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The interaction of phonons with electrons or excitons that are bound to impurity centers leads to a 
modification of the phonon spectrum. If the phonon dispersion is small, this interaction produces a 
system of discrete frequencies. They can be interpreted as belonging to bound states of the phonon 
with an impurity center, or else as peculiar local modes. Equations are obtained for the bound state 
spectrum, and formulas are derived for the intensities of individual bands. These general relationships 
are applied to molecular excitons, for which the phonon binding energy and the intensity of the 
corresponding band are investigated as a function of the relation between the width of the exciton 
band, the exciton binding energy, and the phonon frequency. 

INTRODUCTION 

Most of the theoretical articles concerned with the 
shape of the impurity absorption and luminescence bands 
are based on the adiabatic approximation: The ground 
and the excited electronic states are described by their 
own adiabatic potentials, which differ by a shift of the 
equilibrium position of the lattice oscillators, and 
sometimes also by the spectrum of the vibrational fre
quencies. It is possible to carry out a rather complete 
investigation of the shape of the spectrum in such a 
model; the results of this investigation are contained in 
the series of review articles (1-3]. 

The adiabatic approximation is valid only if the ioni
zation potential R of the center significantly exceeds 
the vibrational frequencies wq of the crystal. Although 
such an approximation is very satisfactory in a whole 
series of cases (for example, in ionic crystals), it is, 
of course, not universally satisfied, and it is violated 
for many electronic centers in typical semiconductors; 
it is also violated for molecular excito ns , which are 
bound in shallow levels. It should also be noted that, 
although the contribution to the adiabatic potential which 
comes from the electron-phonon interaction may in 
principle be related to the electronic spectrum of this 
center,[4] in practice this is never done due to the com
plexity of summing over all the electronic states, and 
the adiabatic potential is simply represented as an arbi
trary quadratic form; some calculations for small
radius centers constitute an exception. 

Perturbation theory is usually used if R;S Wq; and 
only the lowest nonvanishing term is used when the 
shape of the phonon satellites is determined. Yet in 
recent years structure has been observed in the spectra 
of semiconductors and has been attributed to complexes 
formed by phonons with impurity centers, magnetopola
rons, and excitons (see the review of this data in[5,5]). 
Its existence indicates that under conditions when the 
phonon dispersion is small, a realignment of the spec
trum of the electron-phonon system occurs and a speci
fic class of states appears; these have already become 
the object of rather intensi ve investigation. These 
states are most clearly manifest in the presence of a 
resonance between the phonon frequencies and one of 
the electronic frequencies, but they can also exist away 
from resonance. 

As applied to impurity centers, the impurity center 
plus phonon complexes can be regarded as local modes 
that result from the electron-phonon interaction. They 
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have already been observed in semiconductors under 
both resonance and nonresonance conditions.l7,8] The 
theory for the resonance situation was suggested by 
Kogan and Suris,[9] and one of the authors [10] has pre
sented a general equation for the determination of the 
energy spectrum; in both cases the electron-phonon 
coupling was assumed to be weak. 

The present article begins (Sec. 1) with the deriva
tion and investigation of the previously obtained equa
tion for the spectrum of the local modes yO] It is written 
down directly in terms of the Hamiltonian for the elec
tron subsystem and the electron-phonon coupling con
stant. The eigenvalues of this equation are the frequen
cies of the local modes, and the eigenfunctions qJ char
acterize the state of the phonon subsystem. Later in 
Sec. 2 formulas are derived which enable us to calculate 
the intensity of the phonon satellites in the impurity
exciton spectrum from the functions qJ; this enables us 
to completely solve the problem of the shape of the ab
sorption spectrum. In Sec. 3 we establish the connec
tion between the equations of Sec. 1, which were derived 
under the assumption of weak coupling, and the equations 
of the adiabatic theory. It is shown that if R» wq the 
equations of Sec. 1 are valid for arbitrary values of the 
coupling constant, and for dispersionless phonons they 
allow us to determine the spectrum of the local modes 
directly from the electronic Hamiltonian. 

In Sec. 4 the general theory, which has been devel
oped in Secs. 1 and 2, is applied to local excitons in 
molecular crystals. Recent experimental articles (11] 

demonstrate the presence of an intense phonon sideband 
associated with the impurity bands in these crystals; 
the influence of different phonons on the position of the 
electronic level was considered earlier yOl] From a 
theoretical point of view molecular excitons represent 
a convenient model, since the exciton Green's function 
is known, and therefore simple formulas can be de
rived for the intensity and position of the phonon satel
lites in various limiting cases. In particular, it is pos
sible in this model to trace the variation of the binding 
energy and the intensity of the band as the phonon fre
quency approaches the energy which binds the exciton 
to the impurity center. 

Experimentally the formation of complexes consisting 
of a phonon plus an impurity exciton can be observed via 
a unique structure in the absorption spectrum, a struc
ture which is not present in the corresponding lumines
cence spectra of impurity excitons. In this connection 
the criteria for a mirror symmetry of the impurity-
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absorption and luminescence spectra are discussed in 
Sec. 5. 

1. THE ENERGY SPECTRUM 

In this section we present a derivation of the equa
tions(10] which determine the energy spectrum of an im
purity center in the presence of the electron-phonon 
interaction. We shall assume that this interaction has 
the following properties: 1) it is linear in the phonon 
amplitudes, 2) it is weak, and 3) the dispersion of the 
phonon frequencies can be neglected. 

We choose the electron-phonon interaction Hamilton
ian in the form 

H. n,= E "(0 (q)aO+ak_.(b.+b_.+). o. (1) 

The operators ak can pertain equally well to an elec
tron and to an exciton. The dependence of the coeffic
ients Yk( q) on both the momentum transfer q and on 
the momentum k itself is taken into consideration in 
formula (1); the latter dependence may turn out to be 
important in certain narrow-band systems, for exam
ple, in molecular crystals. If we change to a represen
tation in terms of the eigenfunctions of the electronic 
subsystem, then 

H,.,= E 'Y,,(q)a,+a, (b.+b_.+), (2) 
,t. 

'Y.,(q)= .E 'Y.(q)1jl:(k)1jl,(k-q). (3 ) 
• 

Here 1jJs (k) (s = 0, 1, ... 00) denote the eigenfunctions of 
the electronic subsystem in the absence of the electron
phonon interaction. From the properties of hermiticity 
and reality it follows that the functions 1jJs can be 
chosen such that 

"(.,(q) ="(,.(q), "(.,(-q) ='Y,,'(q). (4 ) 

These conditions turn out to be useful below. 

We shall be interested in the spectrum in the energy 
range near Eo + Wo (Eo is the lowest energy level of the 
system, and Wo is the limiting phonon frequency), Le., 
the region near the threshold for the emission of a pho
non. In this region diagrams of the type shown in Fig. 
1a give the major contribution to the mass operator, 
where all of the single-phonon cross sections are dan
ge~ous. [13] It is precisely these diagrams, accordingly, 
whlch turn out to playa decisive role in the formation 
of bound states between phonons and various electronic 
~ystems ;l'4] this also pertains, in particular, to impur
lty centers. Therefore, in the weak-coupling approxi
mation the problem reduces to the summation of the 
sequence of diagrams of the type shown in Fig. 1a. 

The equation for the vertex function is represented 
graphically in Fig. lb. After integrating over the fre
quency 0', the analytic expression corresponding to the 
vertex function reduces to 
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r" (ql Cil, Q) =,,(,,(q) +: 

+ E r"'(q'ICil,Cil.,)oy",(-q')oy.,,.(q)G,,'(Cil-Cil.,)G,.'(Cil-Cil.,-Q), 
,','.' (5) 

where GO and D are the free electron and free phonon 
Green's functions. In performing the integration over 
0' it is assumed that r, regarded as a function of 0', 
does not have any singularities in the lower half-plane; 
this is easily verified for any diagram of finite order. 
In the threshold approximation(14] one is restricted to 
the term s' = 0 on the right, which introduces a contri
bution proportional to (w - Eo - Wo r' (for dispersion
less phonons). 

Multiplying by I'rt{ -q) G~ (w - 0 )D( qw) and then 
summing over rq and integrating with respect to 0, 
we obtain on the left the usual expression for the mass 
operator M. It is important that, in the threshold ap
proximation (when only the term r = 0 is retained; we 
assume the ground state to be nondegenerate) and in the 
absence of phonon dispersion (wq = wo), the factors 
rss' Yrr'G~ with s' = r = 0 are also gathered into the 
mass' operator after the summation over q'; here we 
have taken into account that, according to (4), Yr'r 
= Yrr '. If we define the matrix 

A,,= ..E 'Y.,(q)"(,,(-q), 

• 
the resultant equation takes the form 

-AM.,(Cil)=A,,+ EM"(Cil)G,(Cil-2Cil,)A,,, 

(6 ) 

(7) 

where i\ = Eo + Wo - w. Below we shall be interested in 
the region near threshold, where I i\ I « Wo, R. 

Thus, owing to the absence of dispersion in the sys
tem, the equation for the vertex r has been reduced to 
the equation for the mass operator, and in this respect 
the problem has been substantially Simplified. Never
the less , since M is off-diagonal in the indices sand t 
the determination of the spectrum, Le., the determina-' 
tion of the poles of G, in suc h a version of the theory 
remains, as before, practically impossible. 

It is, however, convenient to note that an explicit ex
pression for the inverse operator M- ' follows from Eq. 
(7) : 

M- i (Cil) =-AA -'-G'(Cil-2Cil,). 

USing this relation, it is easy to transform the expres
sion for the Green's function in the following manner: 

G (Cil) =M-' (M-i-G') -iGO 

= {HGo (Cil-ZCilO) A} {H (GO(Cil) +G'(Cil-2Cilo) )A}-'GO(Cil). 

This formula, which expresses G directly in terms of 
the matrix A, allows us to obtain convenient formulas 
for the determination of the spectrum and the optical 
transition intensities. 

(8) 

The determination of the spectrum reduces to finding 
the poles of the second factor in (8), which is equivalent 
to solving the equation 

A{ (i.+H-eo)'-Cilo'}rp=2(i.+H-eo)Arp, (9) 

Here H is the Hamiltonian of the electronic subsystem. 
Taking the scalar product of Eq. (9) with 1jJo we find 
that (1jJo, cp) ~ AI w~ « 1, owing to the weakn~ss of the 
electron-phonon coupling. Therefore, one can set 
(1jJo, cp) = 0 and consider only the part of Eq. (9) acting 
in the subspace of cp which is orthogonal to 1jJo. Under 
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these conditions the secular equation for the determina
tion of the spectrum, following from Eq. (9), takes the 
form 

I 2 (J,,+e.-e,) il 
M •• - ( )" A •• =0; s, t=1, 2",,00 

],,+e.-8, -00, 
(10) 

Equation (10) has an infinite number of roots. We 
shall briefly investigate their distribution. If a reso
nance situation arises, i.e., if Es - Eo"" Wo for some 
discrete level s, then the corresponding denominators 
in the second term in (10) become small. This leads to 
the appearance of two large roots, which are determined 
by the equation 

')..(')..+e,-e,-oo,) =A .. (11 ) 

and whose order of magnitude is A ~ A:f:. The exist
ence of these roots was indicated by Kogan and Suris. (9J 

However, if no resonance is present one can omit A 
from the second term in (10) since all I AI « wo, R for 
the weak-coupling case. Then (10) reduces to the usual 
secular determinant, which contains A only in the 
diagonal elements 

I 2(e.-e,) I 
')..Il •• - )" A •• =0; s, t=1, 2",,00, 

(e.-eo -(j)o 

(12) 

Therefore, the usual algebraic methods of investigating 
the spectrum can be applied to it. 

Since, according to Eqs. (4) and (6), the matrix A 
has the structure Y Y+, it is positive; therefore, all of 
its principal minors are positive. If Es - Eo> Wo for 
all s, all of the coefficients associated with Asr are 
positive. Therefore, all of the principal minors of the 
matrix 

will be positive, as well as this matrix itself. Conse
quently, the whole infinite sequence of roots of Eq. (12) 
will be located below the threshold and, of course, will 
be concentrated at the threshold. However, if ES - Eo 
< Wo for several of the lowest electronic levelS, each 
such s will introduce one change of sign in the sequence 
of principal minors. Hence roots A < 0 appear; accord
ing to Jacobi's criterion the number of such roots will 
be equal to the number of changes in sign, i.e., the num
ber of electronic levels which lie below the threshold. 
All of the roots A:S 0 correspond to the bound states of 
a phonon near an impurity center or, what amounts to 
the same thing, local modes which appear as a conse
quence of the electron-phonon interaction. 

Equation (10) is not convenient for the numerical 
determination of the roots. It is more convenient to use 
Eq. (9), which Simplifies to the following for nonreso
nance conditions: 

2. THE INTENSITY OF THE TRANSITIONS 

The probability for the optical transitions of an elec
tron in an impurity center is usually determined by the 
two-particle Green's function, and therefore does not 
reduce to G. But if the topic of discussion is a center 
to which an exciton (either a Frenkel or a Wannier ex
citon) is bound, and transitions involving the creation of 
an impurity exciton are conSidered, then the absorption 
intensity is directly determined by the Green's function 
at zero momentum, 1m G( W I k = 0, k' = 0). Therefore, 
the problem reduces to finding the residue of G (given 
by formula (8)) at the pole, a task which is complicated 
by the fact that the second factor contains the non
Hermitian expression BA with 

B(]")=-(G'(oo)+G'(oo-2oo,», 

which also depends on A. 

One can seek the poles of G( w) by determining the 
eigenvalues Ai of the equation 

(15) 

where these eigenvalues parametrically depend on A, 
and then finding the solution of the equation A = Ai(A). 
Introducing the new quantities 

A (],,) =B"'AB''', <p=B-"'<p, (<Pi, <p,) =]",-', (16) 

we bring Eq. (15) to Hermitian form, A(A);P = Ai(A);P. 
The normalization condition for CPi follows from Eqs. 
(15) and (16): 

(17) 

Using the bilinear representation for the r.esolvent 
of the Hermitian operator A, which is somewhat modi
fied in comparison with the standard expression as a 
consequence of the normalization condition (16), we 
obtain 

(')..-BA)-'=B"·(')..-A)-:B-"·=.E ')..~]", B'''I<p'><<p,IB-''·. (18) 
, 

Evaluating the residue of this expression at the pole Ai 
and substituting the result into (8), we obtain 

GO (Ctl)A I <p.)(cp,IAG'(oo) 
Res,G=- 1-d]";/d')..· (19) 

where (15), (16), and also the explicit form of the opera
tor B have been taken into consideration. Again using 
re lations (15) and (16), and also the diagonal nature of 
the operator B( A) (therefore B commutes with aB/aA), 
it is easy to obtain the following formula: 

:~' = < <p" :: <p, > / <<P" <p,> = < <p" A ~~ A<p. >. (20 ) 

Formulas (19) and (20) solve the problem of calculating 
the intensities from the wave functions CPi. 

],,{ (H -eo) '-oo,'} <p=2 (H -e,) A<p, (13) 3. THE ADIABATIC APPROXIMATION 

A is an integral operator in the coordinate representa
tion. In the simplest case, when Yk( q) = Y( q), its kernel 
is given by 

A(r, r') =1/J,(r) V(r-r')1/J,(r'), 

(14) 

Equation (13) can be solved, for example, by the varia
tional method with the orthogonality conditions (cp, Acp i) 
= 0 for i '" j taken into conSideration. 
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Everywhere above we assumed the coupling to be 
weak, i.e., A« w~, R2. Now let us consider the particu
lar situation R » Wo, when the impurity center can be 
treated in the adiabatic approximation. In this case it 
turns out that the criteria for the theory are moderated, 
and it is sufficient to require A « Rwo; the relation be
tween A and w~ can be arbitrary. In the adiabatic limit 
it also turns out to be possible to obtain a classical in
terpretation of the function cp. 

First, however, let us take the limit R» Wo in Eq. 
(13). In this case ES - Eo » Wo for all s ;c 0, and 
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therefore one can omit w~ on the left. The component 
s '" 0 is an exception, because in this case it is pre
cisely the presence of the term w~ which guarantees 
fulfilment of the condition (1jJo, cp) '" O. Taking this re
mark into consideration, one can easily understand that 
at R » Wo Eq. (13) can be replaced by 

~(H-eo)<p=2A<p, (21) 

A=A-AI1jJo><1jJoH1jJo><1jJoIA+(1jJo, A1jJo) l1jJo><1jJol· (22) 

This equation correctly determines all the components 
CPs '" (1jJs, cp) except CPo, which generally remains un
determined. Therefore, it is necessary to supplement 
Eq. (21) with the condition (1jJo, cp) '" O. It is obvious that 
since 1jJo is an s-type function one can use A in Eq. (21) 
instead of A for the determination of all of the functions 
cP with angular momenta l ~ 1. In applying the varia
tional method one can use the same simplification, hav
ing determined 

~=2 max <<p, A<p> ( ) 
<<p, (H-eo}<p> 23 

under the supplementary condition (1jJo, cp) '" O. 

Now let us obtain the equations of the adiabatic 
theory by an independent method. Changing from the 
operators bq to complex normal coordinates, we obtain 

Q(r}~ ~ 1 (q}Q.e;·'. 
(30) 

• 
Then, by equating all Xs and CPs with s ;to 0, we obtain 

(H-eo)ql(r) =(1jJo(r)Q(r».c. (31) 

The subscript in the last expression indicates that the 
component along 1jJo is absent. It is clear from Eq. (31) 
that cp is directly related to the lattice deformation, 
which is characterized by the function Q( r). 

4. THE FRENKEL IMPURITY EXCITON 
As an example let us consider an impurity exciton in 

a molecular crystal, and make a number of simplifying 
assumptions. The crystal is assumed to be simple cubic 
and contains one molecule per unit cell. Only the inter
action with nearest neighbors is taken into consideration; 
then the half-width of the band is !lJl '" 6 \ M \. The 
matrix element of this interaction M < 0; then the point 
k '" 0 is located at the bottom of the exciton band. The 
impurity molecule is isotopic, i.e., it differs from the 
solvent molecules only by a shift of the energy level by 
the amount 6. (6. < 0). The phonons are dispersionless 
with 

(32) 

where 91 is the number of molecules in the crystal. 

(24) By using the standard formulas of degenerate pertur-

••• 
the pairs (Pq, Q_q) are canonically conjugate. For 
R » Wo one can eliminate the electronic subsystem, 
having calculated the correction to the phonon energy 
in second-order perturbation theory:[4J 

(25) 

Now writing down the classical equations of motion of 
the phonons, we obtain the following relations for the 
vibrational amplitudes Qq and the Franck-Condon dis
placements of the equilibrium positions ~: 

(w'-wo'}Q.=4wo'\'1" 1to (-ql'y" (q') Q •. , (26) 
i..J..t...J Eo-E t 

q' 1*,O 

Q.o=- f2 1oo(-q}/Wo. (27) 

With allowance for (27), the condition for the applica
bility of perturbation theory, \ Hint \ « R, reduces to 
A « Rwo. Let us define the quantities 

Then Eq. (26) can be rewritten in the form 

(w'-Wo') (eo-e.}x.=4wo ~A"')(,, 8+0. 
, 

(28) 

(29 ) 

We further take into consideration that, according to 
(29), A ~ AIR, and therefore it follows from A« Rwo 
that A « woo Then one can easily verify that (29) is 
equivalent to the system of equations for the quantities 
CPs '" (1jJs, cp) which follow from Eq. (21). Therefore, 
upon fulfilment of the criterion Wo« R for the adia
batic approximation, Eq. (21) is valid in the entire 
region A « Rwo. 

Now let us assume that Yk( q) '" Y( q), and let us de
fine the function 
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bation theory, one can easily write down GO and 1jJo for 
an isotopic impurity center: 

Gnmo=W.m+-1 "'", W.oWom, 
-~tYoo 

1 ~ e11l:(n-m) 

W.m(w}=-L..--' 
91 k w-e (k) 

1jJo (n) =W.o (-dWooldw)-·". 

(33) 

Here ~nm is the Green's function of an exciton in a 
perfect crystal, €( k) is the dispersion law of the exci
ton; the impurity molecule is located at the site n '" O. 
If \ 6. \ is not too small, then one discrete level of the 
impurity exciton appears, w '" €o, determined by the 
equation 6. ~oo( €o) '" 1. 

Acrording to Eqs. (14) and (32) the operator A is 
givea by 

(34) 

The phonon spectrum, renormalized as a result of the 
exciton-phonon interaction, is determined by the equa
tions of Sec. 1. A general schematic diagram of the 
spectrum is shown in Fig. 2. 

Below we shall use Eq. (15) for the determination of 
the functions cp. Unfortunately, it cannot be solved in 
general, and therefore below we consider two limiting 
cases separately. 

1. The Case of a Deep Level, 16 1 ~ JI 
In this case the exciton function is almost completely 

concentrated on the impurity molecule and, according 
to Eqs. (33), 1jJo(O) "" 1 and 1jJo(l) "" M/6. for the six 
values of 1 (\ I \ '" 1) corresponding to the nearest neigh
bors; at the remaining sites 1jJo has a higher order of 
smallness in M/ t:... The depth of the electronic level 
R"" \ 6. - 6M \. The expansion in 'JJ//6. remains accurate 
up to !iJ!! 6. "" 1. 

From Eq. (15) one can easily obtain a system of 
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equations for cp ( 0) and cp (1) with III = 1 and express 
the values of cp (1) at all remaining sites in terms of 
them. Since all of the expressions contain integrals of 
'§ nm( w), simple formulas can be obtained only in limit
ing cases corres ponding to various ratios between Wo 
and R. 

A. The case of a low frequency Woo Actually it is 
required that I R - Wo I » !Ill. In this case the function 
cp is maximal at the sites with III = 1. The lowest state 
among the phonon bound states turns out to be an s-type 
level: 

A.=-14l'M'j!l. (6.'-wo'). (35 ) 

This level is followed by a p-type level and a doubly de
generate level; in the approximation under considera
tion the latter have identical binding energies, equal to 
AS /7. AS increases with increasing values of Wo, as is 
clear from Eq. (35). 

Optical transitions are only allowed to the s-level. 
Calculating according to Eq. (19), the oscillator strength 
of the corresponding transition is given by 

6 ( 1 )' 1=- - 10, 
7' Wo 

(36) 

where fa is the oscillator strength of the intramolecular 
transition. 

B. The case I Wo - R I « !Ill. Bound states of the pho
non are produced for Wo < R; for Wo> R they can arise 
only if Wo - R ~ A. In this case the function cp envelops 
a region substantially exceeding the lattice constant. 

For the s-level we find 

A.= -7 ( 1- 3~ ) 1:~ , a= S 10' (t) e-"dt=O,50 . .. , (37) 

Le., it is larger than in case A by a factor ~A/M (here 
10 is the Bessel function of imaginary argument), How
ever, in contrast to the case of a resonance between Wo 
and one of the frequencies of the discrete electronic 
spectrum, [9) here A retains the same order of magni
tude in the coupling constant. The oscillator strength 

14 ( 1 . M )' (38) 
I=~ w~ 10 

increases sharply with decreasing W, Le., as the level 
approaches the bottom of the exciton band; the meaning 
of W is clear from Fig. 2. For very small W :; y 4M/ A 4 

the term dAi/dA in the denominator of formula (19) in
creases and becomes ~ 1 (usually it is negligible since 
it is proportional to y2). In this connection the growth 
of f slows down: 

(39 ) 

The calculation gives Ap"" 0.06 As and Ad "" 0.05 As 
for the p- and d-levels. 

2m 

Phonon {====== 
bound ------ R 
states 

FIG. 2 
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2. The Case of a Shallow level, R ~ JI 

In this case one can obtain a general solution for the 
lowest phonon level, which goes beyond the framework 
of the nearest-neighbor approximation adopted above. 
This possibility is based on the following facts. Since 
the local exciton level is determined by the zero of the 
expression 1 - A'§oo(w), when this level is shallow the 
factor 11 - A '§oo (w) 1. 1 is large near the edge of the 
band. Therefore, the second term in the Green's func
tion '§~m (w) dominates (see formula (33)); therefore, 
the kernel BA in Eq. (15) factorizes and the equation is 
easily solved. An additional Simplification appears 
thanks to the fact that the functions '§nm( w) remain 
finite as w approaches the bottom of the band 
(w - Emin)' Therefore, one can replace the functions 
'§nm by '§nm( Emin) in both the operator B and also in 
the expression for </Jo( n). 

The following expression is finally obtained for A: 

l'R''' 
A=4n'~ v'(m')' cr, cr= L Ig'.o(emin) I', 

_ 1 + 1 . 
(40) 

~- (R-wor"-R'" (R+wor"-R"" 

where v is the volume of the unit cell, and m* is the 
exciton's effective mass at the bottom of the band. It is 
obvious that a ~ .!Ill-4 ; of course, the exact value of this 
factor can only be determined for a particular band 
structure. 

The oscillator strength f can be calculated in an ana
logous fashion according to formulas (19) and (20). It is 
also expressed in terms of a, and if a is expressed in 
terms of A according to (40), then 

1=, 4n A i 10. (41) 
(2m')'/, v~W' (l' R-l' W)' 

For extremely small values w;s y4/RA2 we obtain 

1=8mr' (2m'W) -%/0. (42) 
instead of expression (41). 

From a comparison of (35) and (37), and also from 
(40) it follows that A increases as Wo - R, Le., as the 
phonon level approaches the edge of the band, but re
mains finite. Conversely, f increases without limit, and 
moreover in the immediate vicinity of the band edge it 
ceases to depend on y (formulas (39) and (42)). Phys
ically the growth of f will be limited by extraneous 
mechanisms (polariton effects and the damping of the 
excitons as a result of their scattering). 

5. THE MIRROR SYMMETRY OF THE SPECTRA 

The phonon binding energy A was determined in the 
preceding section for a number of limiting cases. In 
this connection an extremely simplified model (w = Wo, 

Yk( q) = const) was taken as the basis of the calculations. 
Naturally, taking the phonon dispersion into account 
might not only lead to a numerical change in the results 
(which would be most important for a deep level), but 
might also lead to attenuation of the obtained states. 
Nevertheless, one can hope that if the phonon dispersion 
is relatively small, then the basic qualitative results 
will be preserved. This implies that density-of-states 
peaks, due to the interaction with the impurity excitons, 
will appear in the phonon spectrum; the separation of 
these peaks from the edges of the phonon bands can be 
determined (or estimated) from the formulas given in 
the preceding section. 
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It is obvious that in addition to the "excitonic" 
mechanism discussed above for the appearance of local 
modes, there is also an "ordinary" mechanism associ
ated with the mass difference. Local modes of different 
origin can be experimentally distinguished owing to the 
fact that, the modes which arise from the excitonic 
mechanism can only exist in the presence of an impurity 
exciton, and therefore they must appear (in the form of 
satellites) exclusively in the impurity exciton absorption 
spectra, whereas the modes arising from the ordinary 
mechanism must correspond to comparable frequencies 
and intensities in the absorption and luminescence 
spectra. Thus, the modes which are of excitonic origin 
can be distinguished by the specific nonmirror sym
metry of their absorption and luminescence spectra. 

Generally speaking the mirror symmetry of the ab
sorption and luminescence spectra occurs only if the 
adiabatic potentials of the ground and excited states 
differ by a linear function of the vibrational coordinates, 
but the transition matrix element does not depend on 
them ;[15] this is possible only if R substantially ex
ceeds wq. The picture of the violation of the mirror 
symmetry as a function of the ratio between Rand Wq 
is very simple in the case of weak coupling, when per
turbation theory is valid, namely, owing to mixing with 
band states, the intensity of the absorption contains de
nominators of the type R - wq, and the intensity of the 
luminescence contains denominators of the type R + wq; 
therefore, the contribution to the absorption spectrum 
from phonons with Wq f':o R will appreciably exceed their 
contribution to the luminescence spectrum. 

The conditions under which the mirror symmetry of 
the spectra will be satisfied for low-frequency phonons, 
wq « R, still have to be established. The well known 
estimate y2/R for the correction to the frequencies[4] 
follows from formula (25). Therefore, the mirror sym
metry of the spectra is satisfied for y2/R« W (with the 
proviso, however, that structure with a scale 1'2/ R may 
appear, corresponding to bound or quasibound states). 

The situation is somewhat more complicated if, as 
usually happens, along with the low-frequency phonons 
with scale w there are other phonons with a broad 
range of frequencies 0 and coupling constants r, in
cluding phonons with 0 ~ R; then it is impossible to 
write down an adiabatic potential for the entire phonon 
system. In this case it is convenient to separate the 
"high-frequency" phonons for which 0 has the scale 
R and the "low-frequency" phonons with 0 « R. For 
all of the phonons we demand that the exciton-phonon 
interaction does not bring about a realignment of the 
lattice near the center (i.e., so that frequencies whose 
squares are negative do not appear); the condition for 
this, r 2jR,S 0, when applied to phonons with 0 « R 
gives r« R. The high-frequency phonons together with 
the electronic subsystem can be regarded as a single 
system having an excitation energy whose scale is R, 
and all the terms in the Hamiltonian of the type 
Ya~anbq and ra~anBq can be eliminated in first order 

by means of the canonical transformation eS': 

E ao+at 
S,= --(Yot(q) (b.+b_. +) +r,,(q) (B.+B_. +)}- h.c. 

Et-Eo ,.,., 
it is obvious that S, ~ Y/R, r/R « 1. 

(43) 

As a result of this transformation, the terms ~S~ 
introduce in the adiabatic potential a contribution due 
to the exciton-phonon interaction; symbolically it can 
be represented in the form 
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(44) 

where v ~ y2/R V ~ r 2/R, and u ~ yrjR. Then, for 
r 2/R's 0 and Y~/R« w one can, with the aid of a second 
canonical transformation expS2 with S2 ~ ufo, elimi
nate the mixed terms Bb, using the small parameter 
u/O ;S Y(ROr'/2« 1; corrections to the frequencies w 
appear which are ~U2/0 ;S y2/R « w. Thus, the addi
tional corrections which appear due to the presence of 
the other phonon branches do not exceed (in order of 
magnitude) the fundamental corrections ~y2/R. As to 
the corrections to the intensities, which appear upon 
carrying out the transformations exp S, and exp S2 in 
the corresponding terms which determine the absorp
tion and luminescence spectra, they turn out to be small 
for reasonably small S, and S2 (that is, S" S2« 1). 
Therefore, even in the general case the criterion y2/R 
« W is sufficient to guarantee the mirrorlike resem
blance of the spectra in the region of satellites with 
frequencies w « R. 
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