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The indices defining the exponents in the power laws in the Green functions and physical 
characteristics of zero-gap semiconductors of the second kind in the strong-coupling region (i.e., the 
region of energies w<wo, where Wo= m *e 4/21<6 is the exciton binding energy, and momenta k <k 0, 

where k 0= m *e 2/1<0 is the inverse Bohr radius of the exction) are calculated. Two methods are 
applied: expansion in E=4-d (d is the dimensionality of space) and expansion in the "large 
number of components," i.e., in l/II, where II is the polarization operator. In the first approximation 
the two procedures give results that are numerically slightly different but qualitatively similar. It 
follows from the results that there are several energy and momentum regions: (1) the "free region," 
(2) the region Wl<W<WO' kl<k <ko (wl~2.5XIO-4 Wo, kl~1.6XIO-2ko). in which the 
"random-phase approximation" is applicable, i.e., the interaction of the carriers is altered but their 
spectrum is conserved, and (3) the true strong-coupling region w < W1> k < k l' In the regions (2) and 
(3) the results of Abrikosov and Benesiavskil are applicable, with a=v=2 in region (2) and a= 1.76, 
V= 1.92 in region (3). 

1. INTRODUCTION 

It has been shown earlier (cf,[l,2]) that in zero-gap 
semiconductors of the second kind (e .g., a -Sn), a 
strong-coupling regime arises in the vicinity of the 
point of contact of the branches of the spectrum (a point 
of the order of ko = m*e2/ Ko along the momentum axis 
and Wo = m*e4/2K~ along the energy axis, where m* is 
the effective mass and Ko is the dielectric permittivity). 
In this region the Green functions and vertices acquire 
the self-similar form: 

G -, ( k ) -a [ rol roo ] 
-roo k: g (klko) , ' 

f-- - d--
roo ( k ) ,_3 .[ ro/roo ] 
k o' ko (klko) , ' 

(1) 

( k ) a-' [ rol roo ] 
1- k: q (klko)' . 

The indices a and v determine the behavior of phySical 
quantities in the singular region, e.g., their dependence 
on the temperature, magnetic field, frequency, etc. 

In view of the fact that the problem of zero-gap semi­
conductors is methodologically similar to the theory of 
phase transitions, to determine the unknown indices a 
and v it is natural to attempt to apply the methods de­
veloped in recent years by Wilson and Fisher(3] and 
Ferrell and Scalapino [4) and successfully used for the 
analysis of different types of phase transitions. The 
present article is devoted to this question. 

2. CONTINUATION TO NONINTEGER DIMENSIONS 

The calculation of the indices should be performed 
for a specific model. Although the indices do not depend 
on the interaction constant, they can depend on the 
geometry (the little group and specific representation; 
cf,UJ). We shall consider a very realistic situation, 
namely, the case of a-Sn with a diamond-type lattice. 
The bands touch at a point with little group Dh. We 
take a representation corresponding to J = "2; the cor­
responding Hamiltonian and spectrum are well known[I]. 
To simplify matters, we put 3 f3 = I' in the formula in (1]; 
the spectrum then possesses spherical symmetry. The 
Hamiltonian in this case can be written in the form 

(2) 
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whence it can be seen that there is invariance with re­
spect to any rotations. The eigenvalues are doubly de­
generate and equal to 

8",= (f±c) k'. 

Hence it can be seen that a zero-gap spectrum is ob­
tained for c > f, 

(3) 

It was shown in(1] that the zeroth-approximation term 
for the polarization operator is proportional to an inte­
gral that converges like 11k at the lower limit (k is 
the external momentum). It is clear that in four-dimen­
sional space we would have a logarithmic integral. This 
corresponds precisely to the situation in phase transi­
tions. The application of Wilson's methodeS] is associ­
ated with formulation of the problem in a space with a 
noninteger number of dimensions d = 4 - €. In the 
present case, the problem is complicated by the fact 
that operators JiJ. associated with the three-dimensional 
rotation group appear in the Hamiltonian and form ten­
sor combinations with the momentum components. The 
continuation to noninteger dimensions in such a situa­
tion has been effected for the case J = 1 [5], but the 
method used is not applicable for J = r 2. In view of this, 
we shall proceed in the following way. 

We write the second term in the Hamiltonian (2) in 
the form cH" 

and analyze the properties of the operators A v' Ac­
cording to (2), these operators possess the foilowing 
properties: 

-r A",,=O, {A •• , A,'/=-1 (v*/-1), ....... . 
SpA.,=O, A • .'=1, 1.;=3/, (v*/-1); 

(4) 

(5) 

{ AiJ.II' ApO'} = 0 in all other cases. Here there is no 
summation over repeated indices. All these properties 
can be written in the form of a single formula: 

(6) 

Hence it follows that the anticommutator of two Hamil­
tonians H, at different points k is equal to 

{Hdk,), Hdk,)} =3(k,k,)'-k,'k,'. (7) 
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In particular, if k1 = k2 = k we obtain 2c2 k\ and aver­
aging (7) over the directions of k2 gives zero. These 
properties are carried over in an obvious way to a 
space with noninteger dimensions. For this it is suf­
ficient to require that 

2 
(H,(k,), H,(k')}=-d-[d(k,k,)'-k.'k,']. 

-1 

For this, we can take HI in the form (4), where the 
operator coefficients A 1111 satisfy the condition 

(8 ) 

- - d 2 (9) 
{A." A p,}= d-1 (1),,,,1>,,+1>",1>,p) - d-1 1>.,1>p,. 

In the following we shall need to use the property (8) 
more frequently than any other. However, in the calcu­
lation of the polarization operator it is necessary to 
take the trace, and we need to know the rank of the 
matrices Ailil . In a space of three dimensions this is 
equal to 4. We shall determine the rank from the condi­
tion that it be sufficient to enable the conditions (9) to 
be satisfied. We shall use the following method. For 
the three-dimensional case, the matrices All II can be 
represented with the aid of direct products of two sets 
of Pauli matrices: 

(10) 

A similar representation can also be used in other 
cases. The operators All II are symmetric in 11 and II, 

and ~AIlIl = O. If the dimensionality of s pace (i.e., the 
number of values of 11) is d, then the number of such 
matrices equals (d - 1) (d + 2 )/2. 

The conditions (9) can be satisfied by means of linear 
combinations of matrices with zero trace, if these 
matrices anticommute, their squares are equal to unity, 
and there are (d - 1) (d + 2 )/2 of them. This is proved 
as follows. We have at our disposal (d - 1) (d + 2 )/2 
matrices, which we denote by ('1, Y2, .•• . We take any 
(d - 1)d/2 of them as the Ailil with Il;r. II. There remain 
d - 1 matrices, in terms of whic h we must express the 
d matrices AlfJ.l... We must then have: a) Atll = 1, 
b) {AIlIl , Allllj = -2/(d - 1) (11 '" II), c) ~AIlIl = O. We 

11 
denote All == Y 1. We choose A22 = P Y 1 + q Y2 in such a 
way that the conditions (a) and (b) are satisfied. This 
gives p = -l/(d - 1), q = [1 - l/(d - ll]1/2. We next 
choose A3S = P1Y1 + q1Y2 + rY 3, again to satisfy the 
same conditions. This gives 

1 1 [ 1] 'I. 
Pt=- d-1' q,= - d-2 1-(d-1)' ' 

[ 1] 'I. [ 1] 'I. 
r= 1- (d-1)' 1- (d-2)' 

Continuing in the same spirit, we obtain expressions for 
all the AIlIl (for integer d): 

710 SOy. Phys.·JETP, Vol. 39, No.4. October 1974 

1 [1] 'f, [ 1] '" 
Ad-td-'=- d_11,- ... + 1- (d-1)' .. , 1- (d-d+2)' 1d-" 

1 [1] 'I. [ 3 ] 'I. 
Add=·-d_1 1,- ... - 1-(d_1)' ... 4" 1d-to 

The condition (c) is fulfilled automatically. This is not 
surprising, as it already follows from (9) that {Apa, 
bAIIII} = 0 for any of the matrices Apa. 
II 

If we construct such matrices as direct products of 
Pauli matrices, we obtain the following cases: 

for n = 1, 

for n = 2, 

for n = 3, 

Thus, in a similar manner, we find that the number of 
matrices equals 3 + 2(n - 1), where n is the number 
of types of Pauli matrices. This number should be 
equal to (or greater than) (d - 1) (d + 2 )/2. The rank 
of the matrices equals 2n. Hence we obtain 

r(d) =2"=2d(d+,)/,-,. (11 ) 

In particular, for d = 3 we have r = 4; if d = 4, r = 16. 
The rule (8) and the rank (11) of the matrices are suf­
ficient in practice for our purposes. 

3. FIRST APPROXIMATION IN € = 4-d 

According to the philosophy of Wilson's approach[3], 
we can argue in the following way. We shall assume 
that d = 4 - E. If we put E = 0, we obtain logarithmic 
integrals. This gives us the possibility of choosing 
principal diagrams in which the power of the interaction 
constant corresponds to the power of a large logarithm. 
As a result of summation, certain functions of this 
logarithm arise. Then, assuming E to be small, we 
carry out the formal replacement: 

ko 1 '" d'k '" d'-'k k-'-k;' 
In - = -- J-- .... constJ --= const--

k 2n'. k' • k' e' 

For k « ko we are left with k- E/ Eo Putting E = 1, we 
obtain the critical exponents for all the quantities. 

We shall carry out the above program for our model. 
We put the external frequency equal to zero. Then ac­
cording toP], G ~ w;/(k/kora . First of all we shall 
consider the polarization operator (Fig. 1). In the first 
approximation, this is equal to 

IT(') (0), k) =-i Sp J G'O) (O)t- ~ . kt- ~ ) 

( 0) k) d'k t dO) 
"G(O) 0)+- k t+- ----. 
r. t 2' 2 (2n)d 2n 

(12 ) 

We put d = 4. According to the arguments expressed 
in(1], the integral over WI goes to zero for k = O. Con­
sequently, we must expand in k under the integral. We 
then obtain an integral of the type k2 f dkjk1. The situ­
ation turns out to be very similar to that which was 
found in an zero-gap semiconductors of the first kind 
(with a linear spectrum). This is confirmed by the fact 
that an estimate of the correction to Y represented in 
Fig. 2 gives only unimportant terms. In view of this, we 
can confine ourselves to summing the logarithmic terms 
in the electron Green function G and Coulomb-quantum 
Green function r, taking Y = 1. 
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FIG. I FIG. 2 

We call attention to the following circumstance. The 
Hamiltonian fk2 + cH1 is a linear combination of two in­
variants of the rotation group. According to[l), we must 
assume that in the logarithmic approximation the con­
stants f and c are replaced by functions of In (ko/k). 
However, it is not difficult to see that logarithmic cor­
rections arise only in the term with H1. In fact, assum­
ing that w « ck2, we have for the self-energy in the 
zeroth approximation 

~(I)(O,k)=i 4:~' S ~"G'O)(k+k"w,)d2:' (~:;,. (13) 

The function G(O)( k1) can be written in the form 

G,O)(k )=(w -fk 2-cH )-'= w,-fk,'+cH, (14) 
, , , , (W,-/k,2)2_(ck,'-i6}' 

Substituting this expression into (13) and taking the in­
tegral over w 1, we find 

1;(')(0 k = 2ne2s~ H,(k+k,l d'k, . (15) 
,) x, k,' (k+k,)2 (Ztt)' 

But it immediately follows from this that Tr ~ '" 0 
(since Tr H1 '" 0). Consequently, a logarithmic correc­
tion to the first invariant fk2 does not arise, and only 
the correction to H 1 remains. This means that the 
diagonal term in G- 1 for w « Ck2 has the power 0!1, 
equal to 2 - O( E2). But if the term of the type H1 has a 
lower power (of the type O! '" 2 - O( E)), and below we 
shall verify that this is precisely the case, then in the 
approximation under consideration it is sufficient to 
retain only this term. In view of this, we shall assume 
below that f '" O. 

Earlier[l], the general case of a logarithmic situa­
tion with one invariant in the Hamiltonian was analyzed. 
The result reduces to the following. It is necessary to 
determine the quantities a and b from the relations 

r(d) d 
n(t)(w,k)=---z;;- d-1 

X (k+'+k_') [k+'k_'-(k+k-)')d'k, 
S [(k+'+k_2_i6)-(w/e)')k/k_'(2n)' . 

(19 ) 

We shall put w '" 0 and confine ourselves to logarithmic 
accuracy. Assuming that k « kh we find 

(')( ) __ r(d) _d_S kt'k'-(k,k)' ddk, (20) 
n O,k - 4e d-l k,' (2n)d . 

We put d '" 4; in the integral, 

We then obtain 

d'k " k'dk 
__ '_ .... 4 S i 'OdOS-'-' 
(2n)' n, s n (2n)' . 

1 4n·2n' e2 

a=----4. 
e (Ztt)' x, 

(21) 

We turn now to the self-energy. It follows from sym­
metry considerations that ~(l) '" qcH1, where q can de­
pend only on k2. Taking the anticommutator with H1( k), 
according to (9) we obtain 

2 ~= 4ne'd S J.. { (k,k+k')' (k,k)'} d'k, 
q cxo(d-l) k,' (k.+k)' k,' (2n)d 

(here we have made use of the relation (k1' k)2 
'" k~k2/d). Assuming that k « k1 and expanding in k, 
we obtain 

2ne'd S d'k, 
q= ( ) (1+4cos'O-Scos'O)-(2)' " exo d-l n k, 

Since q '" b In (ko/k) (cf. 17), we obtain from this (d '" 4) 

b=J.. 4n·Ztt' ~~ (22) 
e (2n)' xo 6 . 

Substituting this expression into (18), we have 

a=v=2-1I2S. (23) 

It is interesting to note that the indices O! and v for 
the electron G-function differ little from the "free 
indices." As regards the function r( k), it becomes 
close to the quantity ~k-1 obtained from the "random­
phase approximation," Le", obtained on the basis of a 
calculation of the first-approximation diagram for the 
po larization operator [6]. 

aln~=-r(O)n(t) bln~= {~(I)(k),H,(k)} . 
k 'k ~~ 

(16) Furthermore, in the approximation under considera-
tion it turns out that the term with fk2 in the Hamilton­
ian is not renormalized, and O! '" v. The next approxima­
tions would undoubtedly introduce corrections to these 
statements. However, it is extremely difficult to calcu­
late the corresponding integrals and we shall apply 

In the region where the logarithms are large, 

( k) -b/(aH} ( k) -a/(a+bl (17) 
G(O,k)-G(O) Ini ,T(O,k)-flO) Ink~ . 

Replacing In (ko/k) - k-\ we obtain 

a=2 __ b_ '11-3=_2+_a _ (18) 
a+b' a+b' 

Le., (}I '" v, which, incidentally, was obviOUS, since 
y ~ (k/ko '[X-v", 1 in the approximation under considera­
tion. v can differ from O! in second order in E. But in 
the first approximation, according to (18), it is neces­
sary to determine the ratio bfa, and from it 

b/a 
a='II=2- l+b/a' 

(18a) 

According to (12), (14) (with f '" 0) and (11), we have 

n(t)(w, k) =-ir(d) S {w+w_+c2[d(k+k_)'-k+2k_2]1(d-l)} 
, dw d'k 

x[ (w_-ek_'+ill) (w_ +ek_2-i6) (w+-ck+'+iI\) (w+ +ek/-i6) )-' ~ (2n)' ' 

where ~ '" k1 ± k/2 and w± '" w 1 ± w/2. Integrating over 
the frequencies, we obtain 
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another approximate method, which, moreover, gives 
an idea of how the transition to the strong-coupling re-
gime occurs. 

4. THE APPROXIMATION OF A LARGE NUMBER OF 
COMPONENTS 

In the preceding section, it was noted that indices 
are obtained that are close to those given by taking into 
account only the first approximation for the polarization 
operator. This circumstance is characteristic of the 
situation in phase transitions when- the "order parame­
ter" has a large number of components. Although this 
case is rare in true physical models, we can neverthe­
less count on the fact that expansion in the number of 
components gives a series that is not too slowly con­
vergent even for n '" 3. Such an approximation was pro­
posed by Ferrell and Scalapino[4). The special role of 
the first-order diagram for the polarization operator is 
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explained by the fact that, as a consequence of taking the 
trace, it is proportional to n. Since r ~ 1/1T appears 
in the self-energy 2: and, at the same time, there is 
no summation over the components, 2: will be of order 
lin. In our case, the number of components is equal to 
four and we can count on the good convergence of this 
procedure. 

Although, as we shall see be low, the 11 n expansion 
leads in first order to more complicated calculations 
than does the E expansion, it has important merits. 
First of all, the calculations are performed in the real 
three-dimensional space and questions associated with 
the nonuniqueness of the continuation to noninteger d 
do not arise. It is then found that, even in the first ap­
proximation, Q ,c v. Having a real model, we shall per­
form the calculation only for this model, and not for 
arbitrary n. 

The expression for the first approximation for the 
polarization operator is obtained from (19), if we put 
d = 3. Introducing the variables x = cos e, z = 2kl/k 
and s = 2wl ck2, we obtain 

3k S' OOs z'(z'+t) (1-x'}dx (1'= __ dx dz . 
II 2en' [(z'+1-i6}'-s'] [(z'+1}'-4z'x'] , , 

Integrating over x, we obtain 

11 (1)- 3k SOO z'dz [ 1 (z'-1)' Z+1] 
- --- z'+1-----In-- . 

8en' (z'+1-i6}'-s' 2 z Iz-11 , 
The integral over z can be taken if we note that 

with 

We then obtain 

co oo+'l~ 

S dZ-++ S dz, 
o -oo+iO 

z+1 z+1 
In---+In-. 

Iz-11 z-1 

. 3k 
11("= ---cp(s), 

32en 

(24) 

(25) 

(26) 

() (2+s)' ( ) 'I (2-s)' 'I 'I ( }'I cp S =--arctg 1+s - '---lITctg(1-s)- '-(Hs) '- 1-s ' 
s s -

(27a) 

for 0 < s < 1, and 

(2+s)' " n(2-s}' 
cp(s} =---arctg(Hs}-"- (1+s) 1,_ ---8 (2-s) 

s ~ 

+i"[ (S-1),1,- (2-s)' In I.H (S-'-1} 'I, I] 
~ (s-1)"'-1 

for s > 1; 

cp(-s)=cp(s}; 

the asymptotic values are 

cp(s} -+ 4 ( ;- 1 ), s-+O; 

8 
cp(s}-+-=(1+i}, s-+oo; 

31's 

the Singular values are 
1 n -

cp(1} =9 arctg-=.-- -1'2, 
1'2 2 

4n -
cp(2}=3-1'3+i. 

(27b) 

(27c) 

(28 ) 

(29 ) 

Graphs of the real and imaginary parts of the function 
rp (rp = rp 1 + i rp 2) are given in Fig. 3. 

It will be important for the following that rp (s) is the 
value on the real axis of a function of the complex vari-
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able s, defined by the formula (27a), analytic in the 
plane of the complex variable s with cuts along the 
real axis for 1 < I s I < "", and symmetric with respect 
to s - -so The formulas (27b) and (27c) correspond to 
taking the value on the upper side along the right cut 
1 < s < 00 and on the lower side along the left cut 
-""<s<-1. 

On decrease of k and w in the approximation under 
consideration, we enter first of all a region in which 
IT (1) » r( 0). However, the self-energy correction to the 
electron Green function in this region is still small, and 
only on further decrease of wand k does it begin to 
playa fundamental role. By assumption (cf.[ll), it is 
precisely then that there arise the power dependences 
G ~ w-Q/v for w/wo» (k/ko)V or G ~ k-a for 
wi Wo« (k/ko) v (we recall that a < v and a < 2). 
Matching between these laws and the free Green function 
should occur in the region in which 2: is still small. 
This is possible only in the case when a/ v is close to 
1 and a is close to 2. 

In fact, for w/ Wo » (k/ko) v, 

( 
<0 ) -(I_a/.' [ ( a 

G-loo<oa/·oo<o ~ ""<0 H 1-~) In :,] . 

On the other hand, 

Hence it follows that in the matching region, for wi Wo 
» (k/ko lV, 

~(<O}""-(1- ~) <OIn~. 

In exactly the same way, if we assume that 2: = qcHl 
for w/wo« (k/ko)v, we have 

( k ) -(2-.) [ k ] 
G-'cokacok' To ""k't+(2-a} In i 

and 

q=(2-a} In (k,/k). 

(30 ) 

(31 ) 

Thus in the approximation under consideration, de­
termination of 2: with logarithmic accuracy is sufficient 
to determine a and v. Of course, all these arguments 
are valid only in the case when 1 - a I v « 1 and 2 - a 
« 1. The self-energy is obtained from (13) by replacing 
r(O) = 41Te 2/ Kok 2 by r = -1/1T. In addition, it is necessary 
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to take into account that ~(O, 0) must be subtracted 
from ~(w, k) (renormalization of the chemical poten­
tial). For finite W we have 

d'k 
~(oo,k)=-i Sn-l(ool,kl)G(oo-ool,k-k,)dool (2n;" (32) 

The function G( 0) can be written in the form 

1 [ HI(k-kl)] [ 
G(O) (OO-OOh k-k,) = - 1+ 00-00,-8, (k-k,) +i6j-' 

2 8, (k-k,) (33) 

+~ [1 H,(k-k,)] [00-00,+8, (k-k,)-i6j-l, 
2 81(k-k,) 

where 101 (k) = ck2. 

For II we substitute the expression (26), (27). Owing 
to the fact that this is the value on the real axis of an 
analytic function with two cuts (with an appropriate 
definition on the cut), the integral over WI can be 
represented as a contour integral, where the contour C 
is depicted in Fig. 4a, in which the poles from 

. G( 0) (w - WI) are also shown. Since the integral over 
WI for ~(w, k) - ~(O, 0) converges in any case, the 
contour can be closed and deformed in such a way that 
it takes the form C' (Fig. 4b). Since the function has 
complex-conjugate values on the two sides of the cut, 
we obtain (we do not write the integral to be subtracted 
for ~(O, 0)) 

8 ~ dQ 
~ = -- C ds , S ck, dk,--A (s,) 

3n'~ 4n 

{[ 1 I H,(k-k,) ] [ 200 2(k-k,)' ]_' 
x . + -- -S,- --'-,-:-"--

£, (k-k,) ck,' k ,' 

',+ [1- H,(k-k,)] [2;.-s,+ 2(k-,k,)' ]-I} 
8 , (k-k,) ck, k, 

(34) 

8 S dQ [ H, (k-k,) + -- dklck,--B(slO) 
3,., 4n 8, (k-k,) 

where SI = 2w/ck~, S10 = 2w/ck~ + 2(k - kl)2/k~ is the 
value of s 1 at the pole, A( s 1) = -1m [1/ rp( s d], and 
B(sl) = Re[l/rp(sd] (we assume that k« kl and 2w 
« ck~; this is valid in the calculation of the logarithmic 
part of the integrals--cf. below). This expression can 
be transformed by making use of properties of the func­
tion l/rp(s) = B(s) - iA(s), namely, the analytic proper­
ties and the symmetry in s. Making use of the Cauchy 
theorem for the contour C" (Fig. 4c), we obtain 

Substituting this relation into (37), we obtain 
8 ~ dQ 

~= __ f dsISckldk,--A(sl), 
3n'~ 4n 

2 (k-k,) , 

k,' 

2(k-k,)' 

k ,' 

r' 
] } 

(35) 

(36) 

In this form we need no longer imply the subtraction of 
~(O, 0). In fact, in view of the fact that f dnH I (kl) = 0, 
the quantity ~(O, 0) = o. 

If W » Ck2 we can put k = O. Expanding in wand 

c' 

-; I p== 
b 

FIG. 4 
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integrating over kb we obtain 

16 S~ A (s) 000 
~(oo)=--- ---dsooln-

3n', (s+2)' 00 , 
(37) 

where Wo ~ ck~; ko is the upper limit of the integration 
over k. But if w « C k2, we must, on the contrary, put 
w = 0 in the integral (36). We then obtain 

16 S~ S k dk dQ A H, (k-k,) 1 
~(k)='-~ I ds , c I '4';" (S,) 81(k-k,) -s-,+-2-:(:-k--k:-,"'"')':-:-lk::-:," 

Since its trace equals zero, this expression should be 
proportional to HI; ~ = qCHI. Calculating the anticom­
mutator with HI and making use of the rule (7), we have 

8 ~ dQ 
q= - -- S dS I S k, dk,-A (S,) 

3n'k' I 4n 

x3~[~k~X~(~k_-~k~I)~]_'-~k7'~(k~-~k~'~)' __ ~~_1:-7~~ 
(k-k,)' s+2(k-kl)'lk,' 

Expanding in k/k l, we obtain 

__ 8 [ 2 S~ A(s) d 16S~ A(s) d + 64S~ A(s) d] 
q- 3n' 5. s+2 s-5 I (s+2)' s 15 I (s+2)' s . 

However, this expression is not completely accurate. 
This can be seen from the fact that the first term in it 
diverges as s ~"". Indeed, according to (28), A(s) 
a: SI/2 as s _00. The inaccuracy has arisen in the use 
of the transformation (35), which is valid only for the 
case when A(s) and B(s) fall off at infinity l). We can 
correct the situation by subtracting from B - iA a sym­
metric function of s with the same cuts and asymptotic 
value, in such a way that the result now be a decreas­
ing function. We note that the trouble arises entirely 
from the terms of second order in k/kl, which originate 
from Hl/€1 (the zeroth approximation is taken from SlO 
and the denominators of the first term in (34 ». There­
fore, we shall consider only these terms. 

Subtracting from 1/ rp (s) a function which we denote 
by 1/ rpoo( s) = Boo - iAoO, we obtain 

1 ~ 1 1 
B(2)=B~ (2)--S [A(s)-A~($) j (--+--) ds. 

n, s+2 s-2 

As a result, it turns out that in the expression for q we 
must make the replacement 

~S A (s) ds .... _ ~B~ (2) + j [ A (s) _ A~ (s) _s -] ds. 
, s+2 2 I s+2 s'-4 

For 1/ rp 00 (s) we can take the simplest functio n: 

11<p~ (s) ='/ .. [ (s+1) '''+ (1-s) 'I,]; 

then Boo = (3/16) (s + 1 )1/2 and Aoo = (rlS) (s _ 1)1/2. 
Substituting 1/ rpoo into the integrals, we find 

S~ A (s) ds .... _ 31'3n + S~ (A (s) _ ~ s(s-1) 'I, ) ds. 
I s+2 32 I s+2 16 s'-4 

But we can do still better. We add and subtract 
3/16..fS under the integral. We then obtain 

jA(s)dS .... _2.+j(A(S) -~)dS. 
I s+2 8 I s+2 161's 

Carrying out these replacements in q and comparing 
the expressions for q and for ~(w) with (31) and (30), 
we obtain 
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2-<X=~-~(AI-8A,+ 32 A,) 
5n' 15n' 3' 

<X 16 
l--=-A, 

'V 3n2 ' 

(38) 

(39) 
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• A(s) 3. • A(s) 
A,= f ( 8+2 -16l'8 )d8, A.>,= f (8+2)' ds. (40) 

The function A( s) = -1m [11 <p (s)] = 1m <p (s)1 I <p (s W, 
and <p (s) is given by the formula (27b). Numerical cal­
culation gives: 

A,= -0.6976; A,=0.1570; A,=0.01207; A/=0.00183. 

As a result, 

2-a=0.238, 1-a!v=0.0847 (41a) 

or 

a=1. 76, v=1,92. (41b) 

The result obtained is evidence that the approach 
used is highly successful. In fact, both 1 - alII and 
(2 - 0::)/2 are of the order of 0.1. In view of this, the 
values obtained for a and 11 can be regarded as fairly 
reliable. But if we take the first approximation of the 
E expansion, it turns out there that the electron Green 
function is weakly renormalized, but, in return, the 
Coulomb-quantum Green function is strongly renormal­
ized: 1) = 3 - 11 "" 1, in place of 2 as in Coulomb's law. 
This shows that, in the given problem, E = 4 - d is not 
as suitable an expansion parameter as l/.n, in contrast 
to the theory of phase transitions. This is also indi­
cated by the fact that, according to Sec. 3,1 - alII is a 
quantity of order EZ, whereas 2 - a is of order E. In 
reality, as can be seen from (41a), they are of the same 
order (nevertheless, it is true that there is a certain 
tendency for 1 - alII to be small). In view of this, we 
must conclude that, although the E-expansion method 
can be applied in the given problem for certain qualita­
tive estimates (the absence of the term f, and argu­
ments in favor of the lin expansion; cf. also Sec. 5), 
for quantitative calculations it is necessary to use the 
lin expansion. 

In the derivation performed we have assumed the 
Hamiltonian to be equal to cH" on the basis of the re­
sult from the preceding Section that the contribution 
fkz in the Hamiltonian is not renormalized. Actually, 
this is somewhat inconsistent. In fact, this result was 
obtained in the first approximation of the E expansion, 
whereas here we are using a completely different ap­
proximation. Nevertheless, a certain argument can be 
adduced in favor of the validity of the procedure used. 
Suppose that f;c O. In this case, the replacement 

s->-s-211ZX, 

where 1] = fl c, takes place in the expression (24) for the 
po larization operator. Let 1] be small. In this case, 
expanding in 1] gives a correction of order 1]z to n. 
Substituting n into ~ leads to the appearance of correc­
tions of order 1/z in all terms. In particular, a term 
proportional to 1] z k z ln(ko/k) can arise in ~. Combin­
ing this with the term _fkz in G(O)-I, we arrive at the 
conclusion that for small 1] the power 2 - 0:: in the iso­
tropic term of the Hamiltonian will be proportioual to 
1], i.e., it will be considerably smaller than the constant 
obtained for the term of the type cH" But this means 
that, in this case, we can neglect the isotropic term in 
the asymptotic region w, k - O. Consequently, the case 
we have considered is internally consistent. It is not 
difficult to see that the opposite assumption, namely, 
that f;c 0, c = 0, leads to n(I) = 0, i.e., to the absence 
of a strong-coupling situation. Consequently, the possi­
bility that the power of the isotropic term is lower than 
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the power of the term of the type cH 1 cannot be realized. 
Finally, equality of the powers is also impossible, since, 
if this were the case, it would be true for all f. 

One can also discuss all this in a different way. 
Matching of the power laws with perturbation theory is 
not always possible _ In particular, in matching with 
ordinary perturbation theory in the E-expansion 
method [3] it is necessary to select the value of the in­
teraction constant for which this is possible. In our 
case, for ckz» w, there can be terms of the type H, 
and an isotropic term in G- ' . We can make three as­
sumptions: a) the power of the term of the type H, is 
lower than the power of the isotropic term. Then 
matching with the perturbation theory starting from 
f = 0 should exist, and has been effected in this Section; 
b) the power of the term of the type H, is higher than 
the power of the isotropic term. In this case, there 
should be matching of the strong-coupling regime with 
the perturbation theory starting from c = 0, and this is 
not obtained; c) finally, by assuming the powers to be 
equal we can take any value of the ratio fl c = 1] in the 
initial Hamiltonian. The two powers should turn out to 
be equal for any 1]. But this is not corroborated for 
small 1/. 

Thus, the possibility (a) considered above is the only 
one. 

5. "ISOTROPIZATION" IN THE SINGULAR 
REGION 

Up to now we have considered only the spherically 
symmetric model with the Hamiltonian (2). It ~as found 
that the power of the second term, which we called CH" 
in the singular region is lower than the power of the 
term fkz. This corresponds to the fact that the electron 
and hole masses are, as it were, equalized in the 
singular regionZ). We now show that "isotropization" 
of the spectrum occurs in the singular region, i.e., 
even in the case when we do not assume isotropy at 
large momenta, it arises automatically in the singular 
region. 

For this we note that an anisotropic model corre­
sponds to replacement of CH" the part of the Hamilton­
ian given by formula (4), by c,H , + czHz, where H, in­
cludes the terms with the "non-diagonal" matrices 
AIlII (Il;c 11) and Hz includes the terms with t~e matrices 
A IIII . We call attention to the fact that, accordmg to the 
rules (5) and (6), we can easily replace the normaliza­
tion of the matrices All 11 with Il ;c 11 without damaging 
the whole scheme. This gives the possibility of general­
izing the method proposed in Sec. 1 for continuing to 
noninteger dimensions for the case under consideration, 
and for all integer d the number of matrices Yi and, 
consequently, their rank are not increased in compari­
son with the isotropic model. 

Without repeating all the arguments,we cite the 
principal formulas. Writing 

c,H,+C,H,50C,1:, A,.k,k" .. (42 ) 

we have in place of (9) 

djJ.' 2 2d, 
(A,,,A po)= d-1 (1l"llvo+Il .. IlVP)-T-1/l,./lpo+ d-1 (1-fl )/l,.po, (43) 

where Il = c II cz, and ()Illlpa = 1 when all the indices 
coincide and zero otherwise. It follows from (43) that 
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<C,H, (k,) +c,H,(k,), c,H, (k,) +c,H,(k,)}= ~ [d", (k,k,)' 
d-l 

-k,'k,'+d(l-,,') ~k,.'k2V']. (44) 

In particular, for k1 = k2 = k the right-hand side be­
comes equal to 2 ( E/ C 2 )2; 

e=c,k' ["'+~("'-1)A22 ]'{. (45) 
d-l 

is the pole of the bare electron Green function; 

With the same rule (11) for the rank of the matrices, 
we can solve the problem. To obtain the first approxi­
mation in E = 4 - d it is sufficient to perform the cal­
culations with logarithmic accuracy for d = 4. Since in 
the present case we have not one but two invariants, the 
scheme we constructed earlier[ll is not directly applic­
able. However, the basic line of the calculations is the 
same. We shall find II and :E in the logarithmic ap­
proximation, assuming c 1 and C2 (or C2 and JJ.) to be 
functions of ~ = In (ko/k), and then obtain equations 
from which it will be possible to determine them. 

Substituting G = [w - C1H1 - C2H2r1 into (12), taking 
the integral over wand transforming the expression 
obtained, we find 

II=-4k' ~ f' ~ { ,,'+'/. (,,'-i) (4,,'-1)A,,-'/, (,,'-i)' A22'} 
(2n)' . c,(~,) [1 +'/,(,,'-1)A,,],/, •• 

" (46) 
where 

II n 'lit 

{ } •• = (2n') -, f sin' 6 d6 f sin <p d<p J dy{ }, 
o 0 0 

A22 was defined earlier, 

A 222 = .E nfl.'lnv 2n p\ 

II*"*P 

and the projections nv of the unit vector are equal to: 

n,=cos 6, n,=sin 6 cos <p, n,=sin e sin <p cos y, 

n,=sin e sin <p siny. 

In (46), JJ. depends on ~1. It follows from (46) that 
4ne' 4ne' 

r= (k' 4 'II/ ) --k' d(~), (47) 
Xo - ne Xo Xo 

where d( ~) is a logarithmic function. 

We turn now to the self-energy. We write, analog­
ously to formula (15), 

2ne' f d(~,) c,H,(k,)+c,H,(k,) d'k, 
~(I)(O,k)=-;;- ~ e(k,) (2n)' 
, ,(48) 

"" 8ne fd(s,)(k,k) c,H,(k,)+c,H,(k,) dk, = II (k)+ H ·(k). 
Xo k,' e(k,) (2n)d q" q" 

We take the anticommutator with AJJ. v (JJ. "" 1/). Com­
paring the two parts and applying the definition c 1 = C 10 

+ q1, we obtain the equation 

2n' 4ne', S' { d(~')"(~')A"} ) 
c,(~)=clO+ (2n)' -;;- /,." (H'/,A"[,,'(W-ij)'" a; (49 

By taking the antic om mutator of the formula (48) with 
A pp , we have, in the same way, 

2n' 4ne' Sl { d(~,) ('/,-'/,A,,) } 
c,(~)=c20 + (2n)' -;,-2" . (H'/,A,,[,,' (S.)-1])'I' a: (50) 

From (46) and (47) we have 
1 4ne' 2n' 

--=H-----· des) Xo (2n)' 
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(51) 

From Eqs. (49), (50) and (51) we can find the three func­
tions C1, C2, and d. Our purpose is not this, however, 
but the determination of the laws 

(52) 

in the asymptotic region. Using the notation (3 = 2 X 21T2 
x 41Te 21 (21T) Ko, introducing JJ. = c 1/ C2 and differentiating 
the equations with respect to ~, we have 

dIn" ~d(s){ A,,-'/, } 
~= c.(s) [H'/,.4,,(,,'-i)]"'.: (53a) 

dlnc, ~d(s) { '/'-'/,.4,,} (53b) 
~= c,(s) [H'/,A,,(,,'-1)!'" ,: 

dIn d-' = ~d(s) { ,,'+'/.(,,'-1) (4"'-1)A"-'/'("'-1)'A",} . (53c) 
ds c, [1 +'/,A,,(,,'-l) ]'1, •• 

First of all, we make the assumption that JJ. = const. 
For this it is necessary that the right-hand side of 
(53a) vanish, or, in other words, 

n 11 211 A 1/ 

2:' f sin' e de f sin <p d<p f dy [1 +,/,A::~"'~1) !'" =0. (54) 

This equation is satisfied for JJ. = 1, since {A22 } av = Y4. 
This solution corresponds to the isotropic case. But in 
principle (54) could also have other solutions. 

We note that the left-hand side of Eq. (54) has the 
asymptotic forms 3 ) 

{ A,,-'/, } 
" ..... 0, (i-'/,A,,),I, ,; 

1 { A,,-'/, } 
~ (8/3An) 'I. av' J.t -+ 00. 

(55a) 

(55b) 

The maximum value of A 22, corresponding to n~ = n~ 
= n~ = n~ = 1., equals ra, and the minimum value equals 
zero. Since A22 = 14, we should expect that values A22 
> Y4 will play the prinCipal role in the averaging of 
(55a), Le., the result will be positive, and that values 
A22 < 14 will play the main role in averaging of (55b), 
Le., the result will be negative. 

These arguments are reinforced by the following esti­
mate. We expand the integrand in (54) in A22 - 14 and 
confine ourselves to the first nonvanishing term. The 
integral is then easily taken and we obtain 

4 { ( 1 ) '} (,,'-1) 1 (,,'-1) 
- 3" A,,- '4 .. [H'/, (1-\'-1) ]''' 120 [1+'/, (1-\'-1) J'" . (56) 

This formula is accurate near JJ. 2 = 1 and somewhat 
less accurate at the limits (the expansion parameter is 
of the order of 13). But it is, however, sufficient for the 
following conclusions to be drawn: 1) there is only one 
value JJ. 2 = 1 at which the expression (54) vanishes; 
2) for JJ. - 0 this expression is positive and for JJ. - 00 

the coefficient of \ JJ. \-1 is negative. 

We return now to Eqs. (53) and make an assumption 
about the powers in (52): 01> Q2' This means that for 
~ _00 we have JJ. _00, Le., the power of JJ. is positive. 
But for this the right-hand side of (53a) must be posi­
ti ve for JJ. - 00 (d cannot become negative and in 
reality C2 implies \ C2\)' But it is proportional to (55b), 
and, according to the analysis carried out above, the 
coefficient of 1/\ JJ. \ is, in reality, negative. The same 
contradiction arises if we assume that the powers in 
(52) satisfy 0!1 < 0!2, Le., JJ. - 0 as ~ _00. 

Thus, it follows from the arguments given that JJ. 2 
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= 1 is the only solution, i.e., "isotropization" arises 
in the asymptotic region, irrespective of the initial 
conditions (c 10 and C20)' 

6. CONCLUSION 

Although the calculations performed above pertained 
to the singular region, in which all quantities are 
strongly renormalized because of the interaction, 
nevertheless, since we have used a matching method, 
we can analyze qualitatively the transition to this region. 

Deviation from the "free" behavior begins for 
k < ko, W < Woo So long as the momenta and energies 
are not too small (we shall denote the lower boundary 
by k1, WI), the change in the electron Green function 
can be neglected. In the region k1 < k < ko, WI < W < Wo, 

which we shall call the second region (the first is the 
"free" region), only the electron-electron interaction 
describable by the function r changes. The inclusion 
of the zeroth-approximation polarization operator has 
already been made by a number of authors [5]. Our cal­
culation justifies this approximation in the second re­
gion. The Coulomb law in this region is replaced by an 
interaction proportional to II r2 (in the coordinates). 
For W » ck2, allowance for the polarization leads to 
the appearance of a dielectric permittivity proportional 
to 1Iw 1/ 2 • From formulas (26) and (28) it is not difficult 
to obtain 

_ + e'(1+isignlll) 
X-Xo (Zllle)"" (57 ) 

In this form, this formula is also true for W ~ Woo It can 
be shown that formula (57) also remains valid if we take 
an isotropic model, but with different masses, Le., 
f,.. O. In this case, c = Y4 (lime + 1/mh). 

Since the "free" Green function and the interaction 
have the form (1) with a = v = 2, all the temperature 
and other dependences found earlier in[2] are operative 
in the second region. As regards estimating the coef­
ficients, the effect can be appreciably reduced in those 
cases in which interaction of the electrons is important. 
For example, the electron-electron scattering probabil­
ity will be proportional to the number (1 - alv) (41a), 
which is approximately 0.08. In view of the fact that the 
second region is very simple for calculations, all the 
expressions for the phYSical effects in this region can 
be found, without great complications, in an explicit 
form with numerical coefficients (in any case, for the 
isotropic model)4), and this has been done in a number 
of papers (cf. the literature cited in[7]). 

According to Sec. 4, change of the electron Green 
function begins either when 

or when 
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These limits are somewhat different. In fact, ck~ ~ 2.5 
x 1O-4 wo, whence it follows that, in prinCiple, there is 
a certain region of energies in which :E is substantially 
renormalized and, at the same time, the dependence of 
:E on W can be neglected. But this means in practice 
that a single-particle spectrum remains for energies 
2.5 x 10-4 Wo > W > 10- 5 wo, although it differs from the 
"free" spectrum. For W < 10-5 WOo the Single-particle 
spectrum is strongly damped. 

However, all these changes occur in the region of 
extremely low energies. We shall call this the third 
region. In the known zero-gap semiconductors, because 
of the large dielectric permittivity Ko and the small 
effective mass, the second region is itself shifted into 
the region of energies of the order of 10-3 - 10-4 eV, so 
that even this region, in the purest samples, may be 
difficult to "seek out." In principle, we can assume 
that substances with significantly larger values of Wo 

will be found. However, even in a case in which Wo 

reaches 10 eV, the third region will remain extremely 
difficult to attain. 

In conclUSion, the author expresses his gratitude to 
A. A. Migdal and 1. E. Dzyaloshinskil for discussion of 
the work, to Yll. V. Petro v and V. 1. Fisher for the nu­
merical calculations, and to S. 1. Anisimov for friendly 
assistance in organizing these calculations. 

I)The expression (34) contains no such divergence. 
2)We recall that the single'particle spectrum may not exist in the singular 

region (cL the Conclusion). 
3) A change of sign of J.i. corresponds only to a change of basis and, there­

fore, has no physical significance. 
4)Our calculation had the purpose of matching with the singular region, 

and we have therefore considered the isotropic model with f = O. Tn 
calculations for the second region it is necessary to use the true "free" 
Green function. 
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