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A model of the electronic properties of disordered systems of the "liquid-semiconductor" type is 
proposed. The one-electron Green's function is obtained and leads to a density of states with the 
characteristic "pseudo-gap" in the energy range corresponding to the forbidden band of the crystal. 
The dielectric properties, conductivity, and optical absorption are considered. Electron localization of 
the Bragg type is obtained, together with the analog of interband absorption in an ideal 
semiconductor. The dielectric properties of the model considered turn out to be intermediate between 
those of typical metals and insulators. It is noted that the results obtained can be applied to 
interpret the properties of quasi-one-dimensional systems (of the TTF-TCNQ type) near the Peierls 
structural transition point. 

INTRODUCTION 

In recent years interest has grown in both the theory 
and the experimental studies of the electronic properties 
of different disordered systems [lJ. In particular, great 
attention has been paid to the experimental study of melts 
of most of the known semiconductors (see the re-
views [2-4J ). It has been found that semiconductors can 
be roughly divided into three groups, according to their 
kinetic properties in the liquid state. 

The first contains substances of the type Ge, InSb and 
other AmBy, which, on transition to the liquid state, 
give melts with purely metallic properties. Evidently, 
this is connected with the fact that, in these substances, 
not only the long-range order but also the short-range 
order corresponding to the given crystal is destroyed on 
melting. The second group is formed by substances of 
the type PbTe, SnTe, PbSe, In2Te3, Ga2Te3, etc., which 
are typical semiconductors in the crystalline state. On 
melting, their electrical conductivity, in absolute magni
tude and in the temperature dependence, has practically 
the same behavior as in the corresponding crystal. The 
sign of the thermoelectric power, as a rule, indicates 
p-type conductivity. In the Hall effect, however, they dis
play typically metallic properties: the Hall constant is 
almost independent of temperature, its sign corresponds 
to n-type conductivity, and in absolute magnitude it is 
slightly greater than the value for a metal with two free 
electrons per atom. Thus, these substances, which are 
usually called "liquid semiconductors," form a group 
intermediate between typical metals and semiconductors. 
To all appearances, their properties can be considered 
in the framework of the nearly-free electron approxima
tion, with allowance for strong scattering of the "Bragg" 
type in the energy range COinciding with the forbidden 
band of the corresponding crystal. Finally, the third 
group is formed by substances of the type GeS, SnS, etc., 
with very low electron mobility, which, evidently, must 
be treated in the approximation of tight binding of the 
electrons to the ions. 

In this paper we propose a simple model that makes 
it possible to understand qualitatively the appearance of 
the distinctive type of "band structure" in the energy 
spectrum of substances of the second group, which ap
pears in the form of a characteristic "pseudo-gap" (of 
the type assumed in the work of Mott and other au
thors [lJ) in the density of electron states. Also consid
ered are the dielectric properties, high-frequency con-

845 Sov. Phys.-JETP, Vol. 39, No.5, November 1974 

ductivity and optical absorption. The "quasi-one-dimen
sional" character of the model permits us to hope that a 
considerable proportion of the results obtained below 
can be applied to describe the properties of one-dimen
sional systems (of the TTF-TCNQ type) near the Peierls 
structural transition point. 

1. THE ONE-ELECTRON GREEN FUNCTION 

We write the Hamiltonian of the interaction of an 
electron with the ions in the form 

where 

(1.1) 

is the Fourier component of the ion density (Rt are the 
positions of the ions and N is their total number), 
(p + qlYlp) is a matrix element of the (generally speak
ing, nonlocal) ionic pseudo -potential [5J , and ap and ~ 
are electron operators in second quantization. 

We introduce the one-electron Green function in the 
Matsubara temperature technique: 

G (p.) ~-<T,ap( 't")ap + (0). (1.2) 

and also the Green function of the ion subsystem: 

F (q't") ~-<T,p. (.) P. + (0). (1.3) 

For the Fourier transform of (1.3) we have the spectral 
representation [6J 

~ A( ') 
V( )~Sd'~ r qWm (j). I , 

_oc lO>m-O) 
(1.4) 

where wm = 2mn T (T is the temperature), 

and m and n label the exact level of the ion subsystem. 

Next we introduce the dynamical form factor of the 
liquid [7J 

S(q{J))~Z-I~I(P.)mnI2exp[- ~·](H{J)-wm.). (1.6) 
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Comparing (1.5) and (1.6), we see that 

A (qw) =S(qw) (1_e- w/ T }. (1. 7) 

The simplest contribution to the electron self-energy 
part has the form 

2:(enP)= N~ .~)<p+qIVlp)I' L,F(qw m ). . 1 , 
lEn+ZWm-f,p+. 

q m 

en =(2n+1)nT, sp=p'/2m-l1. (1.8) 

We note that the characteristic energies of the ionic 
excitations (the frequencies at which S(qw) is nonzero) 
satisfy, in the liquid, the condition w/T <t: 1, whereas we 
are interested in the electron spectrum in a substantially 
wider range of energies <: T. This enables us to neglect 
the effect of the dynamics of the ion subsystem, i.e., to 
t.ake into account only the terms with m = n in (1.6): 

S(qw)~S(q)6(w), 

1 ~ 

S(q)=-S dwS(qw), 
N. 

(1.9) 

(1.10) 

where S(q) is the static structure factor of the liquid [7J. 
Using (1.4)-(1.7) and (1.9) in (1.8), we obtain the static 
approximation 

1 ~ 1 
2:(enP)""-~ l<p+qIVlp)I'S(q) . . 

N ,en-SPH (1.11) 
q 

This approximation was used by Edwards in his well
known papers [8J. The averaging he used, over all possi
ble ion configurations, is contained implicitly in the 
definitions (1.5) and (1.6), in which averaging over the 
canonical ensemble of the liquid is performed. 

The static structure factor S(q) is determined experi
mentally from data on the elastic scattering of x-rays or 
neutrons. Its typical behavior in a liquid is represented 
in Fig. 1. 

First we shall consider a one-dimensional model of a 
liquid. We shall model the structure factor by two nar
row peaks at q = ± K, this being the natural analog of 
Fig. 1 in the one-dimensional case. We shall assume 
that the Fermi level of the free electrons passes through 
the degeneracy points of their spectrum, at which Bragg 
gaps are formed in the case of an ideal periodic struc
ture (see Fig. 2). We therefore take 2PF = K, where PF 
i.s the Fermi momentum of the free electrons. The latter 
condition is typical for "liquid semiconductors" [4J , 
K being the analog of the reciprocal-lattice vector of the 
ideal crystal. 

From (1.11) we have (L is the length of the system) 

L S dq 2: (enP) = Ii 2,;' I <p+qlVlp) I'S(q) {ien-sP+q}-''''' (1.12) 

""A '{ien-sp-K}-'+ A '(ie n-Sp+K}-', 

L S dq A'=1i 2,;'1(p+qIVlp)I'S(q). (1.13) 

Here we have made use of the characteristic structure 
of S(q), with two narrow peaks at q = ±K. 

It is not difficult to convince oneself[9J that correc
tions for the finite width of the peaks are small if the 
conditions 

1 
'Y .. -<lp-p,1 or vF 'Y<2nT, 

R, 
(1.14) 

are fulfilled, where y is the width of the peaks, vF is the 
Fermi velocity of the free electrons, and the parameter 
Re, defined in (1.14), in the one-dimensional case plays 
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the role of the correlation length of the short-range 
order. 

From Fig. 2 the following symmetry properties of the 
free-electron spectrum in the one-dimensional case can 
be seen: 

(;P-K=-SP for p-+KI2 

SP+K=-sp for p--KI2. 
(1.15) 

Then,considering the electron with p ~ +K/2 (the treat
ment of p ~ -K/2 is analogous), we may take into account 
only the first term in the right-hand side of (1.12): 

(1.16) 

Thus, the use of the characteristic form of the liquid 
structure factor makes it possible to replace the real 
interaction I(p + qlVlp) 12S(q) in the liquid by the model 
interaction 21TNL-1A 2li(q - K). Then, the remaining per
turbation 

jf'(q) = I (p+ql Vip) I'S(q) -2nNL-'A'/j(q-K) 

is unimportant, if the treatment is confined to the region 
specified by the conditions (1.14). It should be empha
sized that the introduction of this model interaction does 
not imply the introduction of long-range crystalline 
order. The analysis is performed under the assumption 
of a microscopically homogeneous liquid, and the condi
tions (1.14) impose a restriction in the sense that the 
correlation length of the short-range order should be 
sufficiently large. The presence of long-range order 
entails the appearance of "anomalous" Green functions, 
which describe Umklapp processes (10J and substantially 
alter the structure of the equations. 

With the model interaction introduced above, we can 
now sum all the important diagrams. It is not difficult to 
see[9J that, in each order of perturbation theory, dia
grams with an alternating sequence of Green functions 
{iEn - ~p}-l and {iEn + ~p}-l (we are considering p ~ K/2) 

and an alternating sequence of vertices with incoming or 
outgoing interaction lines transferring momentum ± K 
give equal contributions (see Fig. 3). The general term 
in the expansion for the Green function then has the form 

where A2 is defined by (1.13), n is the order of perturba
tion theory in A2, and z(El~p) = A2GO(El~P)GO(El; -~p). 
The factor nl arises from simple combinatorial consid
erations. In fact, there are 2n points to which interaction 

JIDR 
P p-K P p-K P p-K P 

FIG. 3 
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lines are attached. Of these, n points have an outgoing 
line, which can enter the remaining n free vertices 
(corresponding to incoming lines) in any of n! ways. We 
shall use the identity 

(1.18) 

Then the one-electron Green function is 
w _ 

~ S ie,+~. 
G(e,p)= L.; gn(e,p)= d~e-c (iE,)2_~P'-~A' ",,<GCA'(E,pp»C, (1.19) 

where 

(1.20) 

is the normal Green function of an ideal semiconductor 
with energy gap 21AI, and 

w 

< .. ·>c= I d~ e-' ... 

is a particular type of averaging over the "fluctuations" 
of the energy gap. Thus, the model considered for the 
disordered system is equivalent to an ensemble of ideal 
semiconductors, in the spectrum of which the energy gap 
takes random values, with a distribution of a special 
form, 

Performing the analytic continuation to real frequen
cies in the usual way, we obtain the retarded (or ad
vanced) Green function. The density of electron states 
can be found from the formula 

N W 

N(e)=--; I ds.lmGR(es.), (1.21) 

where No is the density of free-electron states. From 
(1,19) we have 

1m GR. A (e, s.) = 'Fn I d~ e-C (e+s.) II (e2-s.'-~') 
o 

(1.22) 

and the density of states is 

. 
Erfi(x) = J dxe"' (1.23) 

• 
is the error function of imaginary argwnenL The den
sity of states (1.23) is represented graphically in Fig. 4. 

We have thus obtained a "pseudo-gap," of the type 
proposed in the nwnerous papers of Mott and other au
thors in order to interpret the properties of "liquid 
semiconductors." The width of the pseudo-gap is equal 
in order of magnitude to the width of the forbidden band 
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of the corresponding crystal. The asymptotic behavior of 
(1.23) has the form 

N(e) _ {1 if lel- 00 

No 2e'IA'-0 for lei-D. (1.24) 

We emphasize that the Green function (1.19) has no 
pole singularities in the vicinity of the "Fermi surface" 
and, in this sense, does not describe the spectrwn of the 
elementary excitations in the region of energies corre
sponding to the pseudo-gap. The first of the conditions 
(1.14) indicates that the formulas obtained are inapplica
ble in the immediate vicinity E ~ 0 of the Fermi level. 
For Re <: 20a, where a is the interatomic spacing, this 
limitation is extended to the region I ~pl :s; 0.05 EF (EF 
is the free-electron Fermi energy), which, for typical 
IAI ~ (0.1-0.2)EF amounts to approximately (1/4)-(1/8) 
of the width of the pseudo-gap. The situation is im
proved with increasing Re, but the vanishing of the den
sity of states in the middle of the pseudo-gap raises 
doubts. Moreover, for "liquid semiconductors" the esti
mate T ~ IAI is typical, so that the second condition 
(1.14) is already fulfilled when Re <: lOa. 

The generalization of the results obtained to the 
three-dimensional case encounters certain difficulties. 
In particular, if in (1.11) we make use of the usual 
local-pseudo-potential approximation, then, on integra
tion over the polar angle between the vectors p and q, 
there arises a characteristic logarithmic expression for 
the self-energy part [8, 11-13J, which is considerably less 
singular than (1.12) in the energy region of interest and 
leads only to weak changes in the density of states as 
compared with the case of free electrons. It was pointed 
out by Ziman [13J that, under certain assumptions con
cerning the higher correlation functions of the ions (in 
particular, the four-ion correlation function), contribu
tions to the electron self-energy part that have a "one
dimensional" form of the type (1.12) can appear. Without 
denying this possibility, we should like to remark that 
these assumptions are too stringent, the more so be
cause, at present, no theoretical or experimental me
thods exist that permit one to find the higher ionic 
correlators in the liquid. Incidentally, it turns out to be 
sufficient to impose only one condition on the ionic 
pseudo-potential (based essentially on its nonlocal na
ture) in order to obtain a result of the type (1.16) in the 
three-dimensional case. The matrix element (p + qlVlp) 
of a nonlocal pseudo-potential depends not only on Iql, 
but also, in the general case, on IPI and Ip + ql, i.e., it 
depends also on the mutual orientation of the vectors p 
and q [5J. It then turns out that, in the region Iq I ~ 2PF 
of interest, the pseudo-potential corresponding to 
"almost-backward" scattering is considerably greater 
than for scattering through small angles [5, 12J. 

A typical dependence of the matrix element 
(p + qlVlp) (IPI ~ PF' Iql "'" 2PF) on the scattering angle 
is shown in Fig. 5. We shall assume that for the sub
stances in which we are interested there is a sharply 
pronounced peak in the pseudo-potential in the region of 
scattering angles 8 ~ "IT. Then, from (1.11) we obtain 
(no is the volume per atom) 

~( )-Q I~ d 2 1 II dcos81<p+qlVlp>I'S(q) -A'{· }_I 
enP - 0 q q 4n' ie _~ - ,en-~IPI-I"I , 

o _I n 'oIPHI (1.25) 

and the problem reduces to a one-dimensional one, 
Here, 

W 1 I 

A'=QoJ dq q'- JdcoS el<p+qIVlp>I'S(q). 
4n' 

o _I 
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We assume that the conditions (1.14) are fulfilled and 
that the integration over cos e is effectively cut off in 
the interval 

(1.27) 

about e ~ 1T; this singles out a narrow cone, correspond
ing to the dominant role of the backward scattering. For 
Ip - PFI ~ 0.05PF we have loe I ;:; 0.22. Therefore, in 
the three-dimensional variant of our model the real 
interaction I(p + qIVIP)1l(q) is replaced by the model 
interaction 

4n' 
K'Qo A'I>(q-K)I>(cos8H). 

The remaining perturbation 
4n' . 

X'(q, 8) = I <p+ql Vip) I'S(q) - --A'I> (q-K) 1\ (cos 8+1) 
K'Qo 

leads to the appearance of the above-mentioned weak 
renormalizations of the density of states. It is not diffi
cult to see that, in the three-dimensional case, in place 
of (1.15) we have 

(1.28) 

The subsequent treatment coinc~des with (1.17)-(1.23), 
and all the formulas remain valid for the three-dimen
sional system too. 

2. THE VERTEX PART, POLARIZATION OPERATOR 
AND DIELECTRIC FUNCTION 

It is of interest to study, in the model under consider
ation, the properties of the vertex part describing the 
response of the system to an external electromagnetic 
perturbation. We have the folloWing expression for the 
variation of the one-electron Green function on introduc
tion of a weak external field(6]: 

W(ep) 
G(ep)J·(epe+wp+q)G (e+wp+q), (2.1) 

M.(qw) 

where oAJ.L (qw) = {oAqw; -OIPqw} is the variation of the 
external field and JJ.L(qle: + wp + q) is the required vertex 
part. In this case we have for the free Green function: 

1\Go(ep) 

M.(qw) 
Go (ep)Jo·(epe+wp+q) Go (e+'wp+q), 

where the free vertex 

{ -ep/mc, 
J.·(epe+wp+q) = 

e, 

(2.2) 

(2.3) 

In the model considered, the variational derivative (2.1) 
can be calculated directly. In fact, from (1.17)-(1.19) 
we have 

I>G(ep) 

M.(qw) 

I> ~ 

M.(qw) {< r, [~z(ep) In) ,G,(ep) } 
n_O 

< L.~ r,~ I>z(ep) 
= [~z(ep)lm-l~ ( [~z(e+wp+q)ln-m 

1\A. qW) 
11=1 m=l 

r,- I>Go(ep) ) 
XGo(e+wp+q)+ [~z(ep) In , 

IIA.(qw) , ._0 (2.4) 

since o G(e:p)/O AJ.L (qw) is obtained from the set of dia
grams of the type shown in Fig. 3 by inserting external
field lines into any of the electron lines in Fig. 3 (see 
Fig. 6a). In (2.4), m is the label of that block z(EP) of 
Fig. 6a into which the external-field line enters. Using 
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~ 
if Ep-K Ef Ef-K : !+(J t+fIJ £+., £+UJ 

:p-K+¥ rq p-K+~ 1''1 
: '161 

tfz 
tfAI' = 

FIG. 6 

LJK 
Ep £ : £+61 

f-K:P-K+'1 
'qtrJ 

b 

(2.2), it is not difficult to convince oneself that (see Fig. 
6b) 

I>z(ep) 
Go(ep) Jo"(epe+wp+q)z (e+wp+.q) 

M.(qw) 

+z (ep)lo"(ep-Ke+wp-K+q) Go(e+wp-K+q). 

Substituting (2.2) and (2.5) into (2.4), after certain 
transformations we obtain 

1\G(ep) 
_-:-'''-:- = Jo"(epe+wp+q) Go (ep) Go(e+wp+q) 
M.(qw) 

x < t ~nzn(ep) t ~mzm (e+wp+q) ), 
._0 m_O (2.6) 

1 ~ ~ 

+Jo"(ep-Ke+wp-K+q) < ~r, ~nzn(ep)[, ~mzm(e+wp+q» , ' 
n=1 m=l 

which reduces immediately to 

1\G (ep) Jo"(epe+wp+q) <G~A.(epp) G~A.(e+wp+qp+q) >~ 
M.(qw) 

+Jo"(ep-Ke+wp-K+q) <G~A.(epp-K)G'A.(e+wp-K+qp+q) >" (2.7) 

where GA2 (EPP) is defined in (1.20), while 

A 
GA.(ienPp-K) = + (ien) '-s.'-A ' (2.8) 

is the anomalous Green function of the ideal semicon
ductor, describing the elementary Umklapp process 
p -p-K. 

We see that, in the model considered, the electro
magnetic response is described by the same formulas 
as in an ideal semiconductor of the excitonic-insulator 
type, but with a fluctuating energy gap. Finite expres
sions arise, associated with pair products of anomalous 
Green functions, while the average (of the type (1.19)) of 
(2.8) is absent, corresponding to the absence of long
range order in the system. The model interaction intro
duced above is the direct analog of the Bragg scattering 
in the ideal crystal and is responsible for the formation 
of the distinctive kind of band structure (the pseudo-gap) 
in the electron spectrum. However, like the scattering 
in the ideal crystal, it is insufficient for a correct des
cription of the kinetics, for which we must take into ac
count the dissipative scattering (the analog of defects and 
phonons in the crystal) associated with the discarded part 
of the real interaction. 

We now turn to consider the dielectric properties of 
our system. Since the polarization operator is directly 
related to the scalar vertex, from (2.7) we have 

• d' 
n(qwm) = -2 S d~ e-'T r, s (2:)3 (G,A.(enPp)G,A.(en+Wmp+qp+q) 

o n 

Summing over the Matsubara frequencies in the stan
dard manner and performing the analytic continuation 
iWm - w + io, we obtain C14] 
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i.e., the polarization operator of an ideal semiconductor. 
Here Ep = (~~ + A2)1/2; f(Ep) = {exP(Ep/T) + 1}-1 is the 

Fermi distribution function. 

As A2 - 0 the second term in (2,10) tends to zero, 
while the first gives the usual polarization operator of 
the electron gas. On the other hand, for T - 0 but A2 
f. 0, the first term in (2.10) vanishes, so that 

1 S d'p E,E'H-~.~p+.-A' 
IIA .(qoo)=-2 (2_)' E E 

" • PH 

(2.11) 

x{ 1 + 1 }. 
E.+EpH+oo+il5 E.+E.H-oo-il) 

The dielectric function is 

(2.12) 

where 

(2,13) 

is the dielectric function of the ideal semiconductor, 

We shall consider first the case W = 0, For vFq 
« IAI we obtain from (2.11) 

so that 

eA' (qO) =1 +v?x'/18A '=1+oo.'/6A', (2.15 ) 

where K2 = 4mPFe2/1T is the square of the inverse Debye 
screening length and w~ = 41Tne 2/m is the square of the 
plasma frequency (n is the total electron density). 

On the other hand, for vFq » IAI it follows from 
(2.10)-(2.11) that 

IIA , (qO) =cmpF /n'=x'/4ne>, (2.16) 

so that 

eA.(qO) =1 +x'/q', (2.17) 

i.e., we have the usual Debye screening. 

We shall use the simplest interpolation from (2.15) to 
(2.17) : 

x' 
eA·(qO)=l+ q'+'18A'lv/ (2.18) 

Then for our model of a disordered system we obtain 

S• v 'x' ( v 'q' ) ( v" ) e(qO)= d~e-CecA.(qO)=l--P-exp _P- Ei -~. (2.19) 
f8A' 18A' 18A' ' 

o 

where Ei(-x) is the integral exponential function. For 
vFq » IAI we use the asymptotic form 

Ei(-a;) "'" -e-xlx 

and obtain (2.17). For vFq « IAI we use 

Ei(-x) -Inx, 

so that 
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Correspondingly, the effective Coulomb interaction 
takes the form 

r «10) ",4ne'l q', 

_, '/( v/x' V;q') e =e 1---1n--
18A' 18A" 

(2.21) 

(2.22) 

which formally resembles the well-known "zero-charge" 
situation in field theory. Behavior of the type 
(2.20)-(2.22) has been obtained recently in a treatment 
of the so-called zero-gap semiconductors [15J • 

We turn to the analysis of the case W f. 0, v~ « IAI. 
From (2.11) we have 

(2.23) 

(2.24) 

We first consider the real part of the dielectric func
tion. From (2.23) we obtain 

For W - 0 (w «2IAI), (2.15) follows naturally from this. 
For w »21AI we obtain the plasma limit: 

(2.26) 

We shall use the simplest approximation: 

ReeA,(oo)=1+~e(1-~)- oo p
' e(~-1). (2.27) 

6A' 4A' 00' 4A' 

Then, from (2,12), 

00' ( 00') 00' Ree(oo)=1--P Ei -- -_p_{1-e-o'I<A'} 
oA' 4A' 00' • (2.28) 

From this, for w »2IAI, the plasma limit (2.26) fol
lows. For w « 21AI we obtain, analogously to (2.21), 

(2.29) 

We emphasize that the qualitative behavior of Re E(W) 
turns out to be practically independent of the method of 
interpolation in the formulas of the type (2.19) and (2,27). 
We can combine (2.20) and (2,29) by writing a single ex
pression, valid with logarithmic accuracy: 

, {2.' '} 
R ( ) 1 OOp I max 00 ,VP q 

e e qoo "'" - 6A' n 4A' . (2.30) 

This result is valid only for W «2IAI, v~ « IAI. The 
interpolation formula (2.28) describes the entire fre
quency interval. One can easily convince oneself that 
Re E(W) given by (2.28) has no zeros other than the 
plasma zero, which arises in the limit W »2IAI. 

The behavior of the imaginary part of the dielectric 
function is of special interest, since it determines, in 
particular, the optical absorption in the system. The 
absorption is determined by the real part of the conduc
tivity, which is related to 1m E(W) as follows: 

(2.31) 

From (2.11) and (2.12) we obtain 
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nne' - - ~A' 
Ime«i)=4~f d~e-'Jdsp (sp'+~A')' 

X{ Il[; -(s.'+~A')'''1-Il[; +(s.'+~A')"n 
ne' IA I .'/..... ~ 

= 2n'--;;--;;- S d1; e-' «i)'/4A'-1;)'" 
o 

( i) )'IAI { (i)'}{(i)' d} (!) 'I =n -p -exp -- --- Erfia."·-- . (2.32) (i) w 4A' 4A' da. 21AI "~l 

Corre sponding ly, 

ne' IA I { W'}{ w' d} w 'I' Heo(w)=n--exp --, -, -- Erfia."'-I-I . 
mw w 4A 4A da. 2 A "~I 

We have the following asymptotic behavior for 
W ?> 2jAj: 

ne' (A )' Heo(w)""-n - . 
mw w 

For W « 2jAj, 

1m e (w) ""nw.'/6A', 

for w-+O. 

(2.33) 

(2.34) 

(2035) 

(2.36) 

(2.37) 

The static conductivity in our approximation vanishes, 
indicating a particular type of Bragg electron-localiza
tion. Analogously, the static conductivity of the ideal 
semiconductor at T = 0 equals zero. We have obtained 
the analog of the usual interband absorption. In addition 
(2.36) shows that our model describes a substance in
termediate between a metal and an insulator: in a metal 
1m E(W) IX l/w, and in an insulator 1m E(W) = 0 for W = O. 
In our case, 1m E(W) has a finite discontinuity at W = 0 
(1m E(W) = -1m E(-W)). 

It should be noted that, generally speaking, in view of 
the fact that the entire treatment is invalid (in the sense 
of the first of the conditions (1.14)) near the center of 
the pseudo-gap, when E ~ ~p ~ 0, our formulas are not 
valid in the region of low frequencies. Therefore, the 
calculation performed for the polarization operator is 
valid, clearly, only in the region of sufficiently high fre
quencies: 

(2.38) 

where y and Rc are defined in (1.14). For Rc <: 20a, we 
are concerned with frequencies greater than or of the 
order of (1/4)-(1/8) of the width of the pseudo-gap. The 
condition (2.38) has a clear meaning-in the characteris
tic time of variation of the external field the electron 
moves over a distance less than Rc' Naturally, allow
ance for the finite temperature will also change the 
asymptotic behavior of E(qW) for small q and w, because 
of the appearance of excited carriers in the "upper 
band". 

In conclusion, we note that the model considered and 
all the results obtained above can be used in the analysis 
of the properties of one-dimensional systems (of the 
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TTF-TCNQ type) undergoing a Peierls structural tran
Sition, since the strong fluctuations of the order param
eter in the one-dimensional case make such systems 
similar in a certain sense to "liquid semiconductors" [16J. 

Inasmuch as Rc in this case can reach hundreds of inter
atomic spacings, and the temperatures are sufficiently 
low, the region of applicability of the theory is substan
tially broadened. 

The author expresses his deep gratitude to L. Y. 
Keldysh, E. G. Maksimov and D. I. Khomskil for numer
ous discussions and valuable comments. 
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