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The behavior of the electromagnetic and gravitational fields is investigated for the metric of a 
rotating black hole. We show that the rotation leads to a (21 + I )-fold splitting of the frequency of 
the 1 th spherical harmonic of the field. In addition, in the case of the electromagnetic field the 
"otT-diagonal" terms of the metric lead to the appearance of both "electric" and "magnetic" 
components of the electromagnetic field tensor, independent of the character of the source. Here the 
invariant E.Ho;bO. We show that the decay laws of the external fields produced by a rotating 
collapsing mass, as well as the "tails" of wave packets propagating in the metric of a rotating black 
hole, have the same form as in the case of absence of rotation. 

1. The behavior of the external fields created by a 
collapsing object are of fundamental interest in the 
theory of gravitational collapse. It is known[l] that for 
an external observer the final stage of evolution of a 
collapsing object is a stationary state. The laws of 
"expiration" of all nonstationary external fields 
created by a collapsing object show how this transition 
is realized and how the formation of a stationary cap­
turing surface SSch (Schwarzshild horizon) is formed 
in the process of collapse. 

In the case when the black hole has a vanishing total 
angular momentum this problem was solved in[2,3]. 
Here we consider the behavior of the fields for which 
the sources are rotating collapsing objects. We shall 
consider the deviations from spherical symmetry as 
s mall (i.e., the contribution to the total energy of the 
black hole from nonstationary perturbations should be 
much smaller than the self-energy Eo ~ Mc 2 ). Then 
the problem of behavior of the external fields of a 
collapsing body reduces to finding the answer to two 
questions [2,3l: 1) one must find the solutions to the 
field equations in a given external metric in vacuum, 
2) the solution must satisfy matching conditions at the 
surface of the collapsing object and the condition of 
absence of incoming waves at space like infinity. 

The "external metric" for the case of a rotating 
black hole is the Kerr metric[4] 

:S-r,r:S ( r,m' sin' 0 ) 
ds'=--dt'--dr'-:SdO'- r'+a'+ sin'Od'l" :s il :s 

2ar,r sin' 8 (1.1) :s dt d'l'. 

Here we have used the notations 

(1.2) 

and a system of units with c = G = 1. The total angular 
momentum of the black hole is K = aMc = aM, where M 
is its mass; rg = 2M. The Schwarzschild surface SSch 
of the metric (1.1) is defined by the equation Do = (r 
- r +) (r - L) = 0; the solutions of this equation are 

(1.3) 

Unfortunately, the degree of generality of the exact 
solution (1.1) is unknown. At any rate, the metric ob­
tained from (1.1) in the linear approximation in a/ rg 

r-rg r 2argsin20) 
ds' = -- dt' - -- dr'-r' (dO'+sin' 8 d'l") - dt d'l', (1.4 

r r-~ r 

is the general expression for the external metric of a 
slowly rotating black hole[l]o 
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2. We consider some properties of the solutions of 
Maxwell's equations in a space with the metric (1.4). 
Since the total angular momentum of the majority of 
stars is small and their electromagnetic fields are 
more accessible to observation, this problem is of in­
dependent interest. Moreover, the results given in this 
section remain valid also in the general case. The 
system of equations for the electromagnetic field in the 
metric of a slowly rotating ball in the vacuum is 
written out in the Appendix. Equations (A.3) differ from 
the equations in the Schwarzschild metric by a change 
of the "potential" and the appearance of inhomogeneous 
right-hand sides. For small a (as will be seen from 
the result in the general case too) one can take into ac­
count the correctIons related to these effects independ­
ently. 

We first conSider static axially-symmetric fields (it 
will be shown below that a solution which is static in 
the whole space is necessarily axially symmetric). For 
k = n = 0 the system (A03) takes the form (in this sec­
tion we set rg = 1) 

E," +~- 1(l+1) E, = 3ial(l+1) [H'+I _ H,_, 1 
r(r-1) r(r-1) r'(r-1) 21+3 21-1' 

Hi' +~- I(IH) II, = 3ial(l+1) [2El'++13 - E21'_-111. 
r(r-1) r(r-1) r'(r-1) (201) 

The general solution of homogeneous equations can be 
expressed in terms of hypergeometric functions and 
equals 

C,r'F(-1+1, 1+2; 3; r)+C,r-'F(I, 1+2; 21+2; r- I), (202) 

where C1 and C2 are arbitrary constants o 

The inhomogeneous terms of the equations lead, in 
general, to the appearance in the solutions of all spheri­
cal multi pole harmonics. To first order in a, however, 
one does not have to take into account the "feedback" 
and the chain of equations decouples. As an example we 
list the solution which for a = 0 goes over into the 
field of a magnetic dipole d parallel to the Z axis: 

F,,=3d1jJ (r) sin 0 cos 0, FI3='/,d1jJ' (r) sin' 8, 

F" ~ 9adX (r) (3 cos' 8-1), 
r" 

F"' = - 9adx' (rl sin 0 cos A: 
r' 

r-1 
1jJ(r)=2r+1+2r'ln--, 

r 

"(r)=~+~+.~r_.40r'+ (~+1Or'-- 40 r3)ln r-1 . 
" 3r 9 3 3 3 3 r 

For r » rg we have 
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(2.3) 

(2.4) 
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F,,""-2d sin 8 cos 8 , 
r 

F13"" d sin' 8 
r' ' 

FOI ad(3' • 3ad "", cos 8-1), FO-""--sin8cos8. 
r r' 

Going over to locally Euclidean coordinates for 
r = ro » rg we obtain for the "physical" electromag­
netic field strengths the expressions 

(2.5) 

Similarly any 2/-pole source leads to the appearance of 
both "electric" and "magnetic" components of the 
electromagnetic field tensor. In the lineal' approxima­
tion in a the solution contains terms of tensorial 
dimension from Z - 1 to I + 1. Finally, we note that the 
invariant E· H ;£ 0 (except at the equator)o Therefore 
in distinction from the well-known unipolar effect in the 
case under discussion there exists no reference frame 
in which the electric field should be absent. 

Obviously, the same situation occurs a~so for the 
wave solutions 0 The corrections to E and H which 
appear in this case decrease like 1/ r 4 for r - o(). 

Let us now consider the effects related to the change 
of the "potential." The equation in which we are in­
terested is of the form 

E,,+ __ 1_E'+[~_ 2ank _1(1+1) ]E=O (2.6) 
r(r-1) (r-1)' r(r-1)' r(r-1) . 

Or going over to the new coordinate x = r + ln (r - 1), 
we have 

d'E +[k2_ 2ank_(r-1)1(1+1)]E=0. (2.7) 
dx'l r3 rl 

For n>' 0 we consider first the solutions of Eq. (2.7) 
in the two asymptotic regions: 

a) for r";}>r" x»r, 

b) for r-r" -x»r, 
E-;:::;Caei(h-an)x+Cf,e-i(h-anl:c, 

(2.8) 

(2.9 ) 

Let a source with frequency k be situated at infinity. 
In this case for k » 1 we may set approximately C1 

"" C2 = 0, C4 "" C2 = C. Substituting (2.8), (2.9) into (A.2) 
and setting for simplicity CUo) = 1, C(l >'Zo) = 0, we 
obtain 

" E;::: .E PonI~e-lnlJ!e-!l{(t+X), r'A>r" (2.10) 
n=-Io 

" E~ .E P%e-in(9-aX)e-i1t(/+x), r,...,rr;. 

n=-IG 

Going over to a locally Lorentzian reference frame at 
the point r involves the following transformp.tion 1 ) 

'1'_ ip=cp-ar,t/r' , (2.11) 

for the metric (1.1), (1.4). Therefore, for a local in­
ertial observer (more precisely, for a local Schwarzs­
child observer) tha solution (2.10) has the form 

(2.12) 

Thus, the frequency k of a monochromatic wave at 
infinity will be split 2k + 1-fold near rg, and the solu-
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tion has the form of a superposition of waves with the 
frequencies k - an. Making in (2.7) and (A.2) the sub­
stitution k = n + an, it is easy to find that conversely, a 
frequency n given near rg will be split into 21 + 1 
components at infinity. If the source of radiation is at 
the point r = ro, the corresponding substitution is ob­
viously k = n + anrg/rg and the magnitude of the 
splitting at infinity IS K = argc/ rg (we transformed to 
dimensional units). 

Taking into account the term I (l + 1)/ r (r - 1) in the 
equations (206)- (207) does not change the result, since 
the "potential barrier" leads only to the appearance of 
a reflected wave and does not affect the frequency. The 
first paper in which the splitting of frequencies in the 
Kerr metric was pOinted out is[5l o There it was also 
pointed out that the splitting is related to the different 
redshifts for quanta with different projections of the 
angular momentum, Mz . 

One must consider separately the case of frequen­
cies k;S a. As can be seen from (2.6), the approxima­
tion linear in a becomes insufficient for such frequen­
cies and one must take into account further terms in the 
expansiono However, the splitting scheme is more 
general and valid for low frequencies als'). In particular, 
the zero frequency also splits, therefore a static solu­
tion in one asymptotic region of space may turn out to 
be a wave solution in another. It is obvious that the only 
solution which is static for all r is the axially-sym­
metric one, since for 11 = 0 there is no splitting. 

3. We now go over to an investigation of the behavior 
of the fields created by a collapsing rotating object. In 
this exposition we shall make ample use of the results 
of(3], quoted as I in the sequel. As in I, we use the 
standard notation .v(t, x) for the field function in terms 
of which are expressed the "physical" field compo­
nents and for which one can derive a closed expres­
sion. The behavior of the function 

(3.1) 

for l.arge time~ is determined by the analytic proper­
ties of its Fourier transform in the complex k plane. 
The spectral fundion fk in (3.1) is determined from 
the initial data and .vk, is the solution of the corre­
sponding field equations, having unit normalization of 
an incident wave and satisfying the boundary condition 

(3.2) 

In the case of vanishing total angular momentum 
.vk(X) satisfies the equation (cf. I): 

'1'." + [k 2 -U, (x) 1'1'.=0. (3.3) 

All the potentials VI (x) which appear in external fie ld 
problems for nonrotating objects have the following 
asymptotic behaviors: 

l(1+1) ( 2r, ) 
U,(x»r,)""-- 1+--lnx , 

x2 x 

U,( -x»r,) ""const· exp(x/r,). 

As was shown in I, the slowly decreasing "tail" 

V(x) = 2r,l(l+1) lnx 
x' 

(3.4) 

(3.5) 

leads to branch points of the type kn ln k for k - 0 in 
the function .vk(x). In going over to the t-representa­
tion according to (3.1), the contribution of terms con­
taining ln k turns out to be essential for large times 

A. A. Khar'kov 738 



and leads to power-laws for the decay, of the type 
'l1(t, x) ex: (t - xtn. 

In the first order with respect to the angular momen­
tum of the electromagnetic field one can obtain equa­
tions which are close in type to (3.3) (cf. the Appendix). 
However, as we have seen in the previous section, in 
the region of small k the linear approximation in a/rg 
is insufficient and one must take into account the next 
terms in the expansion. It is convenient to take directly 
the equations in the Kerr metric (1.1). Such equations 
have been derived by Teukolskii [6J. We make use of the 
following form of the equation for the function <ltk: 

d'~ + {k' + __ 1_ [-2r,rank+a'n'+ians(2r-r,) -ikr,s(r'-a') 
dx' (r+a')' (3.6) 

2anks' ] } +2ikrs/\-a'k'/\-1(1+1)/\- ---+a'k'/\cS, n -V. (x) qr. = 0, 
1(1+1) . 

where the following notations have been introduced 

r,'(r'-a') r,r/\ r 2(r'-a') 1] V_,= + - , 
4(r+a')' (r'+a')' r'+a' 

r,{r'-a') ( rga') a'/\ ( 5r,r) 
V -,= (r'+a')' r - r'+a' - (r+a') , 3 + r'+a' 

(.)_ (I'-n') (I'-s') + n's' + {(1+1)'-n'] [(1+1)'-s'] 
6,.,,- 1'(41'-1) "(1+1)' (1+1)'(21+1) (21+3) 

-2s' [ ((1+1) '-s') «1+1)'-n') (I'-n') (I'-s') ] 

(1+1)'(21+1) (21+3) l'(4I'-1) 

The coordinate x is related to the radial coordinate r 
in (1.1) by means of the relation 

x=r+M( M +1)ln(r-r+)-M(-_M_- 1 )ln(r_r) (3.7) 
(M'-a')'" (M'-a'),/'-

The parameter s can take on the values s = 0 (scalar 
field), s = -1 (the electromagnetic field), s = -2 
(gra vitational field). The function 'l1k ( s, r) in (3.6) is 
related to the radial function R( r) introduced by 
Teukolskil [6J in the following manner: 

qr.(s=O, r)=R(r), qr.(s=-I, r)=(r'+a')'/'/\-'''R(r), 
qr A (s=-2, r) = (r'+a') '/'/\ -'R (r). 

Equation (3.6) is written for different field components 
than (3.3) and goes over into (3,3) for a = 0 only in the 
case of the scalar field (s = 0), which has only one 
component. 

In order to construct the solutions of (3,6) we use an 
approximation method analogous to the one used in I 
(cf. Appendix 2). As zeroth approximation, taking into 
account the frequency splitting, we use the functions 

(3.8) 

(3.9 ) 

where n = k - an/rgr+, and hil,2)(z) are the Riccati­
Hankel (spherical Hankel) functions. The coefficients 
al,2 (k), b I,d k) in the low frequency region (I kxo I « 1) 
are 

Q ZiCJxo(2ikxo)' exp(-ianxo/r+r,)l! 
k-a,~a, '" (2')![il+(kH~)xo] , 

b,"'-exp(2iQxo) [1 + 2iQxo ], 
l-i(k+Q)xo 

2i(1+1+iQxo) (kxo) 21+1 
b 2 '" 1 + --;-;:-:-c-:-:-:-:--:::-::-----cc-:-:--:-:--::---;--

(21+1)!! (2l-1)!! (I-iQxo) 
(3.10) 
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The functions udx) and U2(X) satisfy the equation 

u"+(k'-Vo)u=O, 

{ 2ankh'+r,-a'n'l (r,r+) " x<xo 
Vo= 

1(1+1)lx', x>xo 
(3.11) 

We search for a solution of (3.6) in the form 

qr.(s, x)=A.(s, x)[u,+B.(s, x)u,], 

'I'/(s, x)=A.(s, x) [u,'+B.(s, x)u,']. 
(3.12 ) 

The requirement that there be no incoming waves at 
x - 00 imposes on Bk the condition 

B. (s, x--- 00) ---0. (3.13a) 

In order to determine the boundary condition for 
Ak(S, x) we consider a solution of (3.6) in the asymp­
totic region x - - oo( r - r +). In the leading order with 
respect to y = r - r+ « rg, Eq. (3.6) can be rewritten 
in the form 

d'qr. + (Q_~)' 'I'.+o(~) qr.=O, a<M. (3.14) 
dx' 2r+ M 

For a = M (3.14) goes over continuously into <It" + n 2<1t 

= O. However, this case is phYSically uninteresting, and 
for (M - a)/M « 1 the ratio I (M - a)x 11M2 is im­
portant; this ratio can be made arbitrarily large for 
x - - "", corresponding to the case (3.14). A solution 
of (3.14) is (we normalize the incident wave to one) 

qr.(s,x)=exp [i (Q- 2~J x 1+Cexp [ -i (Q- 2~: )x ]. (3.15) 

The divergences in (3.15) are fictitious; they disappear 
when going over from 'It to physical components of the 
fields. Let us expand the equation (3.12) for x - - 00: 

qr""Ae,o<+A (b,+Ba,)e- 'o<. 

Comparing with the expression (3.15) we find 

A.(s, x ___ - oo ) =exp(sx/2r+). (3.13b) 

The equations for the functions Ak and Bk are ob­
tained by substituting (3.12) into (3.6); they COincide in 
form with analogous equations in I, namely 

B/(s,x)= -~[u,+B.u,]" 
2ika, 

(3.16 ) 

A/(s,x)=A.~u,[u,+B.u,l. 
2/ka, 

(3.17) 

We have denoted by V the difference between the 
"potentials" of the equations (3.6) and (3.11). For 
x > Xo the "potential" V(x) equals 

2iks 2iksr, 2iksr,' 2iksr,' J ' 
V(x)=--x---x-,-lnx--x,-Inx--x'- n x 

( 2anks' , (.») (1 2r, ) 
+ iksr,+ -(-- -a'k 6, n - + -, In x 

I 1+1) . ~ ~ 

+ 2r,l~,+1) Inx+oC ) (3.18) 

The branch points of the form km In k in the coef­
ficients Ak and Bk appear in integrating the equations 
(3.16) and (3.17) with boundary conditions (3.13), the 
region of integration x > Xo being the determinant one. 
For small k the contribution in the leading order in k 
to the coefficient of In k comes from the following 
terms of the expansion (3.18): 

2iks 2iksr' l ikr,s 2anks' 2r,I(1+1) (3 19) V=------ nx+--+---+ lnx .. 
x x' x' x'l(l+1) x' 

In the case a = 0 the solution of (3.16) and (3.17) 
should lead to the same result as the solution of the 

A. A. Khar'kov 739 



corresponding equations in 1. It is obvious that the 
term 2anks 2/x 2 z(l + 1), the unique term in (3.19) which 
is proportional to the total angular momentum of the 
collapsing mass, contributes only to the coefficient of 
km In k and the exponent m coincides with its value for 
a = O. A change in the exponent produced by the 
"frequency splitting" is taken into account in the 
zeroth approximation functions Ul and U2. 

Now the solution -¥k(x) can be written in the form 
(cf. I) 

'V, (s, x>xo) =C, (Qr,) (krg) '[ HC,(krg) In (krg) JeihX+ ... , (3.20) 

for \ kx \ » 1, 

'V.(s, x>xo) =C, (~)' (kr,) + '" +c.(:. ) 1+' (Qrg) (kr,)"+'ln(kr,)+ ... 

(3.21 ) 
for \ kx \ « 1, and 

'V.(s, x ..... -oo)=A.(s, -00) [e;ox+b,e-'ox+ ... 
+C,(Qr,) (krg)"H In (kr,) exp (-iQx-sx/r+) J. (3.22 ) 

There remains to calculate the spectral function fk. 
For this we note that in the coordinates r, t, e, cp, 
where cp = cp - atl rgr +, the law of fall of the particle 
onto the capturing surface r = r + of the Kerr metric 
coincides with the laws of motion near rg in the 
Schwarzschild metric[41. The measurable frequency 
in this reference frame is n. Repeating the calculations 
carried out in Appendix 3 of I, it is easy to see that one 
obtains for the spectral function fn exactly the same 
expressions as for fk in 1. There are small differences 
for perturbations with n '" 0: for such perturbations the 
case of the initially static field is not realized. This is 
physically obvious, since a rotating body which does not 
have axial symmetry relative to the rotation axis must 
radiate. 

The decay laws for the external fields produced by 
a rotating collapsing mass are obtained by substituting 
the values for -¥k and for the spectral function into 
(3.1). The calculations do not differ from the analogous 
ones of I and lead to the same results. 

4. Thus, we have shown that the qualitative behavior 
of the signals emitted by a rotating black hole is the 
same as in the absence of rotation. An observer situ­
ated at a distance r » rg will first record a sharp 
change of the field amplitude with a characteristic time 
To ~ rg/c. This is followed by a decay 

(4.1) 

which pertains to the wave field. For even larger times 
t » r the decay law takes on the form 

(4.2) 

Near the Schwarzschild horizon r = r + right after the 
jump of the amplitude the law (4.2) is valid. The coef­
ficients in (4.1)-(4.2) depend on the order Z of the 
spherical harmonic and on the total angular momentum 
of the black hole. 

In[71 (cf. also[S]) it was shown that the problem of the 
decay laws of external fields in gravitational collapse is 
part of the more general problem on the form of wave 
signals propagating in the gravitational field of an iso­
lated mass. The interaction of the wave with the curva­
ture of spacetime leads to an extension of the posterior 
wa ve front and to the appearance of "tails" of the 
form (4.1), (4.2) following the main field pulse. The 
investigation carried out above shows that "tails" of 
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the same type also appear in wave packets which propa­
gate in the field of a rotating mass. 

In the case of the electromagnetic field it is easy to 
obtain more detailed information on the changes intro­
duced by the rotation of the central body. From the 
results of the previous section it can be seen that in the 
leading order the angular momentum enters linearly 
into the answers. Therefore, for an analysis of electro­
magnetic disturbances of a rotating black hole one can 
also use the system (A.3). 

Let us consider, for instance, the first of these 
equations 

d'E, [" 2an.krg (r-r,)I(I+1)] --+ k'---- E, 
dx'l r3 rl 

= 3iar, (r-r,) [ I[ (1+1)'-n'J'" 11 _ (1+1) [I'-n']'" H ] 
r' 21+3 1+' 21-1 '-I . 

As was already remarked in Sec. 2, the contribution of 
inhomogeneous terms to the fundamental wave train is 
small in the parameter II r. A different situation 
arises in the computation of the "tails." It is easy to 
see that in the leading approximation the "tails" of EZ 
can be found from the solution of the equation 

E,n+[k,-~(lx+.1)]E' 2r,1(1+1)lnx E- 3iar, (l+ 1) (I'-n') 'I. H 
_ x,~' x"(21-1) 1-" 

x > xo, i.e., the rotation leads to the fact that the elec­
tromagnetic field of a wave of "magnetic type" of order 
I-I also partiCipates in the formation of the tail of the 
wave emitted by an electric multipole of order Z. 

The author is indebted to A. Z. Patashinski'i and 
V. K. Pinus for numerous stimulating discussions. 

APPENDIX 

The equations for the electromagnetic field in the 
metric (1.3) have been derived in[S]. Here we list the 
main formulas. We introduce the following combinations 
of the components of the electromagnetic field tensor 
Fik: 

(A.1) 

All quantities are represented in the form 

j(r, t,o,<p)= l: e-""P~n(Cose) S j'.n(k,r)e-"'dk, (A.2) 
1,7' 

where m = ±1 for E±, H±(E±, H±) and m = 0 for E 
and H; pfnn(x) are generalized Legendre polynomi­
als[9J. E and H satisfy the following system of equa­
tions 

E +---E + -------------- L { 'n 1', ,[ r2k' 2ankrg 1(1+1)], } 
r(r-r,) (r-r,)' r(r-r,)' r(r-r,)" 

= -:- 3iar,_ [~[ (1+1) '-=-~-"'-1/111 _ (1+1) (12~,-~'t.. }f,_, 1 
r" (r·-r.) 21+3 21-1 ' 

(A.3) 

{ lin + _~_ I/' + [ ~ _ _ 2ank,-,-_ .£ (I + 1)_] I/ } 
r(r-r,) (r-r,) , r(r-r,)' r(r-r,) , 

=~ir',r,_[I[(1+1)'-n'J'" EHI -(l+1) (l'-n')'f'E,_, J. 
r' (r-rg) 21+3 21-! 

The remaining components of the electromagnetic field 
tensor are related to E and H by means of the relations 
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H+-H_=-H'/a, H++H-=-ikE/ar, 

E+-E_=ikH/a, E++E-=-E'/ar, (A.4) 

where a = [l(Z + 1))1/2. The set of quantities dependent 
on E describe electromagnetic disturbances of 
"electric" type, and those dependent on H, describe 
disturbances of "magnetic" type, i.e., these disturb­
ances are produced respectively by electric and mag­
netic multipoles. 

1)Near the Schwarzschild surface, in the so-called ergosphere, one can 
realize in general only a reference frame rotating with respect to in­
finity. 
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