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We calculate the differential cross section for elastic scattering for the collision of a charged particle 
and an excited hydrogen atom, a collision accompanied by transition between degenerate states of the 
atoms having the same principal quantum number n. The Schrodinger equation is solved in a basis 
of n 2 degenerate states of the atom; the dipole approximation is used for the interaction with the 
incident particle. The problem is solved in the quasiclassical approximation in the motion of the 
colliding particles; this approximation is constructed here in a somewhat modified form. This gives 
rise to dynamic wave functions of the quasimolecule, analogous to those obtained earlier in the 
nonstationary problem [11 and making it possible in this case to describe in a self-consistent manner 
the state of the atom and the motion of the colliding particles. Since the effective interaction depends 
strongly on the dynamic term, it follows that scattering through a given angle corresponds to several 
different quasiclassical trajectories, and this leads to interference oscillations in the cross sections. The 
mixing of 2s and 2p states is considered in detail. 

1. INTRODUCTION 

Demkov and the authors [1J considered scattering of a 
heavy charged particle by a hydrogen-like ion in an ex
cited state with principal quantum number n. The poten
tial of the interaction between the ion and the particle 
was taken into account in the dipole approximation1 ) 

V(r R)~_~Zr1)ZB -z ~ (1) 
, R B R'J 1 

where ZA aild ZB are respectively the charges of the 
nucleus of the ion A and of the incident particle B, r is 
the radius vector of the electron relative to A, and R is 
the radius vector of B relative to A. Since the ratio of 
the electron mass to the masses MA and MB of the heavy 
particles (nuclei) is small, the Born-Oppenheimer ap
proximation can be used and the motion of the heavy par
ticles and of the electron can be separated. Then the 
problem of calculating the differential scattering cross 
sections breaks up into two stages. 

We first solved the nonstationary quantum-mechani
cal problem for the atomic electron at a certain given 
nuclear trajectory R(t). Neglecting transitions between 
states with different n, it becomes possible to construct 
the dynamic terms of the quasimolecule, and also the 
corresponding dynamic wave functions /jJnn'n" (r, t) be
tween which no transitions take place during the course 
of the collision. 

In the second stage of the solution of the problem we 
considered the motion of the nuclei. In [1J we analyzed 
scattering by a hydrogen-like ion (ZA f. 1), so that the 
principal interaction determining the motion of the 
nuclei was the Coulomb interaction (the first term in 
formula (1)). It is essential that the indicated interaction 
is independent of the state of the atomic electron. In this 
case, the motion of the nuclei is specified, and the dif
ferential scattering cross sections are easy to calcu
late [1J. 

This approach cannot be used for the important and 
more complicated case considered in the present paper, 
that of the scattering of a charged particle by a hydrogen 
atom (ZA = 1). Since there is no Coulomb interaction 
here, the motion of the nuclei is determined by the dipole 
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potential connected with the linear Stark effect on the ex
cited states of the hydrogen atom. It is important that 
this dipole potential depends in a decisive manner on 
the state of the atom and can, in particular, correspond 
to attraction as well as repulsion between the nucleL 
Thus, to find the differential scattering cross sections 
it is necessary to obtain for the electron problem a solu
tion compatible with the motion of the nuclei, The trajec
tory of the nuclei then splits, as it were, in accordance 
with the different states of the atom, and interference 
effects must be taken into account for different trajec
tories corresponding to scattering through one and the 
same angle. 

Similar problems always arise in the theory of atomic 
collisions in the description of nonrectilinear motion of 
nuclei with allowance for several electronic states. The 
problem is usually solved by using adiabatic terms for 
the electrons and a quasiclassical approximation for the 
nuclei. The simplest case is resonant charge exchange, 
where two adiabatic electronic terms are taken into ac
count (see, e.g., [2J ). 

From the general point of view, the process consid
ered in the present paper has two interesting distinguish
ing features. First, several (n2 ) electronic states take 
part. More important is the use of dynamic rather than 
adiabatic electronic terms. The dynamic terms are con
structed in such a way that there are no transitions be
tween them even at finite velocities of the nuclei, whereas 
for the adiabatic terms these transitions are absent only 
in the adiabatic limit, i.e., when the relative velocity of 
the nuclei tends to zero. In this problem we have suc
ceeded (for the first time, insofar as we know) in obtain
ing dynamic terms that depend not only on the relative 
distance between the heavy particles, but also on their 
angular momentum. Inasmuch as the motions of the elec
tron and of the nuclei are not fully separated in the wave 
functions >!tnn'n" (r, R) corresponding to the dynamic 
terms, the quasiclassical approximation is constructed 
in a somewhat different form than is customary. This 
case is unique in that after simple and natural approxi
mations it becomes possible to solve a multichannel 
nonadiabatic problem in a quasiclassical approximation. 
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2. QUASICLASSICAL APPROXIMATION 

To calculate the differential scattering cross sections, 
we first diagonalize the Hamiltonian operator on the 
hydrogen functions of the given n-Iayer for the incident 
charged particle interacting in dipole fashion with the 
hydrogen atom. The motion of the incident particle is 
assumed here to be quasiclassical. The obtained eigen
functions will then be used to construct the scattering 
amplitude. 

The Hamiltonian operator for the considered system, 
after separating the motion of the mass center, takes the 
form 

(2) 

where M = MAMB/(MA + MB)' In the wave-function 
space of the hydrogen atom with given n, the Schrodinger 
equation for the wave function of the entire system 
w(r, R) takes the form 

[ 1 , rR] 
- 2M V R -ZB Ii' 'V (r, R) =E'V (r, R), (3) 

where E is the heavy-particle collision energy in the 
c.m.s. 

In addition to the usual integrals of motion (the square 
of the total angular momentum, L2, and its projection on 
the selected axis), the Schrodinger equation (3) has in 
this problem a specific integral of motion A 2) 

:\ 'I' (r, R) = [ -.2"'+2MZB ; ] 'V (r, R) =A 'V (r, R), (4) 

Here Yis the angular momentum-operator of the rela
tive motion of the heavy particles. Owing to the presence 
of the additional integral of motion A, it is possible to 
separate the angular and radial dependences in the wave 
function and to seek a solution of (3) in the form 

(5) 

where N = R/R is a unit vector. The radial function f(R) 
satisfies the equation 

The functions <Pi (r, N) are certain hydrogen wave func
tions with given n, taken in a coordinate system with x' 
axis directed along N and with the plane x'y' coinciding 
with the plane of the vector N and the z axis. It follows 
from this definition of the functions <Pi that 

L,'f!'= (.2", +1,) 'f!,=o, 

(7) 

(8) 

where I is the angular momentum of the atomic electron. 
This leaves a leeway, which will be eliminated later on, 
in the choice of the functions <Pi' 

We shall consider henceforth scattering of particles 
moving along the z axis with large angular momentum, 
Since the angular momentum of the electron is 1 ~ n ~ 1, 
the total angular momentum is L »1. For our purposes 
it suffices to diagonalize the operator L 2 accurate to 
terms of the order of unity, Consequently, we can omit 
the fourth, fifth, and sixth terms from the equation 

(9) 

+2(.Pc,) (I'f!,) +2c, (.PI'f!') +c, (l'rp,)+c, (.P''f!,) ]=L(L+1) ~ c,(N)rp,(r, N)· ....... , 
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Choosing ci to depend only on the polar angle 8 (this 
agrees with the motion of the particle along the z axis) 
and using relation (7), we can easily verify that the sec
ond and third terms of (9) cancel each other, and we ob
tain for ci the equation 

.2"'c,(O)=L(L+1)c,(O). (10) 

The solutions of (10) are Legendre polynomials that 
depend on L and do not depend on the choice of the func
tions <Pi in the expansion (5). In the quasiclassical ap
proximation, the Legendre polynomials 

PdcosH)"'_ .. i. {exp(i [(L+.!...) 0+-"-]) 
V2nL Sill () 2 4 

-exp ( -i [ ( L + + ) 0 + : ])} (11) 

contain two exponentials that describe particles that are 
scattered into one and the same solid angle (8, <1», but 
move in different sides of the scatterer in the plane of 
the azimuthal angle <I> (this corresponds to attraction and 
repulsion potentials, and in our problem both cases are 
realized, depending on the state of the atom). As will be 
shown later on, this leads in the electron problem to the 
appearance of effective magnetic fields perpendicular to 
the scattering plane and having opposite directions 
(cf. [1J). To fix the direction of the magnetic field it is 
therefore necessary to choose only one exponential 

c,(0)~c±(8,L)=--, _i_. -CXP{±i[(L+.!...)O+-"-]}. (12) 
} 2nL Sill e ,2;' 

To determine the functions <Pi and the eigenvalues A, 
we add equations (4) and (9) term by term and, neglecting 
terms of order of unity, obtain 

L [2('pc±) (I'f!,)+2MZBrNc±'p,]=[L(L+1)H] Lc±rp,. (13) 

When (12) is taken into account, Eq. (13) coincides with 
Eq, (14) of [1J. To diagonalize (13) it suffices therefore 
to choose for <Pi the functions I/!nn'n" introduced in the 
cited paper. The physical meaning of the functions I/!nn'n" 
is connected with the effective magnetic field H that re
sults from changing over to a rotating coordinate system, 
and is directed along the angular momentum of the heavy 
particles, whereas in our case for the functions c + the 
field H should be regarded as directed along the vector 
ez x N (ez is a unit vector along the z axis), with the 
direction of H reversed for the functions c-. Thus, Eq, 
(13) is diagonalized by the functions 

j 

± '\1 j j ± 
1)'",,',,"= ~ D"",(O,~,O)D",,,(O,-~,O)¢,,,,,,, (14) 

n', n"=-j, -j+1, ... , j; j=(n-1)/2, 

where n-imm,(QI, (3, y) is the Wigner function with 1T/2 < (3 

< 1T and tan (3 = -3nZBM/2L. The basis functions if~i1i2 
are specified here in terms of the rotated coordinated 
systems introduced above, with the z' axis directed along 
the corresponding magnetic field, i.e., for the functions 
l/!~i1h along the vector ez x N, and for lfini1i2 in the oppo
site direction, with the quantum numbers i1 and i2 con
nected in simple manner with the parabolic quantum 
numbers nl, n2, and m: 

i,=llz(m+n,-n,), i,=l/'(m-n,+n,). (15) 
± 

The values of the parameter A corresponding to if nn' nil 
do not depend on the index ± : 

A"n' ,," =-L(L+1) + [4L'+ (3nZBM) ' F' (n'+n"). (16) 
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Regular solutions for Eq. (6) are spherical Bessel func
tions 

f nn' ,," (II) ~ [n/2kR ]"/[-;,,,,,,,,,+'1.]" (kR), (17) 

where k = [2MEJl /2 • The question of the choice of the 
solution is discussed in detail in Sec. 3. 

Thus, under the asswned approximations, the opera
tors .If', L2, Lz ' and A are simultaneously diagonalized 
on the functions 

'I' n:'n" (r, R) ~tnn'n" (R) ¢n":.'n" (r, N)c" (B, L). (18) 

Taking (14) into account, we construct from the func
tions >J!~n'n,,(r, R) a solution of the Schrodinger equation 
(3) containing a plane wave incident along the z axis on 
a hydrogen atom in a certain initial state3 ). Separating 
the diverging wave in this solution, we obtain the scatter
ing amplitude. For the scattering amplitude in the basis 
of spherical hydrogen functions we obtain 

F'","m' (e) =- ~ (2L+1), {A,mn'n" (n)A;'m'n'n" (0)· 
L.n',n" 2k'12nL sin () 

x exp (i [ (L + ~ ) e+ : + 26nn 'n" ]) -A;mn'n" (n)A,'m'n'n' (8) 

XPXP(-i[(L+~)8+~-26 ,,,])l 2 4 nn n J ' 

() " '( 3n 3n) I ... A,mm'n" 0 ~ ~Dm" -0-'-0-,0 (ji.ji,lrt)e""+''''· (19) 

D~'i'(O,~, O)D~"i'(O. -~, 0), 

where (jidi211m) are Clebsch-Gordan coefficients. We 
have used here the connection of the functions <Pnhh with 
the spherical functions CPn 1m [5J 

'i 

¢ni';,~ ~ (ji.ji,llm)<pn'm. ...... 
1=lml 

(20) 

The Wigner functions D~m,(371/2, 371/2, 0) appear on 
going over from the primed coordinate system to the un
primed one. The phase shift Dnn/n" is determined in ac
cordance with the form of the radial function fnn'n" (17): 

~ 6'"'n"~L+4--( -Ann'n"++)"" (21) 

Replacing the summation over L by integration, as is 
customary in the quasiclassical approximation [6 J , and 
calculating the integral by the stationary-phase method, 
we obtain for the scattering amplitude 

Flml'm'(8)~-~[ \'l (Lnn'~"(8) I dLnn'n" (0) I)" 
k n'~>n Sill El dB 

XA'mn'n" (n)A':m'n'n" (8)exp (i [( Lnn'n" + +) 8+26"n'n"]) 

\'l (£nn'n"(8) I dL"n'n,,(8) 1)'1, . + "-' sin 9 d8 A'mn'n" (n)A"m'n' ,," (0) 
,,'+n"<O 

X exp (-i [ (Lnn'" + ~) 0-26nn '"" ])] (22) 

where Lnn' nil is a function of 8 defined by the equation 

2d6nn'n"ldL~=F8, (23) 

The upper and lower signs being taken for n' + nil > 0 
and n' + n" < 0, respectively. 

3. CROSS SECTION FOR THE TRANSITIONS 2s -+ 2p 
AND THE REGION WHERE THE THEORY IS 
APPLICABLE 

As will be shown later on, the quasiclassical approxi
mation is applicable for not too large angular momenta 
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(24) 

(in the present section, the difference between Land !£ 
is immaterial). In this case Eq. (23) takes the form 

1 '+' ~,= [ 1 + 3n(n';n")ZDM] -", 

J1 L ",," 
(25) 

and the Lnn'n" (8) dependence thus turns out to be the 
same as in the quasiclassical problem of scattering by a 
potential 

(26) 

In classical mechanics, for an attraction potential 
inversely proportional to the square of the distance, 
orbiting can take place, wherein the particles trace 
several orbits around the common mass center in the 
course of the collision. In this case the quasiclassical 
expression (22) for the scattering amplitude must be 
altered. Collisions with orbiting, however, are connected 
with relatively small L, and therefore make a relatively 
small contribution to the scattering through angles that 
are small in comparison with 71: 

9/n«1, (27) 

and this corresponds to the inequality 

L'~'I,n(n-1)Z"M. (28) 

It is assumed in this paper that the conditions (27) 
and (28) are satisfied, and collisions with orbiting are 
disregarded. 

Limitations on the side of small scattering angles are 
due to the known condition for the applicability of the 
quasiclassical approximation to scattering problems 

£8~1, (29) 

which can be reduced to the form (24) if (25) is taken 
into account, or can be represented in the form 

8 1 n~ ['I,n(n-1) ZBM]-'. (30) 

In the region of small R (R :;; 3n2/2), the dipole ap
proximation for the interaction of a charged particle and 
an atom is not applicable [lJ. However, if the angular 
momentum of the incident particle is large, then the be
havior of the wave function in this region is determined 
by the centrifugal barrier and depends little on the form 
of the interaction potentiaL Therefore, if the condition 
(28) is satisfied, it is necessary to choose a regular 
solution of Eq. (6), as was indeed done in Sec. 2. 

The region of applicability of the other employed ap
proximations was considered in detail in (lJ. The in
equalities (23), (28), and (30)-(33) obtained in that refer
ence remain in force also in our case. For the reactions 

H(2s)+H+~Il(2p)+I1, (31) 

H(2s) +fl+~H (2s) +l! (32) 

the region of applicability is illustrated in the figure. It 
can be noted that neglect of the charge-exchange process 
leads in this symmetrical case to more Significant limi
tations than in [lJ • 

Among the potentials V nn'n" (26) there are some that 
differ only in sign, for example Vnn'n" = -Vn-n'-n'" 
In the approximation (28), such potentials lead to scat
tering through one and the same angle; the correspond
ing trajectories lie in the scattering plane on different 
sides of the interaction center. In particular, at n = 2 we 
have 
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Limits of the validity of the approximations made in the calculations 
for the reactions (31) and (32). I~Neglect of relativistic level splitting~ 
condition (28) of [1]; Il~neglect of transitions with change of n~con
dition (33) of [1]; III~neglect of the deviation from a dipole potential~ 
condition (30) of [1] , and also neglect of mixing of terms with different 
n in the effective electric field~condition (32) of [1] ; IV ~neglect of 
resonant charge exchange~condition (31) of [1] ; V ~limit of applica
bility of the quasi classical approximation~condition (30) of the present 
paper. The dashed lines show the positions of the first five maxima of 
the cross section for the 2s --+ 2p transition. 

so that there exists only pair of the indicated trajector
ies, and the cross sections are particularly easy to cal
culate, With the aid of (22) and (23), and taking (25) and 
(27) into account, we obtain the differential scattering 
cross section for th7 reactions (31) and (32): 

3rrZB ---
a"_2p(O)~ '. sin2~(1+cos2~)sin21'12rrZBMO, (33) 

4EO' sm 0 

a,,_,,(O)~ 3rrZB sin'~cos'1'12rrZHMO, (34) 
4EO'sin B 

19 ~~~ (3Z B MB/rr) "', 

where E = Mv2/2 is the collision energy in the c.m.s. 
and 8 is the scattering angle in the same system, In the 
region where the theory is valid (see the inequalities 
(27) and (30)), the cross section oscillates as a function 
of the angle, The quantity Ea(8) does not depend on the 
energy E, The latter follows directly from the fact that 
the dipole-interaction potential and the Laplace operator 
are transformed in the same manner under a scale 
transformation (compare with the form of the differen
tial cross section in the simple 1/R2 potential [7J). 

The positions of the first five maxima of the cross 
section are shown in the figure. We note also that, as 
indicated in [lJ , we can expect the very existence of 
interference oscillations to continue even outside of the 
limits of applicability of certain approximations assumed 
in this paper. 

With the aid of the obtained formulas we can also 
calculate the cross sections of transitions between fine
structure sublevels (this is discussed in greater detail 
in [1J). The cross sections of the transitions 2S1/2 = 2p1/2 
and 2S1/2 = 2p3/2 differ from the cross section (33) only 
by statistical factors, and for the transition 2p1/2 = 2p3/2 
we obtain 

3rrZB 
----(1 +cos·· ~)cos' 1'12rrZB JlfO. 
18EO' sin B 

(35) 

In this paper we do not calculate the total scattering 
cross sections. Inasmuch as the trajectories of the 
heavy particles differ little here from straight lines, it 
is difficult to expect the total cross section to differ ap
preCiably from that obtained by Chibisov [8J . 
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4. CONCLUSION 

As was indicated in the Introduction, a question com
mon to problems of atomic collisions is that of determin
ing the potential in which the nuclei move if several 
states are considered in the quantum-mechanical elec
tronic part of the problem and the motion of the nuclei is 
described by classical mechanics. The problem consid
ered in the present paper differs in that we were able to 
determine explicitly the dynamic wave functions 
-¥nn'n,,(r, R), between which no transitions take place, 
with the corresponding potential containing, in addition 
to the dipole interaction, also an effective magnetic field, 
and having consequently a dependence on the momentum 
of the heavy particles. The dependence of the dynamic 
terms on L is qualitatively due to the fact that the dipole 
moment of the hydrogen atom is not directed exactly at 
the incident particle, but lags it somewhat. However, our 
investigation has shown that for scattering through angles 
that are not too small [Eq. (30)] this lag can be neglec
ted, which corresponds to the use of the adiabatic ap
proximation. The magnetic field can then be disregarded 
({3 = 1T/2), and the particle moves in the potential V nn' n" 
(26) which can be obtained by averaging the initial inter
action potential r • R/R3 over the electronic states 
I/!nn'n" and taking the inequality (24) into account. The 
phase difference acquired in scattering through one and 
the same angle 8 in the potentials V nn'n" leads to inter
ference oscillations in the scattering cross sections. 

Comparing our results with those of(lJ, where the 
trajectories of the heavy particles were governed by 
their Coulomb interaction, we indicate first that, in con
trast to[1J, in our case the states I/!nn'n" with n' + n" = 0 
make no contribution whatever to the differential scatter
ing cross section, inasmuch as there is no particle inter
action for these states in the employed approximation. 
In the adiabatic case with n = 2 the oscillations in the 
scattering cross section are due to the interference of 
two states that are split from the initial level of the 
hydrogen atom as a result of the linear Stark effect. The 
phase differences that determine the interference pattern 
are different because in [lJ the L(8) dependence was de
termined by scattering from a Coulomb potential, 
whereas in our case it is determined by scattering from 
a potential 1/R2. When the adiabatic approximation 
ceases to be valid, the interference pattern becomes 
more complicated, corresponding now to the mixing of 
three states (see Fig. 1 of [lJ). In our problem, however, 
the condition for applicability of the quasiclassical ap
proximation and the adiabaticity condition coincide, and 
all the results admit of a simple interpretation. 

We note that the quasiclassical approximation con
structed in the present paper (Sec. 2) can be generalized 
directly to include the case of scattering of a charged 
particle by a hydrogenlike ion, i.e., for the general po
tential (1). All that changes is the equation for the radial 
function (6), the solution of which is now a Whittaker 
function, and this leads to another expression for the 
phase (21). Thus, it becomes possible to refine the re
sults of [1J by taking into account the influence of the 
dipole interaction on the motion of the charged particle. 

An important role was played in the problems con
sidered in the present paper and in [lJ by the presence of 
the large parameter M, the reduced mass of the nuclei. 
It made it possible, in particular, to use a classical or 
quasiclassical description of the motion of the incident 
particle. For the scattering of an electron by hydrogen-
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like systems (M = 1), the region where the theory is 
valid is strongly limited. It would be desirable in this 
case to consider the quantum problem, while retaining 
the remaining approximations. 

The authors are deeply grateful to Yu. N. Demkov for 
interest in the work. 

ilThe atomic system of units is used. 
2)The existence of an additional integral of motion in n·subspace was used 

in a somewhat implicit form by Seaton [3] and by GaTlitis and Dam· 
burg [4], where the operator A was diagonalized for the case n = 2 in 
the representation of the total angular momentum without using the 
quasiclassical approximation. 

3)We note that the solution is obtained in this case in the form of an in· 
finite sum, each term of which has formally a singularity at e = 0 and 
at e = 11. It must be borne in mind, however, that the solution has been 
constructed in the quasiclassical approximation and does not hold near 
the indicated values of e (see (30)). 
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