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The moment of the forces acting in a magnetic field on a heated cylinder suspended in a 
paramagnetic liquid is calculated (the arrangement is illustrated in Fig. I). The cause of the effect is 
the gyromangetic interaction between the applied field and the velocity vortices of the convective 
flow in the boundary layer at the cylinder surface. 

1. INTRODUCTION 

The determination of the gyro magnetic ratios from 
the Einstein-de Haas effect calls for the measurement 
of very small torques acting on a suspended cylindrical 
sample. To increase the measurement accuracy, the 
torsion pendulum is placed in a vacuum chamber ll ], but 
it is precisely in this case, in the gas pressure interval 
from 0.01 to 1 mm Hg, that one observes a small ano­
malous torque whose value depends on the nature of the 
gas and whose sign reverses with changing direction of 
the magnetic field parallel to the cylinder axis. Scott 
et alp,3] investigated this effect, replacing the ferro­
magnetic sample used in the gyro magnetic experiments 
with a glass rod. It was established that the anomalous 
torque is proportional to the temperature difference be­
tween the cylinder and the vacuum-chamber wall (in the 
Einstein-de Haas experiment, the ferromagnetic rod 
becomes heated during the course of magnetization re­
versal). 

The phenomenon of rotation of a heated cylinder in a 
magnetic field was observed[3] in more than 20 molecu­
lar gases (NO, N02, O2 , N2, Cl2, CO etc .). In almost all 
the investigated gases, the torque goes through a maxi­
mum at a pressure near 0.03 mm Hg, Le., at an average 
mean free path of the gas molecules A ~ 0.2 cm. 

The corresponding Knudsen numbers are not too 
small (All ~ 0.1, where l is the characteristic macro­
scopic dimension), thus indicating that the Scott effect 
is kinetic in nature. Its cause is, as shown by Wald­
mann [4], the nonspherical character of the reflection of 
the field-polarized rotating molecules from the cylinder 
surface (the "cut tennis ball" model). The connection 
between the Scott effect and the kinetic Senftleben­
Binakker effect, which consists of a change in the trans­
port coefficients of a rarefied polyatomic gas under the 
influence of an applied field, is discussed in the paper 
by Hess and Waldmann [5]. 

We show in this paper that an effect similar to the 
Scott effect, but of pure hydrodynamic nature, should 
occur in liquid paramagnets. A heated cylinder im­
mersed, e.g., in liquid oxygen is acted upon in a con­
stant vertical magnetic field by a torque due in final 
analysis to gyro magnetic effects. 

Since the molecules of the liquid or of the gas have 
rotational degrees of freedom, the angular momentum 
per unit volume of the medium does not reduce to the 
hydrodynamic ("orbital") angular momentum L = pr 
x v, but contains also an internal ("spin") angular mo­
mentum S. The latter is connected with the volume 
density of the magnetic moment M by the relation 

M=lS, (1) 

where y depends, of course, on the material. In addition, 
a connection exists between the proper rotation of the 
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molecules and the translational motion (with hydrody­
namic velocity v) of their mass centers, which is 
macroscopically manifest in the law of conservation of 
the total angular momentum of the medium L + S. Ow­
ing to this relation, the vertical motion of the liquid 
goes over partially into the "latent" form S, and the 
liquid, according to (1), becomes magnetized (the analog 
of the Barnett effect). The inverse (Einstein-de Haas) 
effect is also possible: the magnetic field, which forms 
M directly, generates by the same token an internal 
angular momentum, which can then be partially trans­
formed into vortical motion of the liquid. 

The gyro magnetic torque discussed in this paper is, 
however, not a direct analog of the Einstein-de Haas 
effect. As indicated above, in a liquid ferromagnet, the 
torque is expected to appear under the same experi­
mental conditions in which the Scott effect is observed 
in a rarefied gas. Under the conditions of such an ex­
periment, the two gyromagnetic effects become inter­
twined, since a vertical motion of the liquid, due to con­
vection near the heated cylinder, is present along with 
the magnetic field. At the cylinder surface, a convec­
tive boundary layer is produced (see Fig. 1), with 
velocity components Vr and Vz that depend on the co­
ordinates rand z. The curl of the velOCity of this flow, 
curl v = 20, is equivalent in its action on the magnetic 
properties to an external field H ep = 0 ep/r. Under the 
influence of the "gyro magnetic field" H ep, a magnetiza­
tion component Mep = (Xh)Oep is produced, where X 
is the magnetic susceptibility of the liquid. By produc­
ing M cp, a certain angle between the vectors M and H 
the stationary motion of the liquid is maintained by the 
same token in the applied field Hz = H. It is the torque 
due to the fact that these vectors are not parallel which 
leads to the rotation of the liquid around the cylinder. 
The purpose of this article is to calculate the velocity 
component vep and the associated friction moment acting 
on the cylinder. The equations used in the article for 
the motion of a liquid with the gyro magnetic properties 
were derived phenomenologically by the author in[6], 
and from the kinetic equations by Kagan and Maksi­
mov[7]. 

2. FUNDAMENTAL EQUATIONS 

In a liquid with internal rotation, the momentum and 
angular-momentum conservation laws are given by the 
equations [8] 

p (av'; at+v.av'; ax.) =acr .. .1 ax., 

as,,/ at+ v,as,./ ax, =cr"-cr,,,. 

(2 ) 

(3 ) 

Here Sik = eiklSl, where Sl is the pseudovector of the 
internal angular momentum, and O"ik is the stress 
tensor and consists of a symmetrical part and an anti­
symmetrical part: 

Copyright © 1975 American Institute of Physics 701 



T=O 

FIG. 1 

From (1) and (3) we obtain the equation of motion of 
the magnetic moment of the liquid 

aM/at+ (vV) M=-2111. (4) 

The irreducible parts of the tensor aik were obtained 
in[61. For an incompressible liquid we have 

1 1 
11= --[MH1+-(M-xH,), (5)* 

2 21' 

( av, av, ) 1 H,H, 
(J,,'=-p,6,,+1] -+- +-(M,H,+M,H,)+--

ax, ax, 2 4" 

( av, av,) 1 H,B, 
=-p,6,,+T] -+- +-(MiH,-M,Hi)+--' 

ax, aXi 2 41t 

(6 ) 

H,=H+Qh, B=H+41tM. 

All the isotropic terms of the stress vector, in addition 
to the pressure p, are included in this case in Pe' 

In the equation for the magnetization 
aM 1 
a-t+(vV)M=1[MH1--;(M-XH,), (7) 

which is obtained from (4) and (5), the term (v'V)M is 
always small in comparison with MIT. For example, 
in the convective boundary layer which will be discussed 
below, we have vr/vz ~ Oil, and therefore 

(vV) M-Ml' g~8/1 

(0 is the thickness of the boundary layer, 1 is the 
height the cylinder, (3 is the coefficient of thermal ex­
pansion of the liquid, and ® is the difference between 
the surface temperature of the cylinder and the temper­
ature of the liquid far from it). At arbitrary reasonable 
values of the parameters land ®, the characteristic 
"hydrodynamic" time (Z/g{3®)1/2 is not less than 0.1 
sec. This is larger by many orders of magnitude than 
the magnetization-relaxation time (T :s 10-10 sec for 
liquid paramagnets with atomic paramagnetism), so that 
the term (v· V)M in (7) can be neglected. Under sta­
tionary conditions aM/at = 0 and Eq. (7) takes the form 
a = 0, Le., 

(8 ) 

For the stationary motion of the liquid we obtain, by 
substituting (6) in (2), the equation 

(9 ) 

When calculating the divergence of the symmetrical part 
of the stress tensor (6) we used the equation div B = 0 
and took into account the homogeneity of the applied 
field. In addition, the right-hand side of (9) includes the 
Archimedean bouyancy force, which causes the convec­
ti ve motion. 

From (8) we easily obtain 

Substituting (10) in (9), we obtain an equation of motion 
that does not contain M. 

It is necessary to add to (9) and (10) also the station­
ary equation of the thermal conductivity in the mOving 
liquid and the incompressibility condition 

vVT=xI'!.T, div v=O 

(K is the temperature diffusi vity coefficient). 

3. SOLUTION OF PROBLEM 

The velocity and temperature determined by Eqs. 
(9)- (11 ) can be expanded in powers of the magnetic 
susceptibility X. In the zeroth order in X, the term 
curl[M x H] in (9) vanishes, and the equations 

1 
(vV)v=- - Vp+vl'!.v-g~T (V=T]/p), 

p 

vVT=xI'!.T, div v=O 

(11) 

(12 ) 

describe the usually free convection near a heated 
cylinder. At sufficiently large temperature difference 
® between the cylinder and the liquid, the boundary 
layer thickness is 0 « R, where R is the radius of the 
cylinder. In this case the curvature of the cylinder 
surface can be neglected, and Eqs. (12) lead to the well 
known Polhausen problem of the convective boundary 
layer on a flat vertical plate (see, e.g.pl, p. 263). We 
choose the origin of a rectangular coordinate system on 
the lower edge and direct the x axis horizontally, along 
the cylindrical coordinate r, and the z axis vertically 
upward. From the symmetry of the problem it is clear 
that the distributions of the velocity and of the tempera­
ture do not depend on the coordinate y, and the velocity 
has no y component. With the customary accuracy for 
the boundary layer[91, Eqs. (12) take the form 

av, av, a'v, . 
v,-+v,-=v--, +g~T, 

ax az ax 

aT aT a'T av, +~=O 
v'a;+v,Tz=xa;z, ax az 

with the boundary conditions 
v,=v,=O, T=8, at x=o 

(the zero point of the temperature is taken to be the 
temperature of the liquid far from the cylinder). 

(13 ) 

(14) 

The problem (13)-(14) determines the temperature 
T and the velocity components Vx and Vz in the zero­
order approximation in X. In the first-order approxi­
mation the quantities T, vx, and Vz acquire corrections 
which, however, are of no interest because X is small. 
What is qualitatively new in this approximation is the 
appearance of the azimuthal velocity component Vy 
(vep in cylindrical coordinates). An equation for Vy is 
obtained from the general equation (9) by substituting in 
it M x H from (10). We note that inasmuch as the right­
hand side of (10) already contains the first power of X 
in the coeffiCient, the value of n in this formula should 
be determined by the zeroth-approximation velocity: 

Q,=Q,=O, Q,='/,(av)az-av,lax). 

Recognizing also the character of the motion in the 
boundary layer (vx« vz, a/ax» a/az), we obtain for 
Vy the equation 

(15 ) 

(10) where 
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(16) 

The condition Vy = 0 should be satisfied on the sur­
face of the cylinder at rest (x = 0) and far from this 
surface (x - 00). 

We emphasize that the velocity component Vx and Vz 
in (15) are determined by the zeroth-approximation 
solution of the problem. Thus, Eq. (15) is a linear in­
homogeneous equation with respect to Vy, in which the 
term with € plays the role of the mass density of the 
extraneous forces. 

There exist, as is well known[91, a similarity trans­
formation that makes it possible to reduce the zeroth­
approximation problem (13)-(14) to a system of ordinary 
differential equations. This is accomplished by introduc­
ing the dimensionless independent variable 

x = (g~e )'" ~=C7' C 4v' • (17) 

We seek the stream function IjJ of the stationary motion 
and the temperature T in the form 

'¥ (x, z) =4VCZ'I'1jl(S), T(x, z) =e~ (s). (18) 

The velocity components are in this case 

aw " vx = -a;:-=vCz- . (s1jl'-31jl) , 

v, = aa~ = 4vC'z"'1jl'. 

(19 ) 

From (13) and (14) we obtain for ljJ and?; the equations 

1jl"'+31jl1jl"-21jl"+~=0, ~"+3P1jl~'=0 (20) 

(here P = III K is the Prandtl number) with boundary 
conditions 

\j)(0) =1jl'(O) =0, t(O)=l, \j)'(oo)=~(oo)=O. (21) 

The results of a numerical integration of the problem 
(20)-(21) can be found, e.g., in Schlichting's book(1o] 
The profile of the vertical velocity ljJ' at P = 1 is shown 
in Fig. 2. 

The condition for the applicability of the solution of 
the Polhausen problem to the boundary layer on a verti­
cal round cylinder is O/R« 1. We present an estimate. 
As seen from (17), the thickness of the boundary layer 
o ~ Zl/YC reaches its largest value Om ~ (l1l2/g{3®)1/4 
at the upper end of the cylinder. For liquid oxygen 
(II = 2 X 10-3 cm 2/sec, (3 = 4 X 10-3 deg-1) at R ~ 1 cm 
l ~ 10 cm, and ® ~ 10° we have Om /R ~ 0.1. ' 

We proceed to find the y component of the velocity. 
Substituting in (15) Vx and Vz from (19), and assuming 

v,=eCz-"'/ ('6), (22) 

we obtain for f the equation 

FIG. 2 
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f'+31jlj'+1jl'j=(31jl-W) ", (23) 

which should be solved with the boundary conditions 

/(0)=0, /(00)=0. (24) 

The problem (23) and (24) was integrated numerically 
by the Runge-Kutta method (the solution ljJ of the 
zeroth-approximation problem was in this case also 
obtained numerically). A plot of the function f for 
P = 1 is shown in Fig. 2. We note the presence of a 
node in f: the liquid rotates in opposite directions near 
the cylinder and far from it. 

4. DISCUSSION OF RESULTS 

Let us determine the friction torque acting on the 
cylinder. In the azimuthal direction, a unit cylinder 
surface is acted upon by a friction force Tjavy I ax \ x=O. 
From (22) we obtain with the aid of (17) 

1] av, I ="T]eC'z-"'j' (0). 
ax %_0 

The entire cylinder is acted upon by the friction torque 

I a 
K=2nR'1] J~ I dz=4nR'I"'1]eC'!' (0). 

o ax %=0 

Substituting € from (16) and C from (17), we obtain 
ultimate ly 

2 X (OH't , --

K=nR 21'"t H(UlH"t).t (O)l'g~ez. (25) 

In molecular gases, the relaxation of the magnetic 
moment is ensured by the collisions of the molecule, 
whereas the relaxation of the magnetization T is deter­
mined by the mean free path time, i.e., T r::-; Tj/p. As­
suming the magnetic susceptibility of the gas to be 
equal to X = nlJ. 2/3kT, where IJ. is the effective magnetic 
moment of the molecule, and using the equation of state 
p = nkT, we obtain from (25) 

nR' ( fl )' pH , -
K=61 kT H(1]1H/P)' t (O)l'g~el. (26) 

Comparing K with the torque KS observed in rare­
fied gases (the Scott effect), we note the Similarity of 
the dependence on H and the difference in their depend­
ence on p and 18. In both cases the torque as a function 
H has a maximum at a certain volume Hlp = const. It 
is seen from (26), however, that the maximum value K 
reached in a field H = p/TjY and equal to 

Km= ~:~ ( ::r)' f'(O)l'g~el 
increases with pressure monotonically (~p2), whereas 
K~( p) goes through a maximum at p ~ 10-5 atm. With 
increasing temperature difference between the cylinder 
and the gas, K inc reases like ® 1/2 and KS like ®. 

In a sufficiently dense paramagnetic gas (p ~ 1 atm), 
and all the more in a liquid, the magnetization relaxa­
tion time is so small, that the condition WHT « 1 is 
satisfied for all reasonable fields. In this case T drops 
out completely from (25), and the formula for the 
moment of the forces becomes 

xH --
K=nR' i:t 1'(0) l' gpez. (27) 

It is interesting to note that the viscosity of the liquid 
enters in K only via the dependence of f' (0) on the 
Prandtl number P. This dependence, obtained as a re­
sult of numerical integration of Eqs. (20) and (23), is 
plotted in Fig. 3. 

The moment of the forces K should reach in liquids 
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much larger values than in gases, since the magnetic 
susceptibility X is proportional to the density of the 
number of particles-the carriers of the magnetic mo­
ment. Further, as seen from (27), K is proportional to 
the ratio x/ y. The most promising for the observation 
of the effect is therefore oxygen, in which owing to its 
special properties [11], a large X is combined with a 
small Y. The magnetic susceptibility of liquid oxygen is 
anomalously large (X = 2.8 x 10-0 at 800 K). The electron 
spin of the O2 molecule is coupled with its angular mo­
mentum by the "spin-axis" interaction, and this coup­
ling is such that the gyro magnetic ratio Y, defined by 
formula (1), is smaller by three orders of magnitude 
than for free electrons, Le., it is of the same order as 
for nuclei. Scott et al. [3] obtained for the rotational g_ 
factor of the O2 molecule a value grot = -9 (the effec­
tive magnetic moment is measured here in nuclear mag­
netons J.Lp). This experimental value agrees in order of 
magnitude with the theoretical estimate of Maksimov['2] 
Thus, we have Y = grot (J.Lp/n) = -4.3 x 104. 

Let us estimate the effect numerically. In the case 
of liquid oxygen it is necessary to substitute in (27), in 
addition to the indicated values of (:J, x' and Y, also 
f'(O) = -0.12 (P = 2.8). For a cylinder of radius 2 cm 
and height l = 10 cm, at a temperature difference 
Gl = 100

, we obtain K = (lIH, where (lI = 10-7 dyne-cm/Oe. 
The smallest torque that could be measured in the ex­
periments[2] was 2 x 10-5 dyne-cm. According to the 
estimate, this value of K is reached already in a field 
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H = 200 Oe. Thus, the effect under discussion can be 
observed. 

I am deeply grateful to E. M. Zhukhovitski'i for help 
with the calculations, to G. Z. Gershuni for useful ad­
vice, and to G. F. Shaidurov for a discussion of the ex­
perimental aspects of the problem. I thank Yu. M. 
Kagan and L. A. Maksimov for an interesting discussion. 

*[MHl =M X H. 
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