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The forces acting on an atom in a resonant field may be of three types. A force (I), due to the 
scattering of photons with the spontaneous emission rate, acts on an atom in the field of a traveling 
plane wave. In the field of two oppositely moving waves a gradient force (3), due to stimulated 
scattering of the quanta from one light beam into the other, acts on the atom. The forces (I) and 
(3) are well known. In this article it is shown that a force which arises from a certain combination 
of spontaneous and stimulated transitions in the atom, also acts on an atom in the field of a 
standing wave. This force is spatially homogeneous and resonantly depends on the velocity of the 
atom relative to the wave. In magnitude this force occupies an intermediate position between forces 
(I) and (3). The possibility of using these forces to accelerate atoms is discussed. The investigation of 
this problem is of interest for applications such as the production of dense, monoenergetic atomic 
beams with energies up to several keY and for the selection of excited atoms and isotopes. It is 
shown that an atomic cluster of density 1015 cm -3 can be accelerated to an energy of 10 keY in 
intense light beams with energy fluxes of the order of 5 X 109 W/cm2 . In light beams of medium 
intensity--energy fluxes of the order of 102 to 105 W Icm2-atoms can be accelerated and heated up 
to thermal energies. As an example, the feasibility of selecting He(2 3S) atoms and producing soft 
x-ray generation in the 2 I P -I I S transition is assessed. 

1. INTRODUCTION 

The possibility of accelerating atoms by light pres
sure is investigated in the present article. The light 
pressure arises as the result of photon scattering by 
the atom. In this connection the force acting on the atom 
depends substantially on the spatial structure of the 
field. 

The fdllowing force acts on an atom, whose lower 
level is the ground state (or a metastable state) and 
whose upper level has a decay rate y, in the presence 
of a traveling plane-wave field E ~ exp[iwt -ikx] [1,2J 

F fi W W~ IdEI' (1) 
sp~ Ilq, «Ul-Ulo)'+,'/4)Il'+2IdEI' ' 

where W is the probability that the upper level is occu
pied, and Wo and d are the frequency and dipole moment 
of the transition. The maximum value of the force F sp 
is limited by the spontaneous emission rate. F sp 
'" hky/2 in a strong field. The characteristic order of 
magnitude of this quantity is 10-4 to 10-3 eV/cm. 

In the field of oppositely moving waves (with real 
amplitudes E1 and E2) 

E~E't cxp[i(<p,-Ul,t+kx) ]+E, cxp[i(<p,-Ul,!-kx)] (2) 

there is a gradient force, due to stimulated transitions, 
acting on the atom. In the presence of such a field the 
atom may absorb a quantum with momentum uk and emit 
a quantum with momentum -bk. The frequency of such 
transitions is of the order of 2 dE/fl, so the effective 
force is F ~ 2 kdE. The reverse order of transitions, 
with the absorption of momentum -bk first and then the 
emission of momentum uk, is also possible. Therefore, 
the final expression for the force F significantly depends 
on the phase difference cp = qJ1 - CP2 + (W1 - W2)t + 2kx 
between the waves which are moving in opposite direc
tions: 

(3) 

Here for Simplicity the case of perturbation theory is 
used, f1~ »dE. It is also assumed that W1 - W2 «~. 
The exact expression for the gradient force will be der
ived in Sec. 6. 
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FIG. I 

The force F is schematically shown in Fig. 1 as a 
function of the detuning; the force reaches its maximum 
value, F max = 2kdE, at ~ ~ ~m = 2dE/fl. In strong 
fields, close to the critical ionization field E 
~ 106 V/cm/) we have the estimate Fmax ~ 1 keVlcm 
and ~m ~ 1013 Hz. In effect the force F can be used to 
accelerate trapped atoms by varrng the frequencies of 
the oppositely moving waves :2) [5 

(4) 

Such an acceleration method is of interest for the pro
duction of monoenergetic atomic beams with energies up 
to a few keY. The density of atoms, which can be thus 
accelerated, is estimated in the second section. 

Since the force F only acts on resonant atoms, it can 
be used to spatially separate excited and unexcited 
atoms. In order to do this, it is sufficient to impart a 
transverse momentum to the excited atom which is com
parable with the thermal momentum. In order to change 
the velocity to 104 or 105 cm/sec, it is necessary to give 
~ 102 to 103 recoil impulses (each of momentum Uk) to 
the atom. One can use the acceleration of trapped atoms 
mentioned above for this purpose. Other acceleration 
mechanisms, connected with the violation of the adia
batic approximation and with the passage of the atoms 
through a modulated light beam, have been previously 
considered. [6J 

The process of resonant transfer of the quanta from 
one light beam to the other is discussed in Sec. 3, and 
the possible acceleration effect is estimated. 

A simple and rather effective method of selecting ex
cited atoms is connected with heating the atoms in a field 
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having a broad frequency spectrum. This problem is 
investigated in Sec. 4. As an example, in Sec, 5 we study 
the possibility of creating population inversion and ob
taining laser generation in helium for the resonant 
2 lp - 1 lS transition (wavelength 584 A) with the aid of 
light pressure effects, 

In the present article we show (see Sec. 6) that, in 
addition to the forces (1) and (3), in the field of a stand
ing wave there is also another force on the atom, which 
arises as a result of a certain combination of spontane
ous and stimulated transitions occurring in the atom. 
This force is spatially homogeneous and resonantly de
pends on the velocity of the atom relative to the wave. 
In magnitude this force occupies an intermediate posi
tion between the forces (1) and (3). In Sec. 7 we estimate 
the possible effect of using this force to accelerate 
atoms. 

2. THE ACCELERATION OF TRAPPED ATOMS 

In the process of accelerating the trapped atoms, one 
wave is absorbed and the other wave is intensified. 
Although we consider an optically transparent medium, 
nevertheless the process of absorption and intensifica
tion takes place rather effectively, being proportional to 
the magnitude of the atoms' acceleration. The mechan
ism for the transfer of energy from one wave to the 
other is related to diffraction scattering. In fact, the 
trapped atoms form a plane diffraction grating with a 
period '\/2 between the planes, where ,\ is the wave
length. In the accelerated reference frame in which the 
shape of the force F does not depend on the time, the 
equilibrium position Xo of the entrapped atoms is deter
mined from the condition 

Ma=Fo sin 2kxo, (5) 

where M is the mass of the atom, and the acceleration 
a = n/k. If the acceleration is equal to zero, the equili
brium position cOincides with the nodes of the standing 
wave sin 2kx, and there is no scattering of the waves. 
For a f. 0 the equilibrium position is displaced somewhat 
from the nodal position, and diffraction scattering ap
pears, which is proportional to a. If we neglect relati
vistic effects of order l/tc « 1 (l is the characteristic 
length and t is the duration of the process), then in the 
comoving coordinate system we have the time-indepen
dent Maxwell equation 

d'E +ke(x)E=O e=1+ 4nd'n(x-xo) (6) 
dx't. ! 1i!1' 

where n(x) is the density of the trapped atoms in the in
ertial reference frame, this density being a periodic 
function which only contains harmonics of the form 
cos 2mkx, where m is an integer, 

If the density of atoms is small, the amplitudes in ex
pression (2) are slowly varying functions of the coordin
ates. Introducing the symbols no and nl, respectively, 
for the averages of the quantities n(x) and the first 
harmonic n(x) cos 2kx over one period, we obtain 

dE',2 2nd'kn, 
--;;;;- = ~ E" , sin 2kxo, (7) 

We shall use the equilibrium condition (5). Then we ob
tain the following expressions for the energies 11 2 

2} , = IE1,21 (217 of the light beams: 

I, (x) =1, (0) +1/2Man,x, Io(I) =I,(l) +1f,Man, (x-I). (8) 

The dependence of the intensity on the coordinate x is 
shown schematically in Fig. 2: The beam energies are 
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constant outside the layer of thickness l, and they vary 
linearly inside the layer. 

Let us define the permissible thickness l of the gas 
layer as the distance over which the intensity decreases 
by a factor of two: 

(9) 

which implies that the inertial forces are in equilibrium 
with the gradient of the electromagnetic pressure, We 
emphasize that uniformly accelerated motion of trapped 
atoms is possible only under the condition 

(10) 

In the opposite case, no entrapped atoms are present. 

As an example, let us estimate the density of atoms 
in a layer of thickness 1 cm, with the atoms having an 
acceleration a = 1014 cm/sec 2• For E ~ 106 V/cm and 
the mass M of the helium atom, we have n = 2.4 
x 1015 cm -3. Such a quantity of gas can be accelerated to 
a velocity of 108 cm/sec during a time interval of 10-6 

sec; here the energy of the atoms will be on the order 
of 20 keY. We note that in this case ac = 3.6 
x 1014 cm/sec 2, i.e., condition (10) is satisfied with a 
certain amount of margin. The depth of the potential 
well in which the particle is found has a magnitude dE 
~ 10-2 eV, so at room temperatures an appreciable 
fraction of the resonant atoms can be trapped, In the 
approximation assumed here, the total energy of the 
light beams is conserved: 

I, (0) +I2 (l) =1, (I) +1, (0). (11) 

This is associated with the fact that the energy of the 
light beam is very much greater than the energy of the 
accelerated atoms. Thus, in the indicated example the 
energy flux in each beam amounts to 5 x 109 W /cm 2. 
5 x 103 J of energy pass through 1 cm2 during the inter
action time of 10-6 sec. In this connection the atoms, 
which are located in a volume of 1 cm 3, acquire an en
ergy on the order of 8 J. 

Thus, in the present case the efficiency of the accel
eration mechanism under consideration amounts to 
1. 6 X 10-3, We note that the efficiency increases in pro
portion to the interaction time. 

Variation of the frequency of the field. The accelera
tion of the trapped atoms is determined by the rate of 
change of the difference frequency of the field, a = n/k. 
For a, = 1014 cm/sec with k = 105 cm -l, it is necessary to 
have n = 1019 sec-2 • 

Let us consider the following mechanism for varying 
the frequency of the field, based on the use of phase 
modulation. Let one of the beams, let us say E l , pass 
through a transparent dielectric whose dielectric con
stant 6 E = E - 1 is changing with time uniformly over its 
entire volume (because of, for example, optical pump
ing). In this connection, after passing through the dielec
tric whose length is L the phase of the field El is given 
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by ipl = (1/2)kLOE(t). The "switching" of the dielectric 
must take place according to the law 

bdt) =beo(t / ",)', (12) 

from which we obtain 

(13) 

for the rate of change of the frequency. This quantity 
can become large if the length L is large. Thus, the 
order of magnitude we are interested in, n = 1019 sec-2, 
can be obtained for OEo ~ 1, T ~ 10-6 sec, and 
L ~ 102 cm. 

Thus, in the present model the time during which the 
atoms interact with the field is determined by the char
acteristic "switching time" of the dielectric according to 
the law (12). 

3. TRANSFER PROCESSES 

Now let us investigate the possibility of using modu
lated light beams to accelerate the atoms. In this case 
the question can only involve small energies of accel
eration, when the atom changes its momentum by 102 to 
103 1lk. The adiabatic approximation is violated in the 
interaction of an atom with a strongly modulated light 
beam, and instead of formula (3) for the force it is 
necessary to use the general expression 

~( d. ) dE F=fL p- V +c.c., ,V=-, 
dx fl 

(14) 

where p is the dipole moment (measured in units of d) 
induced by the field. 

If a traveling pulse of light, contained within the time 
interval between tl and t2, falls on an atom, after its 
passage the momentum of the atom is changed by the 
following amount: 

" S dtF(t)='/,fzk[q(tJ-q(t,)], (15) 
<, 

where q(t) denotes the difference between the populations 
of the upper and lower levels. This expression is ob
tained from formulas (14) and (19) (see below). It is 
clear from it that, under the influence of a 7f pulse [7J an 
atom, which is originally in its ground state, goes into 
the excited state and changes its momentum by flk, If a 7f 

pulse traveling in the opposite direction again acts on 
the atom, the atom returns to the ground state and its 
momentum again changes by 11k. The total change of the 
atom's momentum per cycle is equal to 2flk. 

It is important that 7f pulses, which are traveling in 
opposite directions, act on the atom in strictly alternat
ing order. Such conditions can be approximately realized 
in a field of the following special type. Let us consider a 
field E1 , generated by a laser in the self-locking mode, 
in the form of a periodic sequence of rectangular 7f 

pulses: 

(16) 

where T = T+ + L is the period of the function El(t) and, 
in addition, the condition T + « L is satisfied. The fre
quency of the field WI = Wo, and the amplitude satisfies 
the condition for a 7f pulse, namely, 2dEIT+ = 7f. 

and absorbs a quantum 11k during the small time interval 
T+, and under the influence of the weak field E2 = EIT+h
« El the atom undergoes a transition to the ground state 
and emits a quantum -flk. As a result a force acts on 
the atom; after averaging over the period T this force 
takes the form 

Pit") =2nkq(t")/,,,. (17) 

where tn = nT and n is an integer. 

Since each of the pulses, which transfer the atom to 
the ground state or to the excited state, differs somewhat 
from a 7f pulse, q(t) varies slowly with the passage of 
time. The deviation from a 7f pulse determines the maxi
mum number of periods N during which the force (17) 
keeps the same sign. In order to estimate N we intro
duce the small parameters E + and E_ which take the 
deviation from 7f pulses into account: 

2dEzL=n+e_, 

2d/E,e'·,+<k'+E,e'·,-i1<> / ",+=n+e+. 
(18) 

If E+ and E- were constant quantities which did not depend 
on the number of the pulse, then a change in the sign of 
q(tm) would occur during the time interval TIE. The 
corresponding estimate for the number of periods is 
N ~ E-r, where E ~ E. ~ c. 

In the other limiting case when the signs of E.± change 
randomly from pulse to pulse, the characteristic value 
is N ~ E-2• 

In our case, according to (18) Ex contains both a con
stant component, due to the inexact choice of the ampli
tudes and frequencies of the fields El and E2, and an 
alternating part associated with the interference between 
the fields El and E2. The question is asked, what about 
N: Is it of order E-1 or E-2? The following calculations 
amount to finding the criteria for the case N ~ E- 2. 

In order to effectively regard the phase ip = ipl - ip2 

as a random quantity, it is necessary to assume that ip 

depends on the time. In other words, we introduce a 
certain small amount of detuning between the frequencies 
of the fields El and E2. The problem consists in finding 
the dependence q(t). In order to solve this problem it is 
necessary to use the equations of motion for p(t) and 
q (t) :3) 

p=iVq, q=2ipV' + c.c. (19) 

In the model of rectangular pulses which we have 
adopted, it is easy to find the transition matrix from the 
state of the atom at tn to the state at tn + l' In the linear 
approximation with respect to E.t we find 

p (t n+,) =exp (-iljJ,,) p (t,,) +ie"q (t .. ), 
q(t,,+,)=q(t,,)+2iexp (-ilp,,)en·p(t") + c.c., 

1jJ,,=4kx(t,,) +2 (qo, (t") -qo, (t,,», 
e"=exp [iqo,(t,,)/2] (,,-(tn)+e+(t,,) exp [-i¢"/Z]). 

(20) 

The excess population changes very little with a change 
of n by unity, but the phase of the dipole moment gener
ally changes substantially. Changing to the interaction 
representation 

p(t,,)=r(t,,)exp ( -i .tlj;,) (21) 

and taking into consideration that r(tn) is a slowly vary
ing function, Eq. (20) can be represented in the following 
differential form: 

;-=i!l(1)q, q=2if-l'r+ C.C. (22) 
We shall assume the amplitude of the field E2 to be The function 

e(t) « dt constant and to also satisfy the 7f pulse condition, 2dE2T_ 
= 7f, and the frequency W2 = W 0' Thus, the atom is excited 

f-l(t)=-",-cxp i S ~Ij;(t)) 
o 
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which appears here can be approximated in the following 
way: 

bT=t S dt<F(xt)F(xO)IM,.,t.<F')IM. 
o 

(28) 

(t) Ie I· (I-I)'· 'f + 2kv " =_e!W ~ (,)= __ _ 

r 't' ' 't" 
(23) Consequently the displacement I5x in the indicated direc

tion can be expressed as 
where to is a slowly varying function of the time and of 
the initial phases (the explicit form of to is unimportant). 

Thus, Eqs. (22) describe the "passage" of the atom 
through the resonance at t = to. In this connection the 
sign of q(t) does not change if the condition for rapid 
passage through the resonance, w »( E/T)2, is satis
fied. [7J Since we are interested in the limit of small 
velocities, the latter inequality implies the following 
condition on the frequency detuning of the fields E1 and 
E2: 

(24) 

Under this condition the force F(t) will have a fixed sign 
in the E-approximation. A change in the sign of q (t) can 
only occur during a time interval of order T/E2, so that 

(25) 

We note that theoretically E_ may be a small quantity 
whereas E+ ;::; T+/T-. Thereby we have proved that the 
maximum number of transmitted quanta is given by 

(26) 

In the self-locked mode of laser generation the period of 
the field T is determined by the length of the resonator, 
and the parameter T jL is the number of locked 
modes, raJ For N ~ 102 not less than 10 locked modes 
are necessary. 

Comparing F with the maximum possible value of the 
force F sp (given by Eq. (1)) we obtain 

F=4Fsp /y.. 

For T ~ 3 X 10-9 sec (the length of the resonator is 
50 cm) and y ~ 107 Hz, we find F"/F sp ~ 120. In this 
case the energy flux necessary for the 1T pulse of the 
strong field with T+ = T/10 and d ~ 1 D amounts to 
1.2 x 104 W/cm2, and the energy flux of the weak field is 
on the order of 1.2 x 102 W/cm2. 

4. HEATING OF THE ATOMS 

Up to now we have only considered coherent mechan
isms of acceleration, when the change of the atom's mo
mentum will be proportional to the number of quanta 
scattered or to t, and the change of energy is of order e. 
Now let us consider a stochastic mechanism of accelera
tion in which the energy is proportional to e. In this 
case the conditions necessary for the acceleration of 
atoms are simpler than for the case of coherent accel
eration. 

Thus, we shall assume that the oppositely moving 
waves in Eq. (2) have rather broad frequency spectra. 
Here the force F is assumed to vary stochastically with 
the time. If the width T-1 of the frequency spectrum 
satisfies the conditions 

.'kFo/M«.1, ku-r«'1, (27) 
then during the time T the atom moves a distance which 
is small compared to the wavelength. Therefore, the 
random force F can be regarded as spatially uniform. 

The change of energy 15 T, associated with the acceler
ation of the atoms along the direction of the force F, has 
the form 
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We note that such an acceleration mechanism cannot act 
for an unlimited period of time. As soon as the second 
inequality in (27) is violated, the atom begins to effec
tively interact with only one of the waves and the accel
eration slows down. However, for small velocities of the 
order of thermal velocities, this limitation may turn out 
to be unimportant. 

Let us estimate the effect of the acceleration of meta
stable helium atoms for the following case. We take 
E = 3 X 103 V/cm, T ~ 10-10 sec, and t ~ 10-4 sec. Then 
the energy of the atoms is 15 T ~ 3 X 10-2 eV, and the dis
placement I5x ~ 10 cm. Thus, He atoms in the 2 3S state 
can be effectively extracted from an atomic beam by 
using two, oppositely moving light beams with an energy 
flux of 5 x 104 W/cm2. Here am ~ 1.2 x 1011 Hz. 

5. THE PRODUCTION OF AN 
INVERTED POPULATION 

Now let us consider the possibility of using light 
pressure to select excited and unexcited atoms. In order 
to extract excited atoms from an atomic beam, one can 
use the acceleration of trapped atoms. For this purpose 
it is sufficient to have a relatively small rate of change 
of the frequency: n ~ 1016 sec-2. Such a method is of 
interest since here the active atoms form a diffraction 
grating. Therefore, in this case effectively all of the 
atoms can radiate, and the small factor y/krv is not 
present in the gain. However, for this to happen it is 
necessary that the radiated wavelength 21T/kr must 
satisfy the condition .\ r ;S .\/2. In the case .\r « .\ the 
effective Debye-Waller factor becomes small. It is pre
cisely the last case which occurs in the transition from 
the metastable state of helium to the ground state. 
Therefore, here the diffraction grating turns out to be 
ineffective. 

The other possibility is related to heating of the 
atoms. Here the rate of extracting excited atoms from 
the beam may be very large, of the order of 
1022 cm -3_ sec-1. This implies that the density of the 
active atoms is determined in practice by the density of 
these atoms in the beam. A density of He atoms in the 
2 3S state of the order of 1013 cm-3 was obtained in the 
work by Fugol' and Pakhomov. [9J 

Let us estimate the possible gain ex associated with 
the transition from the metastable state to the ground 
state. The 2 3p - 1 1S transition takes place during 
10-2 sec, but the 2 3S - 1 1S transition occurs during a 
much longer time interval. In this connection the factor 
y/krv ~ 10-9 or much smaller, so that an appreciable 
gain can be obtained only at very large densities. 

A more realistic possibility consists in the utilization 
of the two-step transition 2 3S - 2 1p and 2 Ip - 1 1S. In 
this connection the intercombination transition 2 3S - 2 Ip 
(wavelength 8720 A) must occur during a time interval 
of the order of or smaller than the lifetime 1/y of the 
2 1p state, where y = 2 X 109 Hz. We can determine the 
required intensity of the 8720 A radiation from the con
dition 2 dE ~ -by. Using d ~ 2 X 10-3 D as the dipole mo
ment of the intercombination transition, [10] we obtain 
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E ~ 1.5 X 105 V/cm or an energy flux of the order of 
1.2 x 108 W/cm2• Thus, one can obtain an inverted popu
lation of the 2 Ip level relative to the ground state. In 
terms of the intensity of the 2 Ip - 1 IS transition the 
gain has the form 

(30) 

where n is the density of active atoms. Substituting here 
n ~ 1013 cm-3, we obtain QI = 2.7cm-1• If we assume that 
the factor limiting the density of metastable helium 
atoms is the Penning process, which has a cross section 
of the order of 10-14 cm 2, [llJ then for the lifetimes 
t ~ 10-5 sec of interest to us we have n ~ 1014 cm-3. 
Consequently QI ~ 27 cm-1. Perhaps it would be more 
promising to use helium molecules in order to obtain 
the maximum gain. 

One can also consider the same scheme of transitions 
for the metastable states of the Li II and Be III ions. 

6. THE FORCE ACTING ON AN ATOM 
IN A RESONANT FIELD 

In this section we study in more detail the force acting 
on an atom in the presence of a resonant field of the form 
E(x)e-it.t • If the induced dipole moment p of the atom is 
able to instantaneously follow the field, i.e., if 
p = Vf(IVI 2), then we are dealing with a gradient force 
F = V(H), where (H) is the average energy of the atom 
in the presence of the external field. However, if a cer
tain amount of retardation appears, this leads to the ap
pearance of a force component which is constant in 
space. The retardation, which is associated with reson
ance phenomena in the presence of a nonmonochromatic 
field, has been previously investigated. [6J The effect of 
retardation due to dissipative processes is studied be
low. 

Let us consider the case of a quasistationary field 
V(x)e-it. t in detail: 

V «A V. (31) 

With relaxation taken into account, the equations of mo
tion for the dipole moment p and the difference q of the 
populations have the form 

p+ (Y.ciA) p=iVq. 

tj+yq=2i(V'p- c.c.). 

(32) 

(33) 

The relaxation frequency of the dipole moment is denoted 
by Y l' For the free atom (in the absence of collisions) 
we have Y 1 = y/2. Here the distinction between y 1 and 
y/2 is preserved in order to emphasize certain charac
teristic features of the retardation effects in weak fields. 

As has already been mentioned in the Introduction, 
we are interested in the regime of strong fields and large 
detuning: 

V~A~y. (34) 

But even upon the fulfillment of this condition, it is gen
erally impossible to neglect relaxation in Eqs. (31) and 
(32) since there is one more parameter kv having the 
dimension of a frequency (v is the velocity of the atom 
relative to the wave), which may be of the order of y. 

According to conditions (31) and (34) the approximate 
solution of Eq. (32) can be represented in the form of an 
expansion in powers of 1k: 

Vq . ( d ) Vq p=--+! -+y1. -. 
A dt A' 

(35) 
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The second term in this expression is small, but it is the 
only one which gives a contribution to the equation for 
q(t): 

q[ H8 (t) ]+[e(t) +Y+Y1.8 (t) ]g=~y. (36) 

Here we have introduced the dimensionless intenSity of 
the field, E(t) = 4IV(t)j2/t.2. 

The solution of Eq. (36) has the following form: 

q(t)=-YTJ(t) f dt'TJ(t')exp ( - S dTr(,)), 
_00 t' (37) 

(t)= 1 r()~ Y+h8 (t) 
TJ (H8(t)) 'I,' t - Hdt) . 

In order to reduce the solution to simple, final form
ulas, let us investigate the two limiting cases of weak 
and strong modulation E(t). We note that in the rest 
frame of the wave we have 

4 
8 (x) =8.+8, (x), 8.= ~(V,,+v,') =const; 

(38) 

8,(X) =8" cos 2kx, ,,,=8V,V,(,1,', 

so that the depth of the modulation is determined by the 
parameter 1010/100' 

The Case of Weak Modulation 

First let us consider the limit 101 « Eo. In this case 
in the linear approximation with respect to 101 we find 

q(t)=q.+A8,(X(t))+yB ~dTeXp(-r'T)e'(X(t-T)); (39) 

, r, = '+'1.8 0 , 

1',(1+£,) , 1+8, (40) 

A 
go B= (2+8,) h -1 

2(1+£,)'/" 1'0(1+8,)' 

The last term in the expansion (39) with respect to 101 
describes the retardation effect of interest to us. 

Let us turn our attention to the behavior of the coeffi
cient B in a weak radiation fieldo When Eo « 1 we have 
either B "" 2y 1/Y - 1 for y 1 > y/2 or B "" 100/2 for y 1 
= y/2. Such an external field dependence of B can be 
understood from the following considerations. 

The change in the population difference is propor
tional to the energy radiated by the atom per unit time. 
The radiated energy consists of coherent and incoherent 
parts. The coherent component in resonance fluores
cence is proportional to the intensity of the external field 
and locally depends on E(X); it corresponds to the sec
ond term in Eq. (39)0 

For y 1 = y/2 (in this case the Single-photon incoher
ent scattering is forbidden by the law of energy conser
vation) the incoherent component is of the order of the 
square of the external field intensity and is a nonlocal 
function of E(X). For y 1 > y/2 the prohibition against 
single-photon scattering is lifted, and the incoherent 
component becomes of first order in the external field 
intenSity (for more details see, for example, [12J ). 

Calculating the force F with the aid of Eqs. (14) and 
(39), we assume that the atom is infinitely heavy and 
moves with constant velocity so that x = vt. As a result 
we obtain 

d 
F(x)=/(x) +1, /(x) =-'//IA g, dx 8, (x); (41) 

_ 2r,kv 
/=/0 4(lw)'+ro" j,='IJikt:J. (1 +eo)B8,,', (42) 
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Here f(x) is the usual gradient force, obtainedj.n the 
linear approximation with respect to ElO, and f is the 
spatially constant component which is related to the re
tardation and of order E~o (the upper bar indicates aver
aging over the spatial oscillations). The velocity de
pendence has a resonant behavior of exactly the same 
type as the real part of the atomic susceptibility. I!! a 
weak field we have f ~ Eio Eo ~ E3 for Y.1 = y/2 and f ~ E2 
for y.1 > y/2. 

The Case of Strong Modulation 

Now let us proceed to the case of strong modulation, 
when ElO ~ Eo ~ 1. Here we shall assume the atom's 
velocity to be large: 

kv:2>1· 

Then the formula for the force f takes the following 
form: 

(43) 

(44) 

The dimensionless factor C which enters here depends 
on the average energy Eo of the field (or, for a fixed 
value of the field, on the detuning 6) and on the modula
tion depth ElO/Eo. 

In order to find C it is necessary to evaluate the in
tegral (37) with inequality (43) taken into consideration. 
In this connection it is convenient to separatll. the f~nc
tions 1](t) and r(t) into their average values 1] and r plus 
the variable parts 1] (t) - 1) and r(t) - r. The integrals of 
the latter quantities are small; therefore, formula (37) 
can be substantially simplified, and we finally obtain 

C=~~[;(~)-1]. (45) 

Thus, the force f can be expressed in terms of the corre
lation between the fluctuations of the parameters 1] and 
r, which describe the effects of saturation and attenua
tion in the atom. 

The result of averaging in Eq. (45) can be expressed 
in terms of Legendre functions (see the Appendix). A 
plot of C as a function of 6 for a fixed energy of the 
external field and for Y.L = y/2 is shown in Fig. 3. Curve 
1 refers to the case E2 = El , and curve 2 corresponds to 
the case E2 = (l/2)E l . It is clear from the graph that the 
coefficient C may increase substantially with increasing 
depth of the field modulation. The maxima of the curves 
are noticeably displaced towards the side corresponding 
to small values of the detuning. In the case of curve 1 
we have C ~ Cmax f':j 0.1 for 6 f':j 0.2 dE/-h. Using this 
value of C, let us estimate the order of magnitude of the 
force f. The maximum force is reached for v ~ y/2k, 

C 
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and fmax ~ CdkE. Thus, we have fmax ~ 102 eV/cm for 
the resonance transition in He(2 3§) with E ~ 106 V/cm. 
However, in actual fact the force f can be utilized only 
for velocities much greater than y/2k (see Sec. 7). 

In concluding this section we again present the exact 
expression for the gradient force in a field of arbitrary 
intensity. Such an expression was previously investiga
ted in [5J; there, however, relaxation processes were not 
taken into consideration, The potential U(x) of the grad
ient force depends on the atom's velocity. This depen
dence Simplifies in the limit of small and large veloci
ties. 

In the case kv ~ y we have 

(46) 

The function 1]-l(X) determines the magnitude of the Stark 
splitting in the external field. 

For small velocities, kv « y, the potential has the 
form 

Izt"1J.. ( 1 ) U{x)=--In 1 +-e{x) . 
41 h (47) 

The two potentials (46) and (47) agree for small radia
tion energies. 

7. THE ACCELERATION OF ATOMS 

Thus, an average force facts on an atom moving in 
the field of a standing wave; its sign is determined by 
the detuning: For 6 < 0 the atom is decelerated by the 
wave, and for 6 > 0 it is accelerated. The possible ac
celeration effect is estimated below. According to Eq. 
(44), under steady-state conditions the atom's energy is 
a linear function of the time: 

'/2Mv'=CdEyt. (48) 

In such a regime the atom gains energy too slowly: In 
the extremely strong fields mentioned above, an energy 
of 1 eV is attained only over distances ~ 102 cm, 

The acceleration effect can be substantially increased 
if the frequency of one of the oppositely moving waves 
changes linearly with the time, so that the atom is in the 
field of a uniformly accelerated wave. Qualitatively the 
picture of the acceleration in this case can be understood 
from Fig. 4. In the rest system of the wave the force 
f(v) is balanced by the inertial force Ma on the atom 
(a denotes the acceleration of the traveling wave). In 
this connection there are two points of equilibrium, 1 
and 2. Point 2 is unstable with respect to small oscilla:. 
tions, but point 1 is stable. The magnitude of the force f 
is determined by the average equilibrium velocity Vl of 
the atom relative to the wave. 

Up to now we have regarded the atom as infinitely 
heavy and moving along a straight line trajectory, How
ever, in actual fact the velOCity of the atom, which has a 
finite mass, may be significantly modulated in the pres
ence of a strong field due to the gradient force. Here 
the depth OV of the modulation may turn out to be much 
greater than y/2k-the width of the maximum of the 
force £(v). It is obvious that the condition Vl ::G ov must 
be satisfied. Hence we obtain the following restriction 
on Vl: 

v,;;;'v,,= (2fJUIM) ''', (49) 

where 0 U is the characteristic variation in the potential 
of the gradient force. For~ ~ 0.2 dE (at the point 

A. P. Kazantsev 789 



corresponding to the maximum value of the force f) we 
have liU ~ 0.2 dE. Thus, we arrive at the following esti
mate for the largest possible accelerating force fM for 
an atom with mass M: 

f M=! (v .. ) "'0,21 (dEM) 'I,. (50) 

In a resonant field, clQse to the critical field for He ~ 3S), 
we have the estimate fM ~ 0.4 eY/cm. The ratio of fM 
to the maximum force fmax for an infinitely heavy atom 
is equal to y/2kVl ~ 4 X W- 3 (for the present example). 

We note that the parameter y/2kvl increases as the 
mass of the atom increases. In the limit of a macro
scopic solid particle with dimensions greater than a 
wavel~ngth, the gradient force f(x) tends_to zero, but the 
force f remains and may have the value f max' Compar
ing expressions (23) and (1) for the force, we find 

(51) 

i.e., we obtain the square root of the atom's energy dE 
in the wave divided by the recoil energy (-hk)2/2M. The 
latter quantity is extremely small (usually it is consid
erably smaller than the linewidth 11 y). Therefore, one 
can state that the maximum possible force fM becomes 
larger than F sp as soon as the amplitude of the field 
becomes bigger than the linewidth 11 y. 

8. CONCLUSION 

Thus, we may state that the forces acting on an atom 
in a resonant field may be of three types. 

In the field of a plane traveling wave, a force F sp acts 
on the atom, this force being associated with the absorp
tion of a photon from the atomic beam and the emission 
of a spherical wave. The rate of such a process is de
termined by the spontaneous emission rate y. 

In the presence of a standing wave a gradient force, 
associated with the transfer of quanta from one light 
beam to the other, acts on the atom. This process oc
curs with the stimulated transition frequency 2dE/-il. 

Finally, a force due to a certain combination of spon
taneous and stimulated transitions also acts on an atom 
in the field of a standing wave. This force is spatially 
homogeneous and resonantly depends on the atom's 
velocity relative to the wave. All three types of forces 
can be used to accelerate atoms. The investigation of 
various acceleration mechanisms is of interest for the 
following applications: 1) The production of dense, 
monoenergetic atomic beams with energies up to sev
eral keY; 2) the extraction of excited atoms from atomic 
beams and the production of an inverted population with 
respect to the ground state; 3) isotope separation. 

In the first case we are talking about the utilization of 
very intense light beams, of the order of 109 to 
5 X 109 W/cm2. The selection of excited atoms and iso
topes can be achieved in beams of average energy flux, 
~ 102 to 105 W /cm 2. By extracting He atoms and ions of 
Li II and Be III in a metastable state from an atomic 
beam, one can obtain laser generation in the soft x-ray 
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region. One can utilize the resonant properties of the 
force (1) for isotope separation. [2J In those cases when 
the isotopic shift is rather large, the rate of selection 
can be substantially increased by using one of the accel
eration mechanisms considered in Secs. 3 and 4. 

The authors thanks S. G. Rautian for a discussion of 
this work and for a number of helpful remarks. 

APPENDIX 

The dependence of C on Eo and ElO can be expressed 
with the aid of the Legendre functions P± l!2(Z) of the 
first kind with half-integer subscripts: 

c= (~)'" p,!,(z)P-'I,(z)-1+~(P_,!(z)-l) , 
e, 1+£ 

, Z(1/11.-1) -(1- £,,' ]-'h 1 
b)= 1 +£0 ,Z- (i+;;f' z>. 

The parameter z determines the dependence on the aver
age energy of the field and on the depth of the modula
tion. 

Let us present asymptotic expressions for the func
tion C(Eo, z). For small energies, Eo« 1 and z - 1 « 1, 
we find C"" (1/4)(2/Eo)112(Z - l)(Eo + y/y 1 - 2); for large 
energies and for EIO = Eo we have 

c", C~ f' [( ~)' In(4(2£0),")-Ij, £,»1. 

l)He (23S) has roughly such a value for the critical field at frequencies 
close to the resonance frequency [3]. 

2)The acceleration of charged particles by nonstationary radiofrequency 
fields has previously been investigated by Gaponov and Miller [4]. 

3)Here we omit the relaxation constants, having in mind the case when 
the time of interaction between the atom and the field is small. 
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