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The energy distribution of the nonequilibrium quasiparticles in a superconductor is investigated with 
the aid of the kinetic equation. The quasiparticles are produced in the absorption of an 
electromagnetic field whose frequency is more than double the superconducting gap. The values of 
the superconducting gap are calculated in the nonequilibrium state. The gap decreases as the 
amplitude of the field increases, and in certain cases it may vanish at the critical field. It is shown 
that the nature of the quasiparticle distribution function is essentially determined by the specific form 
of the dependence of the electron-phonon interaction matrix element on the wave vector. For the 
well-known dependences M ~ - q (atomic crystal), M2 - const (deformation potential), and also 
M ~ - 1/ q the distribution function is less than one-half (n, < 1/2). This implies that population 
inversion is not present at any amplitudes of the field. 

1. INTRODUCTION 

Recently there has been a great deal of interest in 
the investigation of nonequilibrium processes in super
conductorso [1, 2J The departure from equilibrium may 
be due to the influence of an electromagnetic fieldo In a 
certain sense the situation is analogous to the situation 
in semiconductors when they are exposed to light with a 
frequency greater than the width of the forbidden band. 
In fact, the field produces quasiparticles in the super
conductor (analogous to electrons and holes in a semi
conductor), and these possess excess energy and recom
bine with the emission of phonons. In addition, the field 
may warm up the quasiparticles.[2J 

The investigation of nonequilibrium processes in 
superconductors is of interest, on the one hand, as a 
convenient method for studying the properties of super
conductors and, on the other hand, in view of the great 
sensitivity of the effects to relatively weak fields super
conductors are very appropriate objects to use in order 
to investigate nonequilibrium states. This is explained 
by the smallness of the superconducting gap in compar
ison with, for example, the Debye frequencyo In fact, 
even for a small number of quasiparticles created by 
the field, their energy distribution turns out to have an 
exceptionally strong effect on the supeJconductinEi rap. 
Thus, it was shown in the articles by Eliashberg 2 that 
a change in the energy distribution of the quasiparticles 
due to heating by the field can lead to an increase of the 
gap 0 Conversely, the production of nonequilibrium quasi
particles should decrease the superconducting gap. This 
problem was considered in the article by Owen and 
Scalapino. [3J The authors of [3J assumed that the dis
tribution function nE of the nonequilibrium quasiparticles 
is described by a Fermi function with a nonvanishing 
chemical potentialo When the temperature is equal to 
zero, such a function becomes equal to unity over a cer
tain range of energies. This means that population in
version occurs for the quasiparticles (nE > 1/2)0 Popu
lation inversion would lead to a number of unusual prop
erties. 

The present article is devoted to an investigation of 
the energy distribution of the quasiparticles created in 
superconductors by an electromagnetic field, and also 
to the determination of the magnitude of the gap in the 
nonequilibrium stateo In this connection major attention 
is paid to the case when the number of nonequilibrium 
quasiparticles greatly exceeds the number of eqUilibrium 
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particles, and the distribution function nE is not small 
in comparison with unity. Under these conditions nE dif
fers substantially from the quasiequilibrium distribution 
function n~ (i.e., the Fermi distribution function with a 
nonvanishing chemical potential) and, as is shown in this 
article, cannot exceed 1/2. The latter assertion is 
proved under the assumption that the superconducting 
gap 6. is much smaller than the Deby'e frequency wD, 
and well known expressions (Mq - qk; k = 1, 0, -1) are 
used for the matrix elements of the electron-phonon 
interaction. 

The physical reason for the absence of population in
version under these conditions is as followso The quasi
particles produced by the light lose their excess energy 
and recombine at roughly the same rate, since scattering 
and recombination proceed by means of single-phonon 
processes. Therefore, the rate of loss of quasiparticles 
due to recombination and their rate of increase due to 
scattering are approximately the same (the recombina
tion rate is faster for the matrix elements used here) 
and, consequently, nE does not exceed 1/2. 

We wish to emphasize that we are talking about states 
for which the distribution function of the nonequilibrium 
quasiparticles is not small in comparison with unity. In 
the opposite c~se, when nE « n~ « 1, the recombination 
time TR - e6./T is large in comparison with the energy 
relaxation time and one can use the quasiequilibrium 
distribution function to describe nE (but it is necessary 
to remember that nE « 1). The transference of this es
timate to the case when nE is not small, which is made 
by Owen and Scalapino in[3J, is unjustified, as is the 
conjecture about the quasiequilibrium form of the dis
tribution function and the consequences which follow 
from here: About population inversion, concerning the 
specific form of the dependence of the gap on the num
ber of quasiparticles, and so forth. 

We have investigated the kinetic equation for quasi
particles [2J interacting with phonons, found analytic 
solutions for certain cases, and determined the magni
tude of the gap in the nonequilibrium stateo 

2. GENERAL PROPERTIES OF THE DISTRIBUTION 
FUNCTION FOR NONEOUILIBRIUM OUASIPARTICLES 

We shall confine our attention to an investigation of 
the superconducting states at T = O. The kinetic equa
tions and the equation for the gap have the following 
form [2, 4J in the noneq uilibrium state: 
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where M is the matrix element of the electron-phonon 
interaction: 

, n'),. (00, ) • 
M = 2spo -;p; , (3) 

where k = 1 corresponds to an atomic crystal, k = 0 
corresponds to the deformation potential method, wD is 
the Debye frequency, Po is the momentum at the Fermi 
surface, ~o is the gap in the absence of the field, and s 
is the speed of sound, 

The right-hand side of Eq. (1), Q(E), describes the 
interaction of the quasiparticles with the electromagnetic 
field: [2J 

Q(e) =2cd U_(n,_w-n,) -U+ (n,-n".) + V(1-n,-n._,) 1; 
8(8'1=00)- 1'>' 
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V = (e'-I'>')'''[ (0)-8)'-I'>'l'" 8(oo-e-I'»; 

Q = E2e~ol/w2m, where E is the field amplitude, 1 is the 
electron mean free path, and W is the frequency of the 
field. 

The quantity Q(E) only depends on E, i.e., it is an even 
function of ~. Therefore, the distribution function n will 
only depend on the energy and, as a consequence of this, 
the terms which are odd in ~ are omitted from the colli
sion integral in Eq. (1). 

It is necessary to add the condition 
CO> 00 .-A 

S de n,SR(8)= S d8Q(e)= 2a S de Vee) (1-2n,) (5) . . . 
to Eq. (1); this equation is obtained if (1) is integrated 
with respect to energy. The first two terms in Eq, (1) 
describe the scattering of the quasiparticles; S+ refers 
to arrival, S- refers to departure, and the third term SR 
refers to recombination. The recombination term is 
quadratic in nE and small for nE « 1. However, for nE 
~ 1 it is comparable with the first two terms. 

In order to investigate the general properties of nE' it 
is convenient to write Eq, (1) in the following form: 

S+(e)+Q(e) 
n'=S+(8)+S(e)+SR(e) . (6) 

Let us examine nE for E = ~, when nE assumes its maxi
mum value, It is clear from Eq. (6) that n~ is deter
mined by the ratio of S'(~) to SR(~) (S-(~) = 0), The 
quasiparticles produced by the light gather together 
above (below) the gap and occupy a certain energy range 
[~, 'E]. If 'E « wD (which is usually realized), then the 
limits of integration are identical in S+ and SR, and for 
the matrix element (3) with k = 0, 1 the quantity SR(~) 
turns out to be larger than S+(~). The coherence factors 
also increase SR. Thus, n~ < 1/2. 
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To verify this directly, let us calculate S+(~) and 
SR(~) for the function n~, which has the form of the 
Fermi step-function (at T = 0): 

" {1, 8<f1 
fl~ = , 

. 0, e>f1 

where 11 is related to the dimensionless number of quasi
particles n by the equation 

1 ~S en, d. 
u=(I'>'+Ll,'ii')'h, -
.- n=~ (e'-I'>')'/" . (7) 

Precisely such a function was used in the article by 
Owen and Scalapino. [3J We shall assume for simplicity 
that the intensity of the source is not strong, that is, 
IT « 1, so that 

Ll""Llo(1-2ii) , f1-,1'>"'2Lloii'. (8) 

In this case the integrals are easily evaluated: 
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and for the ratio S' /SR we obtain 

S+(I'» 1 (f1-Ll)3 ii' 
-SR(I'» "" 2SY2 -;;- = 22412«: 1, 

(9) 

i.e., the recombination is considerably stronger than the 
arrival term. This means that the distribution function 
is not described by the Fermi function and nE is much 
smaller than 1. 

Therefore, it is necessary to solve the kinetic equa
tion (1) in order to determine ne Below we examine the 
problem separately for the following two cases: 1) A 
"wide source" with frequency W »~o, which produces 
quasiparticles in a broad range of energies, ~ < E < W 

- ~ »~o; 2) a "narrow source" with frequency W - 2~o 

« ~o. 

3. THE CASE OF A WIDE SOURCE 

In this case Q can be omitted from Eq. (1) (that is, in 
the interval ~ < E < 'E « w), and the connection between 
nE and Q can be found from condition (5). Taking Q into 
account in Eq. (1) leads to the appearance of small cor
rections (see below), We shall find the solution of Eq. 
(1) with the matrix element (3) given by the expression 

MZ=;!:....(~) . 
2p,s 00, 

(10) 

After integrating with respect to Wq in Eq. (1) we obtain 

(11) 

We are interested in the distribution of the quasiparticles 
for source intensities such that nE is of the order of 
unity in the interval [~, 'E]. Under these conditions 
'E ~ ~on ~ ~o, but ~ decreases and becomes small in 
comparison with ~o, so that the inequality 

is satisfied. 

(12) 

Equation (11) can be simplified by using relation (12)1) 

-D e II)D 

-(1-n) S n' de'+n S (1-n')de'+n S n' d8'=O. (13) . . 
We introduce the new function: 
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which obeys the equation 
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The solutions for X and consequently for nE have the 
form 

Icl=ii2~02, 
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(15) 

(16) 

(17) 

The dimensionless concentration of quasiparticles is 
found from condition (5): 

(18) 

The maximum value of the function nE (given by Eq, (17)) 
is attained at E = 6 and is equal to 1/2, nE decreases with 
increasing values of E, and it becomes small for E > don, 
as was assumed above, The physical reason for the ab
sence of population inversion lies in the equality (for the 
present model) of the recombination and scattering rates. 

Now let us generalize the obtained results. With the 
aid of Eq. (6) we can trace the dependence of the function 
nE on the specific form of the matrix element ~. It is 
clear from Eq. (6) that for k = 0, 1 the term S+, corre
sponding to arrival, is diminishing in comparison with 
the recombination term SR. Therefore, SR > S+ and the 
distribution function nE becomes smaller than 1/2 at 
E = d,2) If Q is explicitly tak~n into account in Eq. (13), 
Le., if the source 

Q""~t(1-2n,)e(w-e-~), ~t=4a./Jt1., 

is added to the right-hand side, then we obtain 

1 ( e-~ ) 
n, """2 1- 'r (e-M2+4(~on+~.)2l'" . (19) 

instead of expression (17). With allowance for the equal
ity (18) we find 

i.e., f31 is small in comparison with don and can be 
neglected in the approximation we have adopted. 

4. THE SUPERCONDUCTING GAP IN THE 
NONEQUILIBRIUM STATE 

We substitute the function (17) into (2) and obtain the 
following equation for the gap at T = 0: 

"SD de e-~ 
1=1. (e2_~')'/ [(e-~)2+4~o2ii2J'" . . (20) 

This equation enables us to determine the dependence 
of the gap on n, and, consequently, the dependence on the 
field amplitude. We can find the critical value i1c for 
which t. = 0 from the equation 

II.lD de 

1=1. S {e'+4n'~ 2)'1,' 
o ' 0 

It turns out to be given by 
ii,=1/2 • (21) 

In the case n ~ nc (i.e" t. « t.o) the dependence of d on 
n is of the form 

(22) 
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In contrast to the prediction of Owen and Scalapino, (3J 
the gap monotonically tends to zero. This is due to the 

. fact that the difference 1 - 2nE does not change sign 
(also see(5J). 

Now let us estimate the intensity E~ at which the gap 
vanishes. Taking (18) into account we find 

If we assume do R< lOOK, .\ = 0.1, W = 1012 sec-1, Vo 
. = 108 cm /sec, and 1 = 10-5 cm, we then obtain Ec 

R< (1 to 10) v/cm. 

5. THE CASE OF A NARROW SOURCE 

(23) 

If the frequency of the source satisfies the inequality 

(24) 

then at T = 0 the quasiparticles are localized in a narrow 
range of energies, E - do R< W - 2d o« do, In this case 
the recombination rate for M~ ~ q is much faster than 

the scattering rate (see Sec. 2), so the terms S+ and S- in 
Eq. (1) can be neglected. 

Then the equation for nE can be written in the form 

"D , d' , 
en, S-~=~(~) V 8 (8'_~2)''' ,. (8'2_~2)';' 4Jt1. ~ ( ). (25) 

We have set nE = 0 in Q. This approximation is valid for 
a weak field. From Eq. (25) we obtain the following ex
pression for the distribution function: 

n, = ~_~_(~ \ 2 (e2-~')'I'V(e), 
n 16w ~ I 

(26) 

where n is determined from Eq. (5): 

ii' = ~ (~)' w-2~ 
16 ~ 2w 

(27) 

With the aid of Eqs. (27) and (2) we find that the gap is 
given by 

(28) 

One interesting property should be noted concerning 
the nonequilibrium state of a superconductor upon exci
tation by light of frequency W ~ 2d o• As the light inten
sity increases, the number of quasiparticles increases 
and the gap decreases which, in turn, leads to an increase 

- in the number of quasiparticles produced (Since the ef
fective range of the source increases). This may cause 
instability of the state. In fact, let the number n increase, 
then d decreases which leads, in turn, to a further in
crease of n, and so forth, 

An experimental study of the photoexcitation of quasi
particles in nonequilibrium superconductors is described 
in the article by Parker and Williams. [6J The depend
ence of the gap on the intensity which was observed at 
low temperatures is in agreement with expression (28). 
However, the most interesting region, n ~ 1, still re
mains uninvestigated. 

The author is grateful to Yu. A, Bykovskir, V, M. 
Galitskil, and Yu, V. Kopaev for discussion of the work 
and comments, 

llAn analogous equation was studied by V. M, Galitskii and the author 
in connection with an investigation of semiconductors in a strong 
electromagnetic field. 

2lIt should be noted that if k < -I the function n€ may generally be
come larger than 1/2. 
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