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The self-similar motion of a thermal cascade ionization wave induced by laser radiation in a 
transparent solid dielectric is considered. Expresssions are obtained for quantities characterizing the 
front of the absorption wave, including its velocity. The limits of stability of the self-similar solutions 
are established. 

1. It is w€ll known[l,2] that microinclusions that 
absorb laser radiation may lead to the local heating of 
a transparent solid dielectric to temperatures 
T ~ 10 000 deg. The main result of this is the appear­
ance of a local concentration ne of free electrons 
which is sufficient to produce further ionization by 
electron impact. [3] Since the time necessary for a 
change in the local temperature (for the parameters 
considered below) is much greater than the character­
istic times for ionization and recombination, the elec­
tron concentration is determined only by the tempera­
ture, Le., ne = ne(T). For temperatures T,S 104 deg 
the plasma can, at least qualitatively, be looked upon as 
ideal and ne( T) can be estimated from the Saha formula. 
Since the ionization potential J is much greater than the 
plasma temperature, we shall retain only the exponen­
tial temperature dependence exp (-I/T) in all the quan­
tities, where I = J/2. We note that, since we shall have 
to know the temperature in the region where it is much 
higher than the initial temperature of the medium, the 
latter may be taken to be zero. 

In view of the foregOing, the temperature T( r, t) can 
be determined from the following set of equations 

f)T/f)t=x!J.T+g(T, lEI'), (1) 

!J.E+ (ro/c) 'e(T)E=O. (2) 

In these expressions X is the temperature diffusi vity, 
g(T, 1 E12) = (w/81TC)Im E(T)I E12, w is the frequency 
of the laser radiation, C .is the heat capacity per unit 
volume of the dielectric, and E( T) is the permittivity 
which, in the collision-time approximation, can be 
written in the form 

where w exp (-I/T) is the electron plasma frequency 
and 1/ is the frequency of electron collisions. I) 

(3) 

The wave equation for E given by (2) is written with 
allowance for the fact that the velocity of light c is 
much greater than the characteristic velocities of 
propagation of heat. 

Equations (1) and (2) describe the propagation of the 
laser-absorption wave which we assume can develop as 
a result of cascade thermal ionization of the medium 
around the absorbing inhomogeneity. 2) We shall con­
sider time intervals for. which the width of the temper­
ature front is much less than its radius of curvature, 
and will be interested in the region near the intersec­
tion of the direction of propagation of light and the ab­
sorption wave front. The problem is therefore one­
dimensional and, since the function g( T, 1 E 12) is 
proportional to exp (-I/T), it resembles the problem of 
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the thermal propagation of plasma.L IO - ll ] 

2. By analogy with[4,5j we shall seek the solution of 
(1) and (2) which is a function of only the combination 
~ = x + vt, where the positive direction of the x axis 
coincides with the direction of propagation of light and 
the origin of ~ is taken to be the point at which the heat 
source function g( ~) is a maximum. We shall show be­
low that this solution is stable, and will determine the 
region of stability. 

In accordance with the foregOing, we have 

IITo:?> 1, 

where To = T 11;=0. Moreover, we shall suppose, and 
this is confirmed by the result, that the inequality 

(4 ) 

To 11'0', dT I 
-I-~I~I<t:1, ~=-To" To =-d'f; ,~o (5 ) 

is satisfied up to those values of ~ for which the func­
tion g(~) becomes negligible, i.e., 

g(s) <t:g(O). (6) 

In that case exp(-I/T)""exp(-I/To)ef:l~. If we solve 
(2) with allowance for (3) and the boundary condition 
corresponding to the fact that, as ~ - - 00, the incident 
wave is completely determined by the laser flux density 
q, equation (1) assumes the form 

d'T dT 
xdf'- vdf+ g(~)=O, (7) 

where 
(')_ q va' 4j,tsh(nj,t) -.T 'IK ( ) I' 

g ~ -C-c- n e y '. 'lY , 

w'exp(-I1To) 
(()Z+V2 

Henceforth we shall suppose that 

vi O)<t: 1. 

(8) 

(9) 

Equation (7) must be solved subject to the following 
boundary conditions: 

TII __ ~= o,':!!"1 = o. ds I-~ 

The condition for the extremum of the function g( ~ ) at 
the point ~ = 0 yields 

(10) 

In this expression KilJ. is the cylindrical Bessel function. 

From (7) we find T(U and dT(~)/d~. Substituting 
~ = 0 into these expressions, we obtain 

1 0 ~ 

1', =-;- [J dsg(s)+ J dsexp (-~s) g(,) ], (11) 
_~ 0 X 
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1 - v 
To'=-J d~exp( --6)g(~). 

X 0 X 
(12) 

Equations (10)-(12) can be used to determine the un­
knowns To, T~, v and hence the temperature profile, etc. 

From (7) it follows that for points ~ which corre­
spond to (6) and lie on the left of ~ = 0, we have T( ~) 
= (x/v)T'(O. Hence 

~ . 
y" J dxx'-"!K..('1x )!' ~ J dxx!K,.('1x )!' (13) 

• • 
(y = ef3~/2 « 1) where,\, = v/f3x which, together with 
(4)-(6), determines the range of validity of the results 
obtained below. 

Next we consider two limiting cases, one of which 
corresponds to the quasiclassical electromagnetic field 
and the other to the presence of strong reflection from 
the absorption wave front. 

3. The quasiclassical case corresponds to the in­
equality 

fl»1 (14) 

and a 1 (1 - ill/ W )1/21 < 1. Instead of the second condi­
tion, however, we shall demand that the stronger in­
equality a 2 11 - iII/wi « 1 be satisfied which, together 
with (9), assumes the form 

a2~1. (15) 

Using the asymptotic behavior of KiJ..L (1/ef3~/2 ), and as­
suming that (14) and (15) are satisfied, we find that 
equations (10)- (12) assume the form 

f,l(X'V/OO =2, 

To =~ [e-1 + r(1-A, 1)], To' =Lr(1-A, 1), 
vC e xC 

where 
~ 

f(1-A, 1)= J dxx-'e-x 

, 
is the incomplete gamma function. 

Since r( 1 - >." 1) ~ 1/ e( 1 + ,\,), the above set of equa­
tions yields 

and hence 

( TI' )' = qq, elIT" v - g 
- CT,' 

eClvxw' 
qo=---, 

coo' 

T,,,,I/ (In~ -2lnln :'), 

v "'~(ln~-2Inln~), 
IC q g 

~", ~ (~)' i...-In,i'... 
c 00 go g 

4. We now consider the case of strong reflection 
which corresponds to 

(16) 

(17) 

(18 ) 

The first of these inequalities ensures that for ~ ::s 0 
the function KiJ..L( J..LU ep~/2 ) can be replaced by the first 
term of its expansion into a series, and if we use (9) we 
find from (10)-(12) that 

T- 4vq 
,- Cc~v ' 

, 4vq [ 5 J T, =-- 1--(wx)' . 
xCc~ 2 

In this expression C = 0.577. " is the Euler constant. 
Since J..L = 2w/ f3c, the above set of equations yields 
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/( ij. ij,) 
To""'[ Inq--2Inlnq-' 

xoo ( q ) 'I. w ( q )". ij, (19 ) 
v""'6- -

c ijo ' ~ "'" 5 - -::- In - , 
c q, q 

where qo"; 6CxI;;J2/ IIC. 

5. We now consider the stability of the above solu­
tions. To do this, we must, as usual, add a small per­
turbation to the above solution of (1) and (2), i.e., write 

T(~.t)=T(S)+T(s)e-P', E(s, t)=E(s)+E(s)e-·'. 

The stability problem then reduces to the determination 
of the range of the parameters of the problem, where 
the set of equations given by (1) and (2) after lineariza­
tion in T( 0, E( ~) does not have eigenvalues p whose 
real part is negative. By eliminating E(~) from the 
above set of equations and substituting T( ~) 
= exp{ v~/2X}ZP(~), we obtain 

(20 ) 

In this equation 

F(s e)_ (s) [ {6(s n 4 00 ' ,( T(~) )' 
,~ - g T'(s) - -?i\a T(s') 

[ , v ( ') J [K,.('1Y') [ x exp ~~ - 2r. s-~ Re K,.('1Y) L,.('1y)K,.('1y')e(6'-s) 

+ K'.('1y)L.('1y')e(s-G'j J n, 
where g(O is given by (8), 8(x) = 1 for x> 0 and 
8(x) = 0 for x < O. Equation (20) resembles the 
Schroedinger equation with a nonlocal, non-Hermitian 
potential. The stability of the 'self-similar' state may 
be violated only by bound states. It will be confirmed by 
the ensuing calculations that (20) corresponds to the 
case of a small well in which only one bound state can 
be present. Proceeding as in the case of the local po­
tential, [12] we obtain the following expression for the 
bound-state eigenvalue: 

:l i - - z 
P=T-'4 [SdsJ ds'F(U') ] . (21) x x _~ _00 

Let us begin by conSidering the semiclassical case. 
Using the quasiclassical expressions for the Bessel 
functions in the kernel F( ~, n of (21), and recalling 
that the function g( ~) has a sharp maximum at ~ = 0, 
we obtain 

v' [ e' ( a' I )'] P""t;;: 1-'4 1--;;-r;- . (22 ) 

It follows from (21) that eigenvalues p < 0 are absent 
and, consequently, the above state is stable for light 
flux intensities greater than 

gcrit ""(e-2) (~)' g,/In' [ (00/00)' In (w/oo)'], (23) 
00 e-2 e-2 

which is obtained from the condition p = O. In deriving 
(23) we used the expressions given by (17). 

We note that for light flux intensities for which re­
flection becomes important, the above state can be 
shown to be stable, as before. 

In conclusion, we estimate the critical intensity 
qcrit and the characteristic values of To, v and p. In 
(16) we let C ~ 1 cal-deg- 1 cm-\ I"" 40000 deg, 
II ~ 10 14 sec-\ X ~ 0.01 cm 2 sec-\ and w/ w ~ 10. Equa­
tion (23) then yields qcrit ~ 105 W/cm 3 • From (17) we 
have for q ~ qcrit. To~ 6000 deg, v ~ 10 cm/sec, and 
p ~ 1000 cm- l . 
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In the case of strong reflection and q ~ 108 W/cm 2, 

W ~ 10 '6 sec-" and will ~ 10, we find from (19) with the 
above values of the parameters that To"" 10000 deg, 
v ~ 1000 cm/sec, and j3 ~ 105 cm-1. 

We note that, for the above values of the parameters, 
the inequalities (4)-(6), (13)-(15), and (18), whose 
validity was assumed in the solution to the problem, are 
in fact fully satisfied. 

The authors are indebted to A. M. Bonch-Bruevich 
and Ya. A. Imas for constant attention and support, and 
also to S. 1. Anisimov, A. A. Kovalev, and 1. P. Perst­
nev for useful discussions. 

I)In general, the permittivity e(T) will also depend on the self-focusing 
field. However, we shall consider values of E and times of laser opera­
tion for which the phenomenon of self-focusing is usually not ob­
served. 

2)A similar problem for the gaseous phase was considered in [4-6]. We 
note also that different regimes of propagation of the laser-absorption 
wave in gases have been investigated by many workers [7-9]. 
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