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The formalism developed earlier by the present authors is applied to the analysis of energy losses of 
fast charged particles passing through crystals under channeling conditions. The problem is reduced 
to the solution of a Fokker-Planck-type equation in the space of the transverse momenta and 
transferred energy. Analysis of the stopping power and the energy straggling coefficient shows that 
for deep subarrier states these parameters are largely determined by scattering by valence electrons. 
For low-lying states above the barrier, these two quantities tum out to be appreciably greater than 
the corresponding values in a random medium. It is shown that the form of the energy distribution 
is, to large extent, determined by the character of diffusion escape of particles from the channel. The 
solution of the problem obtained for the case of planar channeling reproduces all the details of the 
energy distributions of particles obtained experimentally so far. 

1. INTRODUCTION 

In previous papers [1, 2J (subsequently referred to as 
I and II, respectively), we were concerned with the quan
tum theory of the channeling effect and considered the 
evolution of the spatial distribution of fast charged par
ticles penetrating a crystal. It was shown that a plane 
wave incident on the crystal (when the linear size of the 
collimated spot was much greater than the interatomic 
distance) was transformed on the boundary as a result of 
coherent diffraction into a set of Bloch functions which 
then propagates over a distance L < Leoh without ap
preciable loss of coherence due to inelastic scattering. 
The description of the transverse motion of the particles 
over lengths of this order was based on the Schrodinger 
equation and the analysis of the corresponding quantum 
effects (cf. 1)0 

The quantity Lcoh which characterizes the attenua
tion thickness for the nondiagonal elements of the parti
cle density matrix due to inelastic scattering by phonons 
and electrons was determined in II. For protons with 
energies of the order of a few MeV, it was found to be of 
the order of a few thousand Angstroms. The vanishing of 
the nondiagonal elements of the density matrix leads to a 
peculiar symmetrization of the state for L > Lcoh which 
precedes the angular spreading of the particles out of 
the channel (for further details see II). The subsequent 
evolution of the angular and energy distributions of the 
particles is then described by an integro-differential 
equation for the diagonal elements of the denSity matrix, 
i.e., for the particle distribution over the different 
states. The transition probabilities in the collision in
tegral are then determined for the Bloch functions des
cribing the transverse motion of the particles in the 
course of channeling. The motion of the particles inside 
and outside the channel is thus naturally taken into ac
count in this integro-differential equation. 

The solution of this equation, which describes the 
angular distribution of particles apart from the depend
ence on the energy lost by them (distribution integrated 
over the energy), was considered in IIo In this paper, we 
use the same general equation to determine the energy 
distribution of the particles as well, and consider the 
evolution of this distribution with increasing crystal 
thicknesso In contrast to the previous problem, we can
not now transform to the distribution integrated with 
respect to the angles because of the spatial inhomogene
ity of the energy loss, which appears in the presence of 
channelingo On the other hand, the character of the dif-
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ferential angular distribution of the particles plays a 
determining role in the distribution of the energy losses, 
which becomes very sensitive to the diffusion of parti
cles out of the channeL This predetermines the neces
sity of finding the general distribution of the particles, 
both with energy and with the angles which, in turn, leads 
to difficulties not encountered in the usual theory of en
ergy losses in random media. 

For angles of incidence less than the channeling angle 
~o, the physics of the situation can be described as fol
lowso For L > Lcoh' the angular distribution splits into 
two beams after the nondiagonal elements of the density 
matrix have been damped out. In the first beam, the par
ticles are found in sub-barrier levels inside the channel, 
whilst in the second beam they occupy states lying above 
the barrier near the apex of the potential barrier (in the 
simple classical picture this corresponds to the splitting 
of the beam into the channelled and random components 
when they enter the crystal [3J). Since the wave functions 
for the sub-barrier states decay exponentially through 
the potential barrier in the direction of the equilibrium 
position of the crystal atoms, the energy losses for par
ticles in deep sub-barrier levels are connected largely 
with the excitation of valence electrons and partly with 
the so-called distant collisions accompanied by the exci
tation of electrons in the inner atomic shells. This re
sults in a reduction in the stopping power (as compared 
with the amorphous medium) by a substantial factor (the 
corresponding experimental analysis is given by Apple
ton et al.). [4J 

Multiple scattering in the channel, which is equivalent 
to slow diffusion in the space of transferred momenta, 
leads to the population of increasingly higher-lying en
ergy states, and hence to an increasing stopping power, 
because of the slower decay of the wave functions and the 
reduction in the thickness of the potential barrier, which 
is particularly important when the oscillations of the 
atoms are taken into account. If we recall the sharp peak 
exhibited by the wave functions for the low-lying sub
barrier states in the region where the atoms are located 
(see I for further details), we must conclude that, as we 
leave the channel, the stopping power becomes greater 
than in the case of the amorphous medium (Kumakhov[5] 
has drawn attention to this point)o Because of the strong 
diffusion in the region outside the channel, the particles 
rapidly leave the sub-barrier region and are slowed 
down in the usual way, well known for amorphous media. 
The situation observed for particles which have left the 
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channel will, of course, also be observed for particles 
which are found in states above the barrier for 
L > Leoh' 

It is shown in IT that the dechanneled particles may 
again be captured into the channel (in principle, within 
an appreciable angular distance from the center of the 
incident spot) where, after an appreciable time dictated 
by slow diffusion in the channel, their energy losses will 
be small although the resultant losses for such particles 
will be substantially greater than the losses experienced 
by particles diffusing in this region without leaving the 
channel. On the other hand, particles which have rapidly 
"crossed" the channel as a result of the coherent influ
ence of the medium (see II for further details) exhibit 
the energy losses characteristic for the region outside 
the channel. The result of all this is a peculiar energy 
distribution which is very different in different direc
tions. 

The fact that particles moving inside and outside the 
channel experience different energy losses, so that the 
channeling effect is very important for the energy distri
bution, has been well known since the beginning of stud
ies of orientation phenomena (see, for example, [3J ). 
However, the few theoretical analyses made so far have 
all been based on highly simplified models, using two 
time-independent unrelated beams. In other words, the 
most interesting part of the phenomenon, which is con
nected with the continuous diffusion of particles out of 
the channel, has, in fact, been ignored. At the same 
time, the energy losses experienced by an individual 
beam were described either in terms of a simple model 
(see, for example, [5 ,6J ) or in terms of a trajectory-type 
calculation (see, for example, r7J). The only exception is 
the paper by Altman et aI" [8J who attempted to take into 
account the escape of the particles out of the channel in 
a simple way, and to analyze the energy distribution in 
the limiting case of a thick crystaL 

In the present paper we report a general analysis of 
the energy distribution of fast heavy charged particles 
under channeling conditions, which is largely confined to 
the planar case. We begin by considering the transition 
from the integrodifferential equation to the differential 
equation in the angular and energy variables within the 
framework of the usual transformation to a Fokker
Planck-type equation (Sec. 2), The variable coefficients 
of this equation, their explicit dependence on the state of 
the particle, and the transition to the values for the 
amorphous medium are analyzed in Secs, 3 and 4. In 
Sec. 5 we consider the solution of the equation and 
analyze the properties of the energy distribution, The 
quantitative results, obtained under certain simplifying 
assumptions, are found to reproduce practically all the 
experimental information available so far. 

2. EQUATION FOR THE ENERGY DISTRIBUTION 
FUNCTION 

In II, we obtained an equation for the diagonal density 
matrix P1qq(t) == P1(q, t) in the form given by (5,1) fo;r 
crystals of thickness L »Lcoh' In the present paper, it 
will be convenient to use the transverse momentum ql 
(in the expanded zones scheme) and the total energy E of 
the particles as the variables. Integrating the right-hand 
side of this equation with respect to energy in an explicit 
form, we obtain the basic equation in the form 

,oPI(q.L,E) -Sd' ,~ (" ') iJt - q.L ~ W ex, ex , q.L, q.L 
0." 
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x[p~:)· P, (q'/,EHEao')-p;;) P, (q.L, E) J. (2,1) 

In this equation, ~EQlQI'= EO' - EO" is the change in the 
energy of the medium, P26. is its equilibrium density 
matrix, and the transition probability is (11 = 1) 

w(ex, ex'; q.L, q.L') = (2~' q' IW(ex, ex'; q.L, q.L'; q" q,') I', (2.2) 

where 

(2.3) 

Eql is the energy corresponding to the Bloch state with 
quasimomentum ql' and q 0 and M are, respectively, the 
momentum and mass of the particles penetrating the 
crystaL 

The matrix element for the inelastic scattering 
operator W (defined as the difference between the total 
interaction operator between the particle and the medium 
and its average, strictly periodiC, value) is determined 
in terms of the Bloch functions describing the motion of 
the particle in the transverse x, y plane (see II). We 
shall suppose that the thickness will be restricted so 
that we shall be able to neglect the change in E in the 
matrix elements and in the probabilities. In accordance 
with (2.2) and (2.3), the transition probability can then be 
determined exclusively in terms of the variables ql and 
0'. (This means, of course, that we shall not consider 
any variation in the nature of the channeling or losses 
due to the reduction in the particle energy; see, for ex
ample, [3J.) 

For the sake of simplicity, we shall confine our atten
tion to planar channeling. It is shown in II that, when 
L > Lcoh' the distribution of particles in the channel is 
described by a symmetric (even in qx) distribution func
tion p+(~, qy' t). The energy distribution f(E, t), i.e., 
the distribution integrated with respect to all the es
cape angles, is determined only by the symmetric part 
of the distribution both in and out of the channel. In fact, 

d'q d'q 
f(E,t)=J (2n~,PI(q.L,E,t)=S (2n~' p+(~,E,t). (2.4) 

We note that the energy distribution of particles for a 
fixed angle of escape will also depend on the odd part of 
the distribution function p_ if the initial angle of incidence 
lies outside the channel. 

For the symmetric distribution function, we have 
from (2.1) after some simple transformations, using the 
invariance of the Schrodinger equation under time re
versal, 

iip+(q.L,E) S~ 'S~ ''\1 ' , iit = 2 dq, dqy £.., w+ (ex, ex ; q.L, q.L ) 

x[p~~'P+ (q;', E+~-Eaa·;~P2(:)p+(q.L' E)], (2.5) 

where w+(Q1, 0"; ql' ql) is the even part of the probability 
w(Q1, 0"; ql' ql) in the variable qx' which turns out to be 
automatically even in q~ as well. 

A substantial change in the energy loss situation for 
channeled particles begins at distances of the order of 
the dechanneling diffusion length Ln. The energy losses 
over a thickness of the order of Ln in all the most inter
esting cases are large in comparison with the maximum 
energy loss in a collision with an electron, We can 
therefore ignore fluctuations in the loss distribution 
(see, for example, [9, 10J ) and consider only the average 
picture, 

Let us expand the function P.(ql, E + ~EQlQI/) on the 
right of (2.5) into a series in powers of ~EQ'CM' and re-
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tain only terms up to the second order, inclusive. We 
then have 

iiP+~~~,E) ~2 I dq/ J dq,'w+(q~,q.L')[p+(q~',E)-P+(Ih,E)l 
o _00 

The probability w +(ql' ql) summed over the states of the 
crystal in this expression is equal to the probability en
countered in the multiple scattering problem (see II; as 
in II, we are neglecting the change in qz in collisions, 
which is unimportant for the multiple scattering prob
lem). 

We now transform from (2.6) to a Fokker-Planck-type 
equation in the variables ql' In the first term on the 
right, this transformation is identical with that executed 
in II, In the last two terms, on the other hand, which are 
small, we can set q~ = ql in P+. (In the second term, we 
are neglecting a2p+/aq aE for the same reasons that the 
linear hydrodynamic term was omitted in II; see the 
corresponding discussion in II.) The result is 

op+ 0 iip+ ii'p+ op+ o'p+ 
at~ oq, D,+(qx)-aq:+D.+(qx) oqu' + lI-(qx)aE' + v (qx)-aE" (2.7) 

where 

!t(qx) ~ S d'q~' I: w(a, a'; q.L, q~')Moo' p::>, (2.8) 
a,a' 

is the so-called total stopping power (apart from a fac
tor) and 

v(q,)~+ S d"q~'I: w(a,a';q~,q.L') (Moo')'p;~' (2.9) 
II,CI' 

is the energy straggling coefficient. The values and 
properties of the diffusion coefficients D~(qx) 
({3 = x, y) are analyzed in II, 

In the ensuing analysis, it will be convenient to con
sider the distribution function integrated with respect to 
qy' i.e., -rp(qx,E,t)~ Sp+(q~,E,t)dq .. (2.10) 

where we must recall that all the coefficients in (2,7) 
depend only on qx' Integrating both sides of (2.7) with 
respect to qy' we obtain 

orp _ 0 D + orp + iirp + ii'rp Tt- iJq, • (q')aq: II-(q.) iiE v(qx)7iE" (2,11) 

the solution of which, integrated with respect to qx' will 
determine the energy distribution of the particles as a 
function of thickness (time), 

3. STOPPING POWER 

It is well known [l1J that the energy losses of a fast 
charged particle are predominantly due to the excitation 
of the electronic subsystem of the crystal, When we de
termine the stopping power (and the energy straggling 
coefficient), we therefore find that the oscillations of the 
atoms affect only the displacement of the center of grav
ity of their electron density, Allowance for this fact re
duces to the averaging of the resulting expressions over 
the phonon subsystem (the corresponding average opera
tion will be indicated by the symbol ("')T)' 
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Thus, the quantity VI in the expression for J.1. given by 
(2.8) is simply the Coulomb interaction between the 
moving particle and the crystal electrons. We shall 
evaluate the matrix element for this interaction between 
the plane waves which describe the motion of the parti
cle along the y and z axes (the x axis is perpendicular to 
the crystallographic planes forming the channel): 

S
OO d SOO d2 exp {i (Ll.y+Ll,z)} 

_00 y_oo [ (x-x.) '+ (y-y.) '+ (z-z.) '] 'I. 

= 2n exp{i(Llyy.+Ll,z.)-lx-x.1 (Ll.'+Ll,') 'I.} . 
(Ll.'+Ll,') 'I. ' 

(3.1) 

where ra is the electron coordinate and D. (3 = qiJ - q{3 is 
the change in the momentum component on collision. For 
heavy particles, we have, using the restriction on the 
transferred momentum given by (2.3), 

(3,2) 

where D.EyO = Ey - Eo is the excitation energy of the 
electronic subsystem and Vo is the longitudinal velocity 
of the particle. 

Using (3.1) and (3.2), we have, instead of the stopping 
power given by (2.8), 

II-(q,) ~ ~~' I: Sf dq/ dLl. Ll~:~::' < II: S dx d-rexp {i (Ll.y.H,z.) 

, ., (3.3) 
-lx-x.1 (Ll.'+Lln·'·}",., (x)",. '(X)"'T'~lo I) , 

x:t I T 

In this expression I/!~(x) are the Bloch wave functions 
describing the motion of the particle along the x axis 
(see I for further details), I/!o and I/!y are the wave func
tions for the ground and excited states of the electronic 
subsystem, and dT is the element of configuration space 
for the latter 0 

We can now use the completeness theorem to perform 
explicit integration with respect to q~ in (3.3): 

2nMe' S ~ E,-Eo SOO < I (~ II- (q.) = -q-O- dLl • .t....J Ll.'+Ll,' dxl", •• (x) I' .t....Jexp{i[Ll.y.+Ll,z.] 
1 -~ a 

-lx-x.1 [Llv'H,'l"') ) ,.1'>: (304) 

It is immediately clear that the energy losses are ap
preciably dependent on the density of the channeled par
ticles 11/!~(x)12 in the electron localization regions. This 
becomes increasingly better defined as the transferred 
momentum (D.; + D.~)1/2 increases. This immediately ex-

hibits the essential difference between the valence elec
trons and the electrons in the inner atomic shells, and 
for the latter the difference between the so-called dis
tant and close collisions. 

To obtain a still clearer description of the situation, 
we introduce into (3.4) the usual procedure whereby D.y 
is replaced by some average value D. which, in principle, 
is a function of qx' so that, using the summation theorem 
(see, for example, [12J ), we obtain 

I: (E,-Eo) If"I'='/,iUr -j+j) 00· 

T 

After some simple transformations, we have 
lI.max 

4nMe4 y. ':' 
II- (q,) ~ --mqo ~ dLly ~ 1 "'qx (x) I' o -~ (3.5) 

X «~exp {- 21 x - xall Ll ,/ + Ll'r:'} )oo>T dx. 

The collision kinematics predetermines the usual re
striction on the maximum transferred momentum 
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S.""·= smv', (3.6) 

where m is the electron mass and ~ is of the order of 
unity, [If we transform to a random medium, we can 
show that (3.5) leads to the well-known expression for J1. 
when ~ = 1.) 

So far, we have not distinguished between different 
groups of electrons, Moreover, valence electrons in the 
crystal are most frequently collectivized and have a very 
different spatial distribution. It is, therefore, useful to 
separate the contributions of valence and inner electrons 
to the energy losses, and describe each by an expression 
such as (3,5) with D. respectively equal to D.v and D.i' 

For valence electrons, and if we adopt the homogene
ous spatial distribution, we immediately obtain, by inte
grating with respect to the electron variables, 

ft,,,,,(4nMe'NZ,imq'}ln(2!!., IS,}, (3.7) 

where N is the number of atoms per unit volume and Zv 
is the number of valence electrons per atom (for the 
sake of simplicity, we are assuming a monatomic crys
tal), We have also employed the normalization for the 
wave function I/i~(x), We note that the result given by 
(3.7) is the same as that obtained for a random medium. 

We now consider the inner electrons and start with 
collisions corresponding to momentum transfers D.y 
> D.' ~ l/a., where a. is the characteristic size of the y 1-1 

ion core (we are using a single size although one could, 
of course, consider each of the inner shells of the ion 
separately). The finite contribution to (3.5) is then pro
vided by the region of small values of the difference 
x - xa' and we have the approximate result 

.:"mnx 

4nMe4 V Y, <I'\' 
f1;' (qx) ~-----mqi- ~ dS y \~ IljJq, (Xb) I' 

" ' b • 
x 5= dxexp {- 21 x - Xb 1 [!!.u' + Ai']'/'} l> T (3,8) 

= 4n:;:N < (4 11jJqy (Xb) I") 00> TIn /!"I:~ 
where the sum over b represents summation over elec
trons corresponding to one ion core; we are assuming 
throughout that D.?ax »D.y > D.i' 

It is quite clear from this expression that, at any rate 
for deep sub-barrier states, this part of the energy los
ses will be suppressed because of the exponential fall in 
the wave function I/i~(x) during motion toward the equili
brium position of the nucleus, We note that, in the case 
of a random medium, <Pqx(x) is a plane wave and 

" L21.p'x(Xb) I') -+Z-Z,. (3,9) 
\ b 00 

For smaller momentum transfers, we use the fact 
that D.yai < 1, D.i~ < 1 and omit xa from the argument 
of the exponential in (3 0 5) (x is measured from the 
equilibrium position of the excited ion), In that case, 

4 M 'N(Z Z} A,' • 
ft,"(q.)"" n e -. IdS.S l.p, (x}I'exp{-2Ixl(S,'+S,')"'}dx. 

mq' '_00 x (3.10) 
This expression enables us to investigate quite readily 

the various limiting cases, Suppose that for deep sub
barrier states D.xo(qx) > 1 [xo(qx) is the coordinate of the 
nearest classical turning point during motion in a well 
in state q ), It then immediately follows from (3.10) that, 
for the so~called distant collisions, the contribution to 
the energy losses due to excitation of inner electron 
shells is exponentially smalL As a result, the losses in 
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this case are practically determined by the valence elec
trons, In the opposite limiting case, Le" when D.ixo(qx) 
< 1, we have from (3,10) the fact that, in the region of 
small transferred momenta, i,e" D.yxo(qx) < 1, the re
sult is very similar to that for a random medium, This 
is most readily shown by replacing Il/iqx (x) 12 in (3,10) 

with its x average, and integrating in explicit form, 

It is important that D.i = D.EyOIv° is inversely propor
tional to the velocity of the incident particle. It follows 
that, as the particle energy increases, the effect of 
channeling on the reduction in energy losses due to dis
tant collisions with inner electrons becomes smaller. 

In a random medium, Il/iqx (x)12 = 1 and (3.10) together 
with (3.8) and (3.9) lead to the well-known classical re
sult for the stopping power due to the inner-shell elec
trons. 

The above results enable us to investigate the entire 
evolution of energy losses during channeling, First, we 
note the following result, which is physically relatively 
obvious: losses due to valence electrons are practically 
the same as in a random medium, independently of the 
state in which the particle is found, As regards the los
ses due to the inner electrons, these are very sensitive 
to the state of the particle in the effective potential in the 
channeL For the lowest lying sub-barrier states, losses 
due to close collisions are completely suppressed, whilst 
those due to distant collisions are reduced to a consider
able extent, As a result, the stopping power is reduced 
by a factor of 15 as compared with a random medium, 
where Z/Zv > I) :;;:: 2, If we now consider the high-lying 
sub-barrier states, we find that the first losses to re
appear are those connected with distant collisions, Close 
collisions are significant only for states near the apex 
of the barrier, 

There is particular interest in the states above the 
barrier but near the apex. As noted in I, for these states 
we have the characteristic rapid increase in the particle 
density near the atom localization regions. This ensures 
that energy losses in these states due to the inner elec
tron shells will be greater than in the random medium, 
This is clearly seen from (3,8) and (3,10), Further in
crease in Iqx I ensures that the motion of the particles is 
nearly free and we finally arrive at the same results as 
for the random medium, which were discussed above, 

4. ENERGY STRAGGLING COEFFICIENT 

Since in (2.9) the transferred energy is raised to the 
second power, the energy straggling coefficient lJ is, in 
practice, determined only by close collisions. This en
ables us to understand immediately the fact that, during 
motion inside the channel, this coefficient is determined 
practically exclusively by scattering by valence elec
trons, 

From the formal point of view, the predominance of 
close collisions enables us to neglect the excitation en
ergy of the electron subsystem in the expression for lJ 

in comparison with V°D. y' recalling at the same time that, 
in the case of scattering of heavy particles by electrons, 
there is a stringent restriction on the magnitude of the 
transferred momentum (or transferred energy). Using 
this fact, we rewrite (2.9) in the form 

v(q.}= ~e'"< S d:q~'.E (Ev-E,) 'I (f(qx,q:,/!",»"I') , (4,1) 
.... q Lly T 

V 

where 
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. 
/(q.,qx',d.)= L, S 1jl,:(x)1jl,~(x)explid,y.-ld.llx-x.l)dx. (4.2) 

The evaluation of the swn over y can be carried out 
in a general form using the summation theorem 

'L, (Ev-Eo) '1/,,1'='/, (j;++;+j) 00. 

Omitting terms which yield zero on integration with 
respect to q~, and commuting (4.2) with the electron 
Hamiltonian, we obtain 

~~(jr+ri)= d:' "\1 {11jl,: (x.)1jl,~ (x.) 1'- -aa Ig, (qx, qx', d,; x.) I'-aa 
~ m ~ Xa Xa. 

-Ig,(q.,qx',d,; x.)I' a~:' }; 

g, (q., qx', d,; x.) = J 1jl,: (x) 1jl.:, (x) exp{-ldyllx-x.llsign(x-x.) dx, ' 

(4.3) 

We now recall that 

f Ig,I'dqx' - f Ig,I'dqx' =2n f 11jl,,(x) I' exp{-2Id.llx-x.lldx,",g,x (d,; x.). 

In that case, substituting (4.3) in (4.1), we obtain 

. (4.4) 

-2n S dd, .E (_a_ g" (d,; x.)_o- +g,x (d,; x.)~) \ . 
•. a~ a~ a~ OO/T 

Using the approximate result 
gq,(d,; x.) ""2n l1jlq,(x.) 1'/ld,1 

and the behavior of the wave function <Pqx (x), we may 
conclude that for particle states inside the channel the 
contribution due to the inner-electron shells to (4.4) is, 
in fact, quite small. For valence electrons, we can read
ily show that the contribution of the second term in this 
formula is small in comparison with the contribution of 
the first in the ratio of (ve/v~2, where ve is the charac
teristic velocity of the valence electrons. There is an 
analogous result for the inner electrons during the mo
tion of the particle outside the channelo Therefore, the 
energy straggling coefficient 'Can finally be written in 
the form 

e' "\1 
v(qx)= 2m'vO ~ • .J d'q./< (l1jlq: (x.)1jlq.)x.) I'),,),. (4.5) 

In a random medium, replacing <P (x) by a plane 
wave, and remembering that in this ~egral the maxi
mwn transferred momentwn is 2mvo, we have 

v,"'2nNZe'vo, (4.6) 

which is identical with the well-known expression for 
this quantity. 

Inside the channel, the energy straggling coefficient 
for fast particles is close to 

(4.7) 

although it is possible that it may be somewhat greater 
due to the particul.ar features of the matrix element in 
(4.5). For states above the barrier, which lie near the 
apex, the function v(qx) will be greater than VI for the 
same reasons as in the case of the stopping power (see 
preceding section) and further increase of Iqx I leads to 
t.he same results as for a random medium. 
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5. ANALYSIS OF ENERGY LOSSES IN THE CASE OF 
PLANAR CHANNELING 

We begin with the qualitative analysis of the effect of 
channeling on energy losses of fast particles, using cer
tain simplifying asswnptions. Firstly, we neglect the en
ergy straggling coefficient v(qx) in (2.11). It is clear 
from the foregoing discussion that the broadening of the 
energy distribution due to the last term in (2.11) is not 
well defined inside the channelo Outside the channel, this 
broadening is connected, above all, with the diffusion 
picture of particle escape from the channel (see below), 
and the finite value of v affects the situation only quali
tatively. Next, we assume that the stopping power Il(qx) 
can be approximated by a power function equal to Ilo 
inside the channel whilst outside the channel III > Il 0. 

Even from the result given in II we may conclude that 
this power-function approximation for the kinetic char
acteristics in the case of planar channeling is fully ade
quate and enables us to describe practically all the de
tails of the phenomenon. We shall also use the fact that, 
according to the analysis given in II, the diffusion coeffi
cient Dl in the space of transverse momenta outside the 
channel, is greater by one or two orders of magnitude 
than the diffusion coefficient Do inside the channel. 
Therefore, in the simple qualitative analysis of the en
ergy loss, we may ignore recapture of dechanneled par
ticles into the channel. 

Let Q(T) be the flux of particles passing through the 
channel boundary at time T. The energy distribution of 
dechanneled particles at time t is then given by 

f d-r Q(-t)6 (e-[to-r-[t,(t--r))= _1_Q ( [t,t-e ) [8 (e-[tot) -8 (e-[t,t) l, 
° [t.-[to [t,-[to 

(5.1) 

where E = EO - E is the energy lost, and e(x) is the step 
function such that e = 1 for x ~ 0 and e = 0 for x < O. 
The overall energy distribution is obtained by adding the 
part of the distribution connected with particles remain
ing in the channel to (5.1): 

/(e,t)= [1- j Q(-r)d-r] 6 (e-[tot) 

° (5.2) 
1 ( [t,t-e ) +--Q -- [8(e-[tot)-8(e-["t)]. 

[t,-[to [t,-[to 

It is clear from (5.2) that the energy loss distribution 
is wholly determined by the diffusion of particles out of 
the channel. The last problem was solved in II, and this 
enables us to write down the expression for the flux Q. 
Recalling that the fraction f2(~' qy' t) [see (6.3) in II] 
gives a zero net contribution to Q, we find, after some 
simple calculations, 

.~ 2(DoID,)'" S~d~ ~exp(-~'-rho)cos(~qxo/q;)sin~ , 

nT, 0 cos' s+ (Do/D,) sin' ~ 

In this expression, q ° determines the position of the 
initial 0 -function distribution (the initial angle of inci
dence relative to the set of crystallographic axes which 
we are considering is e = q~ /q ° < eo = ql /q ° where ql is 
the momentwn corresponding to the channeling angle eo) 
and 

(5.3) 

The above expression is readily transformed to the 
form 

Yu. Kagan and Yu. V. Kononets 836 



Q(T)=_1_CJ~ ds exp (sT!To)ch (l'-;q,o/q;) 

2nh, chl' s+ (DolD.),'· sh l' s 
C_ioo 

(Re C>O, -n/2<arg )'-;';;nl2) , 

and hence, using the condition DO/S1 « 1 in an explicit 
form, we obtain 

n ~. (2n+1)nq} { 
Q(T)=- (-1)n(2n+1)cos . exp 

To 2q, 
(2n+1)'n'T }. 

4To 
n=O (5,4) 

When T - 0 or 00 the function Q(T) tends to zero 
together with all its derivativeso However, the most im
portant fact is that Q has a well defined peak at T = T , 
the position, height, and width of which depend on them 
initial angle of incidence, i.e., on q~. As the angle of 
incidence approaches the channeling angle (Leo, as Iqo I 
approaches q~), this peak becomes narrower and app;a,rs 

at smaller values of T. All this is clear by inspection of 
Fig. 1, which shows a plot of Q(T) for four values of the 
initial angle of incidence. 

This behavior of the function Q leads to a very pecul
iar time evolution of the energy distribution. The factor 
Q in the second term in (5.2) has a peak which moves 
along the energy scale in accordance with the formula 

(5.5) 

However, for small times (or thicknesses) t < T this 
peak is absent from the distribution since it doe~ not 
fall into the allowed energy interval and the distribution 
given by (502) has only the internal channel peak. In ac
cordance with (5.5), the peak in the distribution of parti
cles outside the channel moves with constant velocity III 
and enters the real energy region at time t = T m (q~) and 
subsequently departs from the internal channel peak with 
relative velocity III - 110. When t » Tm(q~), its position 
tends to approach 111t which is characteristic for parti
cles moving outside the channel right from the start. 
The constant shift (Ill - 11 o)T m tends to be masked if we 
recall the spreading of the energy distribution due to the 
last term in (2011)0 

The expression for Q given by (5.4) enables us to 
estimate Tm' For the sake of simplicity, let us take the 
simplest case q~ = 00 By retaining the first two terms 
in the sum given by (5.4), we then have 

Tm(O) 31n3 
-'to-=~"'0.167. (506) 

It is readily verified that the contribution of all terms in 
the series beginning with the third is, in fact, negligible 
for this value of T. 

~r4--~--~r--'-----'-----'-----'---

1D 1+--\----+----\ ft-\:-±-t-::--;o---+-----+-----+---~ 

5K----~--~r_~--~~~~_+----+--~ 

D.9 
-r;"o 

FIG. I. Q in units of T~l as a function of T for different initial values 

of q~: (I) q~ = 0, (2) q; = 0.25 q;, (3) q~ = 0.5 q~, (4) q~ = 0.75 q~. 
Arrows mdlcate the posItion of the peaks on the curves. 
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The simple structure of the series for T > Tm en
ables us to see immediately that the energy distribution 
of particles outside the channel falls exponentially from 
a maximum toward lower energy losses, in accordance 
with the expression 

(5.7) 

As t increases, an increasing number of particles 
leaves the channel, leading to a continuous fall in the 
height of the internal channel peak which, for sufficiently 
large t > To, occurs in accordance with the exponential 
law 

St 4 nq ° {n't } 
1- Q('t)dT""-cos~exp -- . 

, n _~ 4~ 
(5.8) 

At the same time, however, the shape of the external 
channel peak and, in particular, its height, which are 
dictated by the form of the function Q(T), remain unal
tered. [This result is modified only when the finite en
ergy straggling coefficient v(qx) is taken into account]. 

We have so far ignored the fact that, for any angle of 
incidence e < eo, states above the barrier are populated 
as well as those under the barrier (see I). Since we are 
neglecting diffusion capture of particles above the bar
rier into the channel, these particles lose energy in ac
cordance with the stopping power III right from the be
ginningo This predetermines the appearance of an addi
tional "normal" peak in the energy distribution, which, 
under our assumptions, is characterized by the 0 func
tion O(E - 111t)0 However, in practice, the presence of 
spreading due to the finite energy straggling coefficient 
v may ensure that the "normal" peak and the external 
channel peak described above will not be resolved. (We 
note that, in the simple approximation which we are con
sidering, the particles divide into three groups, depend
ing on the character of the losses during channeling, as 
noted previously by Altman et al. [8J ). 

The above picture reproduces most of the leading 
characteristic features of the energy distribution of fast 
particles under channeling conditions. Quantitative 
analysis will, however, have to take into account the 
particle energy spread, Leo, the solution of the complete 
equation (2011), and the presence of the anomalous in
crease in losses for states above the barrier and near 
its apex. The latter can be taken into account by intro
ducing a further interval q~ < Iqx I < Clx with its own 

values of the coefficients 5, J;, ;;; each of which is, in 
principle, greater than the corresponding value for Iq I 
> Clx which corresponds to a random medium (as befo~e, 
we retain the subscript 1 for these quantities, while 
those corresponding to the channel will be indicated by 
the subscript 0). In the intermediate region, the most 
important quantity is 17, or more precisely /J.t, where 

t=(ijx-q:)'ID (5.9) 

is the characteristic time for finding the particle in the 
intermediate region, since only by taking into account 
the fact that /J. > III can we explain the existence of the 
anomalously high energy losses. The difference between 
D, v and D1, VI cannot, in itself, play an important role 
for dechanneled particles which have entered the region 
Iqx I > <Ix because the time spent by the particles in the 
intermediate region is negligible in comparison with the 
characteristic dechanneling time To given by (5.3), which 
is the dominant factor in the energy loss problem. 

We have considered the solution of (2.11) by assuming 

Yu. Kagan and Yu. V. Kononets 837 



constant values for the coefficients for each of the three 
regions noted above. It was therefore found to be con
venient to apply the Fourier transformation with respect 
to the variable E = EO - E and the Laplace transformation 
with respect to the variable t, and then solve the result
ing differential equation in CIx in explicit form, followed 
by the matching of the distribution functions and fluxes 
at Iqx I = q~ and Iqx I = qx' Inverting the transformations, 
and integrating with respect to qx [see (2.4)]' we then 
find the expression for the energy loss distribution func
tion. Since (2.4) contains only p+, the initial condition for 
(p was taken in the form 

tjJ(q., e, O)='/,[6(q.-q:)+c5(q.+q.')iu(e). (5.10) 

In its final form, the energy distribution function can 
be written as follows: 

1 - c~_ 

f(e,t)= (2n)'i J dpexp{-p'Ht-ip(e-t)} J el'x(p,~)d~, (5,11) 
_.... C_iao 

where the function X (p, (;) depends on the region in 
which the initial value q~ is found: 

x(p, ~)=al-'(p, ~)+Aj(p, ~)/A(p, ~), 

{ 
0 if Iqxol<l, 

j = 1 i:f qx>lqxol>1, 
2 if IqxOI >qx' 

(5.12) 

In these expressions (for the sake of Simplicity we are 
omitting the arguments of O!j) 

ao=~''', a,=[~+p'H(v/'llo-I)-ip(;:Ullo-l)],", 
a,=[~+p'H('II, 1 'IIo-1)-ip (Il, 1 1l0-1) I"', -nl 2<argaj';;;n 1 2; 

A(p, ~) =a,'(~a, ch ao+saosh ao)ch[sa, (q.-l) I 
+a, (a,' ch ao+Haoa, sh ao)sh[6a,(q.-l) I; 

A.(p, ~) ={;(a,'-a,')a,-'- (a,'-a")ao-'[~a, ch[sa, (q.-l) I 
+a,sh[6a, (q.-1) lI}ch (aoq.') , 

A, (p, ~) =6 (a,'-a.')ao-' sh ao[ch[sa, (q.-lq:l) I 
+~a,a,-' sh[sa,(q.-Iq:/l II (5.13) 

+~(a,'-0\,')a,-'[chO\och[sa,(lq:I-1) I 
+60\00\,-' sh 0\0 sh[sa, (I q:I-1) I)' 

A,(p, ~) ={ (a,'-a,') a,-' [6ao shao ch[sa, (g.-1) I 
+a, ch ao sh[sa, (q.-1) II 

+s (a,'-ao') ao-' sh ao}exp{-a,( I q:l-q.) (Do 1 D,)"'}; 
5= (Do 1 1J) "', ~=(D, 1 lJ) "', H='IIol ('oll.'). 

In (5.11)-(5.13), the parameter t is expressed in units 
of To given by (5.3), E is given in units of /loTo, q~ and qx 
are given in units of q~, and the distribution function 
f(E, t) itself is given in units of (/loTor l • 

As usual, the contour of integration with respect to {; 
in (5.11) must lie to the right of all the Singular points 
of the integrand. It can be shown that, with the chosen 
form of the integral representation, this is satisfied, at 
any rate, for Re C > O. 

The foregoing discussion of the role of the transition 
region enables us to assume that v = VI and D = DI in 
specific calculations. The inaccuracy in 1: given by (5.9) 
can then be compensated by the corresponding redefini
tion of the width of the intermediate region qx - qj{. 
Consequently, the intermediate region can be adequately 
characterized by only two parameters, namely, 71 and 
qx - q~, 

Figure 2 shows the energy distribution curves for 
zero angle of incidence (8 = 0) and successive values of 
the dimensionless time t between 0.25 and 3. To exhibit 
most clearly the time evolution of the distribution, we 
give separately the curves for particles under the bar
rier (q~ = 0, curve 1) and those above the barrier (q~ 
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FIG. 2. Energy loss distribution for fast particles in the case of planar 

channeling calculated from (5.11}-(5.l4) for different times t (crystal 
thickness) and fixed initial angle of incidence {} = 0, (I) t = 0.25 To, (II) 
t = 0.5 To, (III) t = 0.75 To, (IV) t = To, (V) t = 1.5 To, (VI) t = 3 To. 

Curve I corresponds to particles above the barrier (q~ = 0) and curve 2 
to particles above the barrier. S indicates resultant curves obtained on 
the assumption that the initial population of states above the barrier 
amounts to 50%. The points represent the distributions in random media 
with parameters characteristic for purely interval channel motion (curve a) 
and for motion outside the channel with Iqxl> iix (curve B). The distri
butions corresponding to each individual time are plotted in their own 
relative units and are normalized to equal area. 

= 1, curve 2), normalized to equal area, and the resultant 
curves S based on the assumption that the population of 
the states above the barrier is 5(}?6. This choice was 
dictated by the fact that we were concerned with the 
channeling of protons with energies of a few MeV in 
silicon along the {110} and {111} planes. The other 
parameters were chosen accordingly (see II and the 
preceding section): 

D, 1 Do=lJ 1 Do=50, 1l,I 1l0=2, i1 1 1l0=2.5; 
'11,1 '110=;; 1 '11 0 =14/4; 

(q.-q:) 1 q:=I, H='IIo 1 ('oll.') =2.5·10-'. 
(5,14) 

For comparison, Fig, 2 shows the distributions corre
sponding to the motion of particles in random media with 
parameters characteristic of purely internal channel 
motion (curve A) and for motion outside the channel in 
the region Iqx I > qx (curve B), 

If we consider the evolution of the energy distribution 
for particles inside the channel (curve 1), we readily 
note that the picture is very close to that obtained above 
in the simplified analysis, This refers, above all, to the 
character of the second peak which describes the losses 
of particles which have left the channel, However, the 
fact that the ratio DIlDo is finite, and the energy stragg
ling coefficient is not zero, leads to an appreciable de
crease in the time for the appearance of this peak, as 
compared with (5.6). In the resultant picture, on the 
other hand, for this high initial concentration of particles 
above the barrier, the second peak cannot be seen in 
isolated form. Moreover, the emergence of the diffusion 
front of dechanneled particles ensures that the position 
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of the peak in the region of high losses eventually shifts 
to the left, and then again approaches the loss value 
characteristic for particles in the amorphous medium. 
We also note that the position of the internal channel 
peak shifts in comparison with the peak on curve A in the 
direction of higher energy losses. 

For large times (on the scale of the time of particle 
diffusion out of the channel), the energy distribution in
creasingly resembles the distribution in the amorphous 
medium. However, there are two clear differences. The 
first is connected with the presence of the tail on the dis
tribution in the region of low energy losses, due wholly 
to the tail of diffusion escape from the channel and the 
capture of particles into the channel from states above 
the barrier. The second difference is connected with the 
region of anomalously high losses, This region is not so 
readily seen visually because of the importance of the 
energy broadening which is determined by a function of P, 

The considerable sensitivity of the energy distribu
tion to the initial angle of incidence 6 is clearly seen in 
Fig. 3, which shows the curves for 616 0 = 0.25, 0.5, 0.75, 
1, 1.5, and 3 (6 0 is the channeling angle) at the same in
stant of time (for the same thickness) t = 0.25To, When 
8 < 60 , the initial component above the barrier (curve 2) 
is assumed fixed for q~ = [(q~)2 + (q~)2]1/2 where the 
initial value ~ = q~6160 corresponds to sub-barrier par
ticles (curve 1). When 6 2:: 8 0 the two components of the 
distribution are practically indistinguishable and, there
fore, for these values of 8 we give only the resultant 
curves, All the other parameters are the same as in 
Fig. 2. The accelerated dechanneling of particles en
sures that, as 6 increases, the position of the external 
channel peak on the distribution increasingly approaches 
the value corresponding to the amorphous medium. At 
the same time, the height of this peak increases relative 
to the internal channel peak. 

f' 

l.u. 
II 
II 
I I 

a75 
: 'v-A 

Dl 

a5 

FIG. 3. Energy distributions of the same type as in Fig. 2, calculated 
for different values of the initial angle of incidence 8 for fixed time (cry
stal thickness) t = 0.25 To: (I) 8 = 0.258 0 , (II) 8 = 0.58 0 , (III) 8 = 0.75 
IJ 0, (IV) IJ = 8 0 , (V) 8 = 1.5 8 0 , (VI) 8 = 38 0 , When 8 < 00 , the initial 
component corresponding to particles above the barrier (curve 2) was as
sumed fixed for q~'= [(q~j2 + (q~j21Y2 where the initial value q~ = 818 0 

corresponds to sub-barrier particles (curve I). When () > () 0 the unavoid
able appearance of the two components in the distribution is practically 
unresolved and, therefore, for these values of 8 we give only the resultant 
curves S. The remaining parameters, notation, and normalization of the 
curves is the same as in Fig. 2. 
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U.Z5H----+.-r-il----+-+----+++--+-r-

z z 

FIG. 4. Energy distributions for different times t corresponding to 
the angle of incidence () = 38 0 : (I) t = 0.5 To, (II) t = To, (III) t = 3 To· 
The notation, normalization, and remaining parameters are the same as 
in Figs. 2 and 3. 

When the angle of incidence is greater than 60 , the 
channeling effect appears largely as the diffusion capture 
of particles into the channel, and this leads to the ap
pearance of the characteristic low-energy tail in the en
ergy loss distribution curve. It is important that, 
although diffusion outside the channel occurs very 
rapidly, the temporal evolution of this tail is determined 
by the characteristic time for particle diffusion in the 
channel. The corresponding situation is well illustrated 
by Fig, 4, which shows the distribution curves for differ
ent times corresponding to 6 = 36 0 (the remaining 
parameters are the same as in Figs. 2-3). 

If we compare the above distribution curves with the 
experimental data (see, for example, [4, 13J ), we can 
readily establish that the theory reproduces practically 
all the details of the experimental picture. Moreover, 
comparison with the results obtained for silicon shows 
that the agreement is, in fact, quantitative. (It was not 
our aim to achieve complete quantitative agreement with 
experiment and, therefore, the parameters in (5.14) are 
in only approximate correspondence with the parameters 
for silicon; moreover, the division of the particles into 
two groups for 6 < 0 0 is also an approximate device). 

In conclusion, we note the possibility of an experi
mental separation of the energy distribution correspond
ing to particles which are in the channel at the initial 
time. This requires two series of measurements for 
initial angles of incidence 0 ~ 0 and 0 <: 00. Comparison 
of the tails with high energy losses in the two cases 
should enable us to estimate the relative number of par
ticles in states above the barrier for 0 ~ O. If we then 
subtract from this first distribution the second distribu
tion multiplied by the weight factor, we obtain a result 
which is very close to the required distribution. Th~s 
procedure should enable us to exhibit the detailed fea
ture of the energy distribution of initially channeled par
ticle s as a function of thickne ss (time). 
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