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The fluctuation correction to the conductivity above the superconducting transition temperature is 
investigated for the case of dirty superconductors in the presence of constant electric and magnetic 
fields. The fluctuation conductivity is calculated for a bulk sample in mutually parallel and mutually 
perpendicular electric and magnetic fields. The fluctuation conductivity of a thin film in mutually 
perpendicular fields is also calculated. The asymptotic values of the conductivities in strong fields are 
obtained. 

It is well known that the existence of fluctuating elec
tron pairs above the superconducting transition tempera
ture leads to the result that a normal metal acquires 
near the transition temperature an additional conductiv
ity, which is strongly temperature dependent (the so
called paraconductivity). The first microscopic calcula
tion of the paraconductivity was made in the article by 
Aslamazov and Larkin. [lJ This same question was in
vestigated on the basis of the time-dependent Ginzburg
Landau equation in the articles by Abrahams and Woo, [2J 
and by Schmid.[3J These calculations were found to be 
in good agreement with the experimental data in the arti
cles by Glover, [4J and by Strongin et al. [5J 

The phenomenon of paraconductivity in the absence of 
a magnetic field was investigated in[1-3J . The electric 
field was assumed to be sufficiently weak so that it 
would not lead to depairing of the fluctuating electron 
pairs. The criterion for the weakness of the electric 
field will be discussed below. In the case of ordinary 
(not paramagnetic) alloys, Maki [6J and Thompson [7J 
showed that it is necessary to correct the theoretical re
sults [1-3J by taking the so-called "nonregular" terms [8J 
into consideration. The nonlinear dependence of the 
paraconductivity on the electric field has been studied 
by a number of authors. [9-14J The fluctuation conductiv
ity in the presence of a constant magnetic field has also 
been investigated. [l4-l7J 

The fluctuation conductivity of dirty superconductors 
above T c in strong electric and magnetic fields is inves
tigated in the present article, taking into account only 
the fluctuations of the Aslamazov and Larkin type. 1) We 
shall calculate the electric current according to the 
formula 

J(r,t)~~ lim (iJ,-iJ,,')G+(r,t;r',t'), 
mr-+l',l-..t' 

(1) 

where Or = a/or - ieA, A = (0, xH, 0) is the vector poten
tial of the constant magnetic field, and G+(x, x') is the 
Green's function of the electron in constant electric and 
magnetic fields. According to Keldysh, [19J 

G+(x, x')~i<IjJ+(x')IjJ(x». 

To first-order in the fluctuations, the electron 
Green's function corresponds to a graph (see Fig. 1). 
The solid lines in Fig. 1 represent the Green's functions 
of the electron in the normal state. The heavy, wavy line 
represents the Cooper vertex function in constant elec
tric and magnetic fields. 

In what follows it will be necessary for us to expand 
the electron Green's functions and the vertex function in 
this graph in powers of the electromagnetic field Ao(t) 
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= - Et. We shall take the constant magnetic field into 
account exactly, It is necessary to emphasize that the 
Aslamazov and Larkin contributions to the conductivity 
give graphs involving the interaction of the electromag
netic field with fluctuating pairs of electrons. However, 
the graphs containing the interaction of the electromag
netic field with the normal electrons give the Maki and 
Thompson contributions to the conductivity, As noted 
earlier, we shall confine our attention to graphs of the 
Aslamazov and Larkin type; therefore, the electric field 
is included only in the Cooper vertex function. 

Using Keldysh's technique, [19,20J the fluctuation cor
rection to the current, corresponding to the graph (Fig, 
1), can be written in the following form: 

e . S dw de e 
,',Jw"~i-lim (d,-a,,') dr.dr2--th-

4m ,_,' 2n 2n 2T 

x [ <G,"(r, r.) G~'-, (r" r.) G:_w,(r" r'» (2) 

- <G A (r, r.) G:_, (r2 • r.) G~-W,(r2' r'» jKw,w-w,(r., r,). 

Here the angle brackets indicate averaging over impuri
ties, [2lJ GR and aA denote the retarded and advanced 
Green's functions, respectively, in the presence of a 
constant magnetic field, and Kw w-w (rl, r2) is the so
called thermodynamic Cooper v~rtex function (see[21J). 

The expansion of the Cooper vertex function in powers 
of the variable vector potential is shown graphically in 
Fig. 2. The thin wavy lines on these diagrams represent 
the Cooper vertex functions in a constant magnetic field, 
and the dotted lines correspond to the interaction 
ep • Ao/m of an electron with the variable electromagnetic 
field. Averaging over impurities[20J is also assumed. 
Only odd powers in ep· Ao/m are present in the dia
grams. It is not difficult to see that the even powers in 
expression (2) for the current do not give any contribu-
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tion. They drop out because of the integration over the 
momenta. 

By analytic continuation of the vertex function, we see 
that the result is analogous in structure to the expres
sion for the Green's functions of an electron in a varia
ble electromagnetic field (see [8J ). As an example let us 
write down the explicit form of graph c in Fig. 2, per
taining to the third-order correction in Ao: 

Here the integration with respect to internal coordinates 
and with respect to the frequencies Wi is understood to 
be subject to the condition Wi + W2 + W3 '" wo; IT(l) and 
IT (2) correspond to loop diagrams with one and two elec
tromagnetic lines; more precisely, IT (1) is the sum of 
loops a and b, and IT (2) is the sum of loops c, d, and e 
(Fig.3). 

As estimates indicate, loops with more than two elec
tromagnetic lines are not essential in view of the small
ness of the parameter l(T - Tc)vo « 1 (l denotes the 
mean free path). 

The expression for the Cooper vertex function 
Kw, w -Wo to arbitrary order in the electromagnetic field 
is written down in analogy to expression (3) and does not 
require any additional explanation, In formula (3) KR 
and KA denote the retarded and advanced vertex func
tions in a constant magnetic field. Mald showed [22J that, 
for very dirty superconductors the vertex function in a 
constant magnetic field is diagonalized in the system of 
eigen wavefunctions of the following equation: 

(4) 
where &r '" a/or - 2ieA, A '" (0, xH, 0), Enq '" 2eH(2n + 1) 
+ q2 are the eigenvalues, and the wave functions have the 
form 

<p",,(r)= 1 eXP{ikY+iqZ- ~ (X,-XO)'}H"(x--:xO), (5) 
2n (2 nn!n"'A)'" L Fe ' 

where Xo '" A 2k, A '" (2eH)-1/2, and the Hn(x) are the 
Hermite polynomials. 

Thus, in the case of dirty superconductors one can 
write down the following expression for the Cooper ver
tex function in the representation of Landau quantum 
numbers: 

[ T (1 Denq-iw ) ( 1 )]-! K.R(n,q)=v-! In--+¢ -+--- -¢ - , (6) 
T,(O) 2 4nT 2 

Kw"(n. q)=[K:(n, q)l". 

Here v '" mpo/21T2 is the electron density of states, 
D '" vol/3 is the coefficient of diffusion, T c (0) is the 
transition temperature when no magnetic field is pres
ent, and Ij!(x) is the logarithmic derivative of the r(x) 
function. 

Making the calculations, similar to Usadel's work, [15J 
we obtain an expression for the loop with one electro-
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magnetic line in the presence of a constant magnetic 
field in the form 

S dr dr' ll,l' (r, r', (0) <p: .. (r) <pn','o' (r) = ll~~:' (q, (0) 0 (k-k') 0 (q-q') 

evD 'S --. , I = - 2nl'Lnn '(q)b (00) dl'(d;-d,.)E<p" .. (r)<pn·.·.·(r) ,_,', 

1jJ (!/,+De .. ,I4nT) -¢(1/2+De"·,I4nT) 
Ln.,' (q) = ~---=-:--~-'-.,..,--=----'--

D(e n.-en ·.)/4nl' 

(7) 

The following expression corresponds to the loop with 
two electromagnetic lines: 

f dr dr'll") (r, r', 00, w')<p: .. (r) <p •.•. ,. (r') =I1~21 (q, Ol, 00') 0 (k-k')b (q-q') bn•· 

=(eE)' \.~ 11"" (.!..+ DBn,) b'(w)6'(w')o(k-k')o(q-q')b"n" 
nl 2 4nT (8) 

where lj!(l)(X) is the derivative of the Ij!(x) function, 

After similar calculations expression (2) for the cur
rent can be rewritten in the following form: 

e\'D - - ~J dOl • L1Jw, = --('},-a,') dk dq -, -<pn .. (r)<pn·.,(r') I,~,· 
4"r . 2n (9) 

x L"n' (q) Kw,w_w,(nq, n' q), 

where K (nq, n'q) is the sum of all the diagrams w, w-wo 
for the vertex function (Fig. 2). In this formula nq and 
n'q are the Landau quantum numbers of the external 
Cooper functions in the diagrams, The fact that the ver
tex function is given by 

K",oo-w,(nkq, n'k'q') =Kw.w-w,(nq, n'q) o(k-k') o(q-q') 

has been taken into consideration in deriving this form
ula. As one can easily see, this assertion follows from 
formulas (6), (7), and (8). From formula (9) one can 
easily see that the current doesn't depend on the spatial 
coordinates. Returning to the time representation, we 
have the folloWing expression for the current: 

noD - - LJ dw • 61(t)=--.(a,-o,.') ,dkdq dwo-<p".,(r)<p .... ,(r') I,~, 
4rrl . 2n 

x Ln ". (q)Kw,w-w,(nq, n' q) e-,w,l. 
(10) 

Expression (10) is a function of the time. However, it 
should be noted that the time-dependent part of expres
sion (10) is cancelled by the current arising from the 
"regular" [8J part of the Maki and Thompson graphs. 
Therefore, in what follows we shall everywhere present 
the time-independent part of the current, ~J(O) 0= ~J. 

A similar situation was noted by Aslamazov and 
Larkin[lJ in connection with a calculation of the fluctua
tion current to the linear approximation in the electric 
field. 

After introducing the general relationships, let us go 
on to a calculation of the fluctuation correction to the 
conductivity of a bulk sample in the presence of mutually 
parallel and mutually perpendicular electric and mag
netic fields, and the conductivity of a thin layer when the 
magnetic field is applied perpendicular to the plane of 
the layer. 

Let us consider the conductivity of a bulk sample in 
the case when E II H II z. Substituting the wave functions 
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(5) into expression (10) for the current, it is not difficult 
to find that 

(11) 

It is clear from formulas (5) and (7) that 
(1) evD (1 Den,), 

TInn'(q,w)=i-Eq1jJ(1) -+- 6 (w)6nn ', 
rrT 2 4rrT 

(12) 

Thus, in this case the interaction of the fluctuating 
pairs with the variable electromagnetic field is deter
mined (in the Landau representation) by expressions (8) 
and (12). Using this result, and also formulas (6) and 
(11), and after carrying out the integration to arbitrary 
order in the electric field, we obtain the following result 
for the fluctuation conductivity: 

(3) e'I!TD" ~ (6m+1)!! ( Ln )''''+'10 
L'lo" = --')-":'" (-) m ');"'3'" , (eE) 'm Dm -;--T \ 

_:'1 .... m,. 1:i1 • " 

= e'If (~)"'~ jX'exp{-~x'- (eE)'D x'}dX" (13) 
h" T ":-" 0 L" 12 (4;1T), , 

.\,,=In (TIT, (0» +1;()/2+ (2n+1)eJfD!2rrT) -1jc()/,), 

L n =1jJ(1) ('12+ (2n+1)eI!DI2"T). 

It is not difficult to obtain the limit H - 0 from form
ula (13)0 Substituting Ln ~ 1T2/2 and An;::O In(T/Tc(O» 
+ 1T(2n + 1)eHD/4T into (13) and summing over the prin
cipal quantwn number n, we obtain 

(3) e'I! ( D )'hS~' {" T ,rr3 (eE)'D} rreI!Dx' 
tlO" =16 2T x-exp -x'in T,(O) -x 12(8T)3 sh-'~dx. 

• (14) 

Expression (14) coincides with the result of[23J, which 
is valid in the Ginzburg-Landau regime, eHD «1TT. For 
H = 0 we obtain from Eq. (14) the well known result [10J 
for the nonlinear (in the electric field) conductivity in 
zero magnetic field: 

(3) 2 (3) ~ { E' } 
""a" (II=O)=--=-L'loo S e,p -x2-x'_ dx, 

trr 0 Eo' 
(15) 

.'I (3) e'T,(O) 
00 = 8(2nD(T-T,(0»)" 

( T-T,(O) ) ", 

T,(O) 

(16) 

As one can easily see from formula (13), the limiting 
value as E - 0 in an arbitrary magnetic field coincides 
with the result of Usadel's work. [15J 

Let us consider the case of strong electric and mag
netic fields, eHD » 1TT, and let T ? Tc (H) (T c (H) is the 
transition temperature in the presence of a magnetic 
field). Then one can replace the summation in formula 
(13) by the first term n = O. For temperatures close to 
T c (H) we have 

1_p(I!)1j1"I('!,+p(I!» T-T,(I!) 

ljo'''('/,+p(lJ) T,(H) 
1 (Ii), 

(17) 
p (fJ) =ell D/2JlT, (11). 

Substituting (17) into (13), we obtain after simple trans
formations 

e'lJ ( D )'1, ~ { E'} L'lou") = -,. -- [1 (II) ]-'1, S x' exp -x' - -, x' dx, (18) 
4,,' T,(H) • En' 

(19) 
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In the case of strong electric fields, Ecl « E, we 
find 

(3) -

L'lo" (IJ) "" 2e'IJT,(H)I'I3rrE. (20) 

However, in the case H ~ Hc2(T) and in the presence 
of a strong electric field, 

E»E,2=4¥6e"D[If-1I"2(T) ]'I (21) 

we obtain 
(3) -

L'lo" (T)"" 2e'TIJ,,(T)1'I3rrE. (22) 

It is clear from formulas (20) and (22) that the elec
tric field dependence of the fluctuation conductivity for a 
three-dimensional metal in the presence of strong elec
tric and magnetic fields is the same as for the one
dimensional case in a strong electric field. The condition 
imposed on the electric field is less stringent than in the 
case without a magnetic field. In fact, it is clear from 
formulas (16) and (19) that in order of magnitude 

E ~E (T-T,(IJ») 'I, (nT,(H») 'I, 

d " T, (0) ellD 
(23) 

for eHDirrTc(H) »1. 

Let us consider the case of mutually perpendicular 
electric and magnetic fields. Let E II x and H II z; then 
it is clear from Eqs. (5), (7), and (10) that 

/ - evD ~ [(2 )';'0 '(2( +1»'1'6 ' 1 L'l -'- - 2T(2rrA)' i..... n .. -I." - n n.n-' 
",,' 

(24) 

(I) evDE '[) 'I 'f 1 ITn,,' (q,w)= - 2rrTl. Lnn'(q){j (w) (2n '6o-tn·-(2(n+1) '6n,n'-, . 

(25) 

For mutually perpendicular electric and magnetic 
fields we shall, from the very beginning, confine our 
attention to the case of strong magnetic fields, eHD/21TT 
»1. Then one can keep the lowest Landau levels in the 
summation in Eq. (24). Using formulas (8), (24), and 
(25), after the summation of all vertex diagrams (Fig. 2) 
we obtain the following result for the fluctuation conduc
tivityof a three-dimensional sample: 

(0) 2 (0) JW { , E' '\ L'l0.L = --=- L'l00.L exp -x - -, x J dx. 
'111 0 E,-,-

(26) 

However, in the case of a thin film of thickness d, 
when the magnetic field is perpendicular to the plane of 
the film, the fluctuation conductivity has the form 

(') (') JW { E' '} L'lo-,- = L'l0O,L exp -x - E,-,-' x dx, 
o 

(27) 

In these formulas 

(3) e'AT (') 2e'').'T 
L'l00.L = 3rrDA,';' , L'loo-,- = 3rrdDAo ' 

_ ( 6 ) 'I, DA,';' 
E,-,- - 2-ln 3 --;:;;-' 

Ao=ln (TIT, (0» +.p('h+eIJDI2rrT) -.p('!,). 

It is easy to verify that for E = 0 formulas (26) and (27) 
go over into the corresponding formulas of Usadel's 
work. [15J 

In the case of a strong electric field, E »Ec.L' and 
for temperatures T ? T c (H) we find 

(') r('/,) ( 6 ) ,/, e'T,(H) 
L'lo~ ,., 9rr'f, 2-1n 3 D'/, (eE) 'f. ' (28) 
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"'()~') "" 2f('I,) (_6_) '/, e'Tc(Il) 
9n 2-ln3 dD"(eE),/" (29) 

It should be noted that in these asymptotic expres
sions the electric field dependence of the conductivity is 
the same as in the case when no magnetic field is pres
ent, The magnetic field dependence manifests itself only 
through Tc(H), and the conductivity-in the two-dimen
sional case as well as in the three-dimensional case
decreases with decreasing transition temperature and 
increasing magnetic field. 

[lit should be noted that the fluctuations of the Maki and Thompson 
type are strongly suppressed in the presence of magnetic fields [18]. 
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