spectrum is used to determine the coordinates of 
the first point of intersection U(He1) and He1. We then 
determine the course of the term 2-2' at H> Re1, in 
the form 

U(R,,)-QII 
U, .. ,·(R)= U(R,,)-Q, [U1-!·(R)-Q.]+QII, (11) 

and, calculating on the basis of (11) the missing section 
of the deviation function of the trajectory II (at J < 
< ~ (He 0), we reconstruct the course of the term 2-2' 
at He1 > Re2. We next obtain, in similar fashion, the 
course of the term 3-3'. The need for a parametriza­
tion of the type (11) leads to corresponding errors when 
it comes to reconstruct the course of the effective 
terms in the region H > He, but the farther the turning 
point from He the more accurate the calculation. 

Similar calculations were carried out for the systems 
Kr-Kr and Ar-Ar, inasmuch as it is precisely in this 
case that a large (~1 00%) probability of scatte ring via 
the most inelastic channel is observed, and consequently 
the model of intersecting bands is applicable. Figure 4 
shows the experimentally obtained effective terms of 
the quasimolecular systems Kr-Kr and Ar-Ar. 

Since appreciable errors can accumulate in the cal­
culation process, to verify the calculation accuracy we 
solved the direct scattering problem, i.e., we calculated, 
on the basis of the obtained terms, the deviation func­
tions JZ(b), where b is the impact parameter (Fig. 5), 
and the corresponding cross sections (Fig. 6). The 
calculations were performed for each of the three indi­
cated channels in the entire investigated interval of ap­
proach distances. In the calculation of the deviation 
functions for the channels II and III in the regions Ho 
> Re1 and Ho > Re2 respectively (Fig. 4) it was as­
sumed that the approach is along the lowest term, and 
that a transition to the corresponding excited term from 
which the scattering takes place occurs at the turning 
point. 

In view of the strong redistribution of the excitation 
probabilities of the energy loss lines (Fig. 1b), it was 
assumed in the calculation of the total cross section 
a~ (J) that the scattering is only via channel I in the 
region Ho > He 1, via channel II in the region He2 < Ho 
< Reb and via channel III in the region Ho < Re2. It 
turns out that although each value of Ho the scattering 
is assumed to be Single-channel, in some angle regions 
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tering via channel 1-2'-3'-2'-2. III-scattering via channel 1-2'-
3' -3'. i/* and i/** are the limits of the ambiguous i/z(b) dependence. 
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FIG. 6. Differential scattering cross sections for Kr+-Kr collisions, 
To = 25 keY. Solid curve-total cross section, experiment; dash-dot 
curve-cross sections for scattering via different channels, calculated 
from the deviation functions, dashed-calculated total cross section. 

a mutual superposition takes place of the cross sections 
for scattering via various channels. For example, it is 
seen from Fig. 5 that near the point b2 (Re1), the parti­
cles are deflected through a smaller angle for scatter­
ing via channel II than for scattering via channel I. 
Consequently, the cross sections al( "') and an( J) will 
add up in the calculation of the total cross section 
a~ (J) in the angle interval J~ < J < J: , and the result­
ant contribution to the singularity in a~ (J) is 

OC"''OJ.II (tt;.,) sin tt:., (tt,'-tt;) "" 4.3·10-" cm 2 • (12) 

This effect is due to the multichannel character of the 
scattering and can be called the effect of "inelastic 
shift" of the cross section. 

The presence of minima.jn the deviation functions 
leads to the appearance of Singularities of the rainbow 
type in the differential scattering cross section az (J ). 
This effect was discussed earlier [61 l The regions of the 
minimum in the functions JZ(b) (Fig. 5) turn out to be 
narrow in comparison with the region of angles in which 
a singularity is observed in a(J). This difference is due 
to the length of the band-intersection region, to the 
presence of three intersecting bands, and to the super­
position of the contribution of several channels. Taking 
into account such a natural "smearing," one can get 
away in the comparison with experiment without an 
exact calculation of the rainbow peaks in the cross sec­
tions, and confine oneself to a determination of integral 
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contribution of the rainbow effect to the singularity in 
the differential scattering cross section 

(13) 

(see Fig. 5). 

When constructing the calculated summary cross 
section a~ (if) (Fig. 6), both cross sections aR and ac 
were "smeared out" over an angle range -2°, with the 
area maintained constant, so as to make the compari­
son with experiment more illustrative. The calculated 
and experimental cross sections agree well in their 
general behavior, in the position of the singularity, and 
in magnitude, thus indicating that the calculation is of 
sufficient accuracy. 

Thus, the model of intersecting bands, by providing 
the missing information concerning the transition 
probabilities, describes adequately multichannel scat­
tering of atomic particles in deep collisions, and makes 
it possible to obtain, on the basis of the experimental 
data, the course of the effective terms of the system. 

Preliminary results obtained with the model of inter­
secting bands were reported in[15 l. 

In conclusion, the authors are grateful to Yu. M. 
Demkov, G. F. Drukarev, A. M. PolyanskH, and A. P. 
Shergin for a useful discussion of the present results. 
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