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It is shown that in the rapid-relaxation limit, when the electron-spin relaxation time is small but 
finite, and the relaxation process is manifest in an asymmetry of the quadrupole doublet or in an 
abrupt broadening of the line, it is possible to determine from an analysis of the Miissbauer 
spectrum the Fourier components of the correlation functions « S i(t)S i (0)) at zero frequency, 
where S i is the i th component of the spin of the electron shell of the Miissbauer atom. The derived 
formulas make it possible to describe a great variety of spectrum shapes with a small number of 
parameters, and inasmuch as these formulas have been derived from first principles and are in this 
sense exact, they make it possible to extract strictly defined information on the relaxation process 
from the Miissbauer data. 

1. INTRODUCTION 

A large number of theoretical papers have by now 
been published (see(1-I5] and the reference therein) on 
the analysis of the hyper fine structure (hfs) of Moss­
bauer spectra under conditions of relaxation of the 
electron spin that produces a magnetic field at a reso­
nant nucleus. These investigations were aimed mainly 
at the derivation of general equations describing the 
hfs spectra under the relaxation conditions, and also at 
determining qualitatively various forms of these spec­
tra, so that by now we know fairly well theoretically 
what the relaxation equations and the regions of their 
applicability should be. In fact, relaxation equations 
have been obtained for all the known relaxation mecha­
nisms, the only exception being spin-spin relaxation in 
paramagnets. 

Nonetheless, even if we exclude this special case of 
spin-spin relaxation, the problem of the reduction of the 
experimental spectra still remains quite complicated. 
This is due, first, to the need for considering the re­
laxation processes in a system having a relatively large 
number of degrees of freedom. Thus, in the most typical 
case of the isotope Fe 57 (Ig = Y2, Ie = ~2)' in the most 
general case a total of (2Ig + 1) (2Ie + 1) (2S + 1/ = 288 
transitions between the states of the combined system 
consisting of the nucleus and the electron shell exert an 
influence on the formation of the spectrum of the iron 
ion Fe 3+ (S = Y2). The obtained data must therefore be 
analyzed as a rule within the framework of some sim­
plified model, which only takes approximate account of 
the influence of relaxation on the hyperfine structure of 
the Mossbauer spectrum. In addition, it is usually 
necessary to resort to additional assumptions concern­
ing the relaxation itseli, and this Simplifies the prob-
Ie m greatly. 

The theoretical problem raised in this connection is 
to find the situations in which the re laxation processes 
can be described in terms of quantities that are fully 
defined and have a clear cut phYSical meaning. In the 
present paper we analyze the limiting case of rapid 
re laxation. As will be shown below, it becomes possible 
to obtain here a relatively simple description of the re­
laxation spectra with the aid of a small number of 
parameters that have fully defined phySical meanings. 
The most convenient for the analysis is the method used 
by Gabriel et al.[9] and also by Schwegler(13]. 

The relaxation spectrum is expressed in terms of 
the Fourier component, at zero frequency, of the relax-

690 SOy. Phys.·JETP, Vol. 39, No.4, October 1974 

tion functions «Si (t) Sk( 0 )), which describe the motion 
of the spin of the Mossbauer atom in time. As a func­
tion of these parameters, the summary spectrum can 
be realized in a large number of forms that differ 
noticeably from one another. This occurs both in the 
absence and in the presence of quadrupole interaction. 
In the former case the spectrum, outwardly constituting 
a single line, is actually the sum of unresolved lines 
with different widths and intensities, and the summary 
spectrum, depending on the form of the tensor 
« Si (t) Sk (0)) w=O, can experience even visually 
noticeable changes in the form. In the presence of 
quadrupole splitting, the character of the relaxation­
induced asymmetry of the quadrupole spectra, as well 
as other more detailed characteristics of the 'shapes of 
the individual components are also functions of these 
parameters. All this gives grounds for assuming that 
in the case of rapid relaxation it is possible not only to 
predict the behavior of the relaxation spectrum, but 
also to extract from experiment the set of parameters 
that have a clearly defined physical meaning and are 
not connected with any model representations. The cal­
culation of these correlation functions, by starting from 
certain theoretical representations, is already a special 
problem, and in many cases it can be carried out by 
numerical means. 

The determination of the form of the spectrum in the 
limit of rapid relaxation was the subject of studies by 
Wegener[5) and by Bradford and Marshall[6], but they 
used simplifying models either with respect to the 
character of the hyperfine interaction [5] or with respect 
to the relaxation process [6] (see also(15)). 

In Sec. 2 below we derive and analyze general ex­
pressions describing the M'ossbauer spectrum in the 
rapid-relaxation limit, and in Secs. 3-5 we consider a 
number of particular examples. 

2. FORMULATION OF PROBLEM AND DERIVATION 
OF GENERAL FORMULAS 

We consider a Mossbauer atom with nonzero total 
angular momentum of the electron shell (which for 
brevity will be deSignated by the letter S); let Ig and 
Ie be the nuclear spins in the ground and excited states. 
Owing to the hyperfine interaction between the nuclear 
and electron spins, for which we assume a Hamiltonian 
in the form 

(1 ) 
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(K = e, g; i, j = x, y, z), a magnetic hyperfine structure 
appears in the Mossbauer spectra. (Summation over 
repeated indices is implied throughout.) The character 
of the manifestation of the hfs depends significantly on 
the interaction of the electron spin with the phonons, 
with the neighboring paramagnetic ions, and with the 
conduction electrons in the metals; in one word, on all 
the interactions that cause relaxation of the electron 
spin. 

We represent the total Hamiltonian of the system in 
the form 

(2 ) 

where HQ is the nuclear quadrupole interaction (which 
does not depend on the spin of the electron shell) at Hel 
is a Hamiltonian that includes the interaction of the 
electron shell with the crystal field and with the external 
magnetic field, the interaction responsible for the re­
laxation, and also the Hamiltonian corresponding to the 
rest of the system. The concrete form of these interac­
tions is of no importance for the time being. 

An exact expression for the shape of the absorption 
spectrum of a Y quantum with wave vector k and 
polarization 1)a (a = 1, 2), in the case of a thin absorber, 
is given by 

~ r 
<p(oo)=Re Sdtexp (ioot- 2 t )«1).·j(k,t» (1).i+(k»>, (3) 

• 
where r is the total width of the source and absorber 
lines; j +( k) is the Fourier component of the density 
operator of the conduction and spin currents of the 
nucleons in the nucleus, which is responsible for the 
transition of the nucleus from the ground state to the 
excited state, and 

j(k, t) =exp (+H,I )Hk)exp ( - +H,t). 
The angle brackets denote statistical averaging over a 
canonical ensemble with Hamiltonian Hg . 

We now introduce the Liouville operator L in ac­
cordance with the formula 

LA=n-' (H,A-AH.) , 

where A is the usual quantum mechanical operator. 
The correlation function in formula (3) can then be 
rewritten in the form 

« 1). 'j(k) ) r:1' (1).i+ (k) ) >. 

(4) 

(5 ) 

It is se~en from the definition (4) that the Liouville 
operator L transforms one ordinary operator into 
another, and in this sense it can be called a superopera­
tor. It can be represented in the form of a super matrix 
(a matrix acting on the matrix) with four indices 0 Thus, 
formula (4) corresponds to the notation 

L,L·m"'m.A,'m' = ~ E (H •• A.m-A •• H.m ). 

n'm' 

Substituting (5) in (3) and integration with respect to 
time, we obtain 

q>(oo)=-Im «1).' j(k» 0 1 (1).i+(k»). (6) 
oo-L+if/2 

We now assume that the temperature T of the sam­
ple satisfies the condition 

(7 ) 

where kB is the Boltzmann constant and whf is a cer-
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tain characteristic frequency corresponding to the 
hyperfine interaction. In this case, after statistical 
averaging in (6), we can neglect in the expression for 
the density matrix p the interaction of the Mossbauer 
nucleus with the remaining crystal, and write approxi­
mately 

1 exp(-H"lk.T} 1 
p e:: 21,+1 Z.t lE 21,+1 pel. 

Here Z is the partition function. As a result we get for 
cp(w) 

1 ~ ~ 
'1'(00)= - 2/,+1 1m ~ <mgl (1).' j(k»G(oo) (1).j+(k» 1m,>, (8 ) 

m, 
z where I mg) are the eigenfunctions of Ig , and the 

superoperator 

G(oo)=P 0

1 P (9 ) 
oo-L+if/2 

now acts only on the nuclear variables, inasmuch as 

(10 ) 

in (9) is a projecting operator with the following obvious 
properties: If A is an operator acting both on the 
nuclear and on the electron variables, then PA 
= Trel (peIA) acts only on the variables of the nucleus. 
On the other hand if B is an operator acting on the 
nuc lear variables, then PB = B. In addition, p2 = P. 
Expression (9) for G( w) is easily transformed into 
(see[9,13 J) 

6(00)= 0 0 , 

oo-PLP-M(oo)+ifl2 

where the superoperator 
o 0 • 

M(oo)=PLQ • QLP 
oo-QLQ+if/2 

(11 ) 

(12 ) 

determines precisely the renormalization, due to elec­
tron-spin relaxation, of the positions and widths of the 
remaining components of the spectrum. Here Q = 1 - P. 

Let us proceed to analyze these expressions. In 
view of the definitions (4) and (10), it is easy to verify 
that PLP =0 < L) is a Liouville operator acting only in 
the space of the nuclear variables and corresponds to 
the average Hamiltonian 

(13 ) <H :>=HQ'+A.Aij<S'>"V, 

where < Si ) el = PSi. In other words, 

<L>B=n- ' «H .'>B-B<H /». (14) 

As to the superoperator M( w), a simple analysis shows 
that it can be transformed into 

M(oo)=P(Lhl-<Lh/» 0

1 (Lhl-<Lh/»P, (15) 
oo-QLQ+if/2 

where the Liouville operator ( Lhf) corresponds to 
< H~f) = AKAij< Si )el1t. It is seen from (15) that M(w) 
is now proportional to the square of the hyperfine inter­
action. On the other hand, in the rapid-relaxation case 
considered by us, when 

(16 ) 

(where Trel is a certain characteristic electron-spin 
relaxation time), the interaction of the electron spin 
with the remaining crystal is much stronger than the 
hyperfine interaction, so that formula (15) can be sig­
nificantly simplified. Namely, the operator QLQ in the 
denominator of (15) can be replaced by the electron op­
erator LeI. In addition, at frequencies w on the order 
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of Whf a!.ld less we can neglect the frequency depend­
ence of M( w) and put W = 0 in (15). It is obvious here 
that we remain within the framework of the same ac­
curacy with which we can retain in the denominator for 
(15) only the electron operator LeI. The dependence of 
M on w becomes significant when we go away far from 
the center of the resonance into the frequency region 
W » Whf, but of the order of til Trel. Here, however, 
we are not interested in such high frequencies. We note 
only that the dependence of M on W may turn out to be 
significant also when it comes to determining the total 
intensity of the spectral lines. Neglect of this depend­
ence means neglect of quantities on the order of 
(whfTrel)2 in the total intensity. In spite of the relative 
smallness of this correction, it may nevertheless turn 
out to be noticeable in precision measurements of the 
Mossbauer-effect probability. In the present paper, 
however, we are not interested in these effects. 

Using now the explicit form (1) of the Hamiltonian 
Hhf, we obtain within the framework of the approxima­
tions assumed above the following formula for M: 

where 

if =1/2cx,,[A,' (/,'I.j+I,q.') -Ai (/,'1,'+1,'1,') ]. 

-I;'~'je'j' (A.'I. '-Ail,')-
-i,,(ij(A,I.'-A,I,') (A.J.i-A,I,'), 

"(,j=nAiPA jq ~PaSaaP S,aq 6 (Ea-E,). 

a,a 

(17 ) 

(18 ) 

(19 ) 

(20 ) 

Here I Ci) and ECi are the eigenfunctions aD;d eigenvalues 
of th~ Hamiltonian Hel; PCi = (Ci I Pel I Ci) ; S1 = Si 
- (S1 )el; finally, P in formula (19) means the principal 
value. We note that Ciij, J3ij, and Yij are real quantities, 
with 

(21) 

Formulas (8), (11), and (17) provide us with a com­
plete phenomenological description of the form of the 
spectrum in the limit of rapid relaxation, such, how­
ever, that all the parameters have a clearly defined 
physical meaning. An important circumstance is that 
these formulas are a rigorous result obtained under the 
assumptions (7) and (16), Le., under the condition that 
the sample temperature is much higher than the hyper­
fine interaction and that the relaxation time of the elec­
tron spin is much less than whf' Formula (17) has then 
a simple phYSical meaning. The contributions with Ci ij 
and tlij describe simply a renormalization of the 
nuclear levels in second-order perturbation theory, 
wherein the term with Ciij is equivalent to a certain 
additional "quadrupole" interaction and to an additional 
"chemical" shift, while the term with J3ij is equivalent 
to a quasi-magnetic hyperfine interaction. 

As to the terms with Yij, they are connected with the 
following processes. If an additional magnetic field hz 
is produced at the nucleus as a result of the fluctua­
tions, then the positions of the hyperfine-structure lines 
shift by an amount on the order of (Aeme - Agmg)hz . 
But since hz varies with time, the presence of a ran­
dom field leads to a line broadening which is obviously 
of the order of 

(22) 
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where TC is the characteristic time during which the 
field hz retains its value and direction, while hz is the 
field amplitude averaged over this time. It is clear that 
in the general case the fluctuations in the other direc­
tions (i.e., along the axes x and y) are on a par, and 
this is the reason for the form of the last term in (17). 

We have expressed the superoperator M in (17) in 
terms of components of the spin operators of the 
ground and excited states of the nucleus. In exactly the 
same manner as in th~ case of the Liouville operator L, 
the matrix elements M are characterized by four in­
dices me, mg, m~, and mg, and are determined from 
the formulas 

(Ie1/e i )m,m", m~'ml1'= (Ieilei)merne,(jmgin,.r, 
(I,/i,l) mem", m.'m/= (If/li)ma'm~Bmeme'l 
(I.'/,')m,m" m,'m,'= (I:) m,mo' (Ii)m,'m,. 

In a number of phYSical situations, further ~ignifi­
cant simplification of the relaxation operator M is 
possible. For example, if it is assumed that the sample 
temperature is not too low and the relaxation time is 
not too short, so that the following condition is satisfied 

(23) 

then it is easily seen that Ciij « Yij, and cAonsequently 
the contribution of the terms with Ciij to M can be 
neglected. Indeed, from expression (18) for Ciij we see 
that the sum over Ci and tl has no singularity as ECi 
- E8, and at the small difference Ea - E{:l "" ti/Trel we 
have (PCi - PJ3)1 (ECi - EJ3):S l/kBT. We can therefore 
conclude immediately that the terms with Ciij are of the 
order of (tiwhf)2/kBT, whereas the contribution of the 
terms with Yij is of the order of (tiwhdl (til 'frel), We 
shall henceforth assume that the condition (33) is satis­
fied. 

As to the tensor J3ij' it is clear even from symmetry 
considerations that in the absence of an external mag­
netic field or else of spontaneous magnetization of the 
sample, all the components of this tensor are rigorously 
equal to zero. Indeed, tlij is an antisymmetrical tensor, 
and to construct it it is necessary to have a certain 
pseudovector, such as may be the magnetic field. If the 
latter differs from zero, then in the general case the 
tensor 8ij is also different from zero, and at a certain 
value of the field H the tensor .Bij may become com­
parable with Yij. The tensor (:lij reaches its maximum 
value at H "" til M BTreb where MB is the Bohr magneton. 
Further increase of the field, J3ij tends to zero like 
c/H, where the proportionality constant c no longer 
depends on the details of the relaxation process and is 
determined only by the character of the splitting of the 
ion levels by the crystal field. Indeed, it is easily seen 
from (19) that if H > ti/llBTrel one can take I Ci) and 
ECi in this formula to mean respectively the states and 
the energies of the individual ion in the crystal field, 
and neglect the interaction that causes the electron-spin 
relaxation. In the case of ferromagnetic substances, an 
expression valid at temperatures below the critical 
temperature ®c, where the spin-wave approximation is 
still applicable, was indeed obtained for J3 ij in [2J. It 
turned out there that 

• ~,=e'j,~ __ T_ 
" 212nS e,fB,d ' 

where the z axis was chosen along the direction of the 
spontaneous magnetization and the remaining notation 
is that of[2J. 

It is interesting to note that it is quite difficult to de-
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rive the term with (3ij within the framework of a stoch­
astic analysis, since it is connected not with real re­
laxation processes but with virtual processes that cause 
renormalization of the nuclear levels. 

Summarizing the results obtained above, we arrive 
at the following general formulas that provide a com­
plete description of the shape of the Mossbauer spec­
trum in the fast-relaxation limit: 

rp(w)=- 2I,~1 1m 1: (th·j(k»m,m' 
m"m. 

1n.,,'m/ 

x ( ~ 1 .) (1Jaj+(k»m.m" 
w-(L)-M+,r/2 m,m,. m'm' 

where in accordance with (13) and (14) we have 

(24) 

(L>= eQ.V<; [I;I+III;-~6;q(I+1)]- eQ,V'j [IiII 
41.(21.-1) •• •• 3 •• 41,(2/,-1)' • 

2 .. .. (25) 
+I.'l: - 36"1,(1,+1) ]+ Ai; (S') •• (A,I/-A,I/) , 

and the superoperator M is given by 

M=-~·(A.'I:-As'I:) -i1.,(AJ:-A,Ii) (A.J.i-A,Is'). (26) 

Here 13 k ", (3ijEij k/ 2. The rules for finding the matrix 

elements of <1 .. ) and M were given above. (In (25) we 
used the explicit expression for HQ.) 

As seen from (24), in its most general formulation, 
the problem of finding the shape of the spectrum in the 
rapid-relaxation limit reduces to an inversion of a 
matrix of order (2Ie + 1) (2Ig + 1), and the number of 
the parameters that determine the relaxation is rela­
tively small. On the other hand, if the problem possesses 
a definite symmetry, the number of these parameters 
can be greatly decreased. It will be shown in the subse­
quent sections that formulas (24)-(26) make it possible 
to describe a great variety of forms of relaxation spec­
tra. 

3. ASYMMETRY OF QUADRUPOLE SPECTRA. THE 
BLUME EFFECT 

We shall analyze concrete cases with the isotope 
Fe 57 as an example. If the Mossbauer nucleus experi­
ences in addition to the magnetic hyperfine interaction 
also a quadrupole interaction, then after the relaxation 
collapse of the magnetic hyperfine structure into a 
quadrupole doublet, the latter turns out to be highly 
asymmetrical. This is known as the Blume effect[3] 
and was observed in experiment many times. 

According to Blume's first investigations, where a 
simple relaxation model was used, the quadrupole­
spectrum line corresponding to the transitions (±Y2 
- ± Y 2) and (± Y 2 - :;: Y2 ) turned out to be less broadened, 
and hence more intense than the second line (± 7'2 
- ± %). Several experimentally measured spectra 
have revealed just this type of asymmetry. The inverse 
situation, however, is also possible where it is pre­
cisely the first of these two lines which is more broad­
ened, and hence less intense. An example of such a be­
havior was given in[l0l, where the authors had to com­
plicate greatly the initial mathematical formalism in 
order to consider this case. 

It will be shown below that within the framework of 
the general description presented by us we can obtain a 
great variety of quadrupole-doublet forms differing not 
only in the intensities of the individual peaks but also in 
the structure of each peak individually. 
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Thus, we turn to the general formulas (24)-(26), 
and in order not to complicate excessively the analysis 
that follows we make a number of assumptions. We 
assume first that the electrostatic field gradient at the 
nucleus has axial symmetry relative to the z axis, and 
that the quadrupole interaction itself is much larger 
than the relaxation terms as well as the line width r, 
so that the Mossbauer spectrum is visually a doublet. 
On the other hand, we assume that the relaxation terms 
themselves are of the same order as r. By the same 
token, they determine to a considerable degree the 
structures of the individual components of the doublet. 
Finally, we put (S jel '" O. Recognizing that Ig ", Y2, we 
have 

(LHM=Q[ (I:) '-'/al, (1,+1) ]-p,{A.'I.'-AjIi) 
-i1.,(AJ.'-A gI:) (A,J,i-Ai/) 

We consider first the situation when there is no external 
magnetic field; then {3i '" O. From among the remaining 
possible cases we separate four cases in which all the 
tensor components Yij vanish with the exception of (a) 
Yzz '" Y (longitudinal relaxation), (b) Yxx '" Y (aniso­
tropic transverse relaxation), (c) Yxx '" Yyy '" Y/2 
(isotropic transverse relaxation), and (d) Yxx '" Yyy 
'" Yzz '" Y/3 (isotropic relaxation). 

The case of longitudinal relaxation is simplest. The 
spectrum consists then of three lines with the parame­
ters listed in the table (case a). The corresponding 
spectrum is shown in Fig. la, where we assume for the 
sake of argument Q '" 5r, YA~ '" r, and Ae = -O.571Ag . 
As seen from this figure, the spectrum is a clearly­
pronounced asymptotic doublet typical of the normal 
Blume effect[31. The same figure shows (dashed) the 
spectrum at Y = O. 

In cases band c the character of the asymmetry 
changes (see Figs. 1b and 1c). The peak that becomes 
more intense corresponds to the transitions (±Y2 
- ±Y2). The parameters of the individual components 
of these spectra are also listed in the table (b-case of 
anisotropic transverse relaxation and c -case of iso­
tropic transverse relaxation). 

Although the spectra in Figs. 1b and 1c are similar, 
there is nevertheless a definite difference in the struc­
ture of the peak at w = -Q; this difference can be 
easily revealed by analyzing the form of the spectrum 
with the aid of a computer. 

In the case of isotropiC relaxation (see Fig. 1d), the 

FIG.!. Asymmetry of quad­
rupole spectra in the absence of 
an external magnetic field (see 
the explanation in the text). 
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FIG. 2. Influence of "pseudomagnetic" term on the character of the 
asymmetry of the quadrupole spectrum (Q = sr, {3A~ = 0: a) {3 II z, b) 
III z. 

FIG. 3. Simultaneous effect of the terms with {3 and with y (Q = sr, 
{3A~ = r): a) {3 = y; b) {3 = Sy. The vector {3 is parallel to the z axis. 

FIG. 4. Simultaneous effect of the terms with {3 and with y. The 
vector tJ is perpendicular to the z axis (Q = s r, y A~ = r): a) {3 = O.5y , 
b){3=y, c){3= I.Sy, d){3= h 

FIG. S. Case when {3 is parallel to the z axis,"Yxx = y, and the reo 
maining components of the tensor Yij are equal to zero (Q = sr, yA~ 
= r): a){3=y, b){3= 2y, c){3= 3y. 

quadrupole doublet becomes visually symmetrical. Yet, 
as seen from the table (case d), the peaks have different 
structures. 

Of great interest is the influence exerted on the shape 
of the spectrum by the term 

(27) 

which appears when an external magnetic field is ap­
plied to the sample. We shall dwell on this question in 
greater detail, since this type of manifestation of relax­
ation effects in Mossbauer spectra was not considered 
in detail before. We start with consideration of the 
idealized case when Yij = O. It is obvious that the con­
tribution (27) will cause a splitting of the individual 
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doublet components, since it is equivalent in structure 
to the interaction of the nucleus with some additional 
magnetic field, the value of which is, however, different 
for the ground and excited states of the nuc leus. It is 
interesting that the character of the resultant splitting 
depends significantly on how the vector f3 is oriented 
relative to the z axis. In the case when f3 is directed 
along the z axis, owing to the specifics of the values of 
Ae and Ag for the Fe 57 nuc leus, the doublet line with 
energy w = -Q is split much more strongly (see Fig. 2a). 
On the other hand, the situation is reversed if the vector 
f3 is perpendicular to the z axis (see Fig. 2b). This may 
be the cause of the very interesting influence of an ex­
ternal magnetic field on the Blume effect. The contribu­
tion (27) to M from the external magnetic field can 
greatly influence the character of the asymmetry and 
even reverse its sign. This can be seen in Fig. 3, which 
shows the hyper fine structure spectra in the case when 
the vector f3 is directed along the z axis, Y zz = Y, and 
all the remaining components of the tensor Yij are 
equal to zero. It is interesting that in this case the line 
with w = Q is not sensitive to the presence of a term 
with f3, whereas the line w = -Q is split into four com­
ponents. 

On the other hand, if the pseudomagnetic vector f3 is 
perpendicular to the z axis and the tensor Yij has 
qualitatively the same form, then the addition of the 
term with f3 enhances the Blume effect (see Fig. 4). It 
is of interest to note here the structure of the doublet 
components, which conSist, depending on the relation 
between f3 and Y, of one, two, three, or four lines. At 
other orientations of the vector f3 relative to the z 
axis, and at a different structure of the tensor Yij, no 
other qualitatively new situations arise (see, e.g., 
Fig. 5). 

4. SPECTRA IN THE ABSENCE OF QUADRUPOLE 
INTERACTION 

If there is no quadrupole interaction or spontaneous 
magnetization of the sample, then under rapid relaxa­
tion conditions the magnetic hyperfine structure spec­
trum collapses into a single line, the shape of which is 
described by Eqs. (24) and (26), in which (1,) and f3i 
should be set equal to zero. Depending on the structure 
of the tensor Yij, the line can acquire qualitatively dif­
ferent shapes. 

The customarily employed models correspond in our 
case to longitudinal relaxation. The shape of the col­
lapsed lines corresponds in this case to a peak that is 
sharply pointed at the center, and a line with this shape 
was actually observed in experiment. It is clear, how­
ever, that such cases are not general, and, in particular, 
Mprup has observed in NH4Fe (80 4)2 ·12H 20 a line[16] 
whose shape could not be described in any way by models 
with longitudinal relaxation. To explain the results, he 
had to resort to an additional nuclear-spin rather than 
the electronic relaxation mechanism. 

We have reduced the experimental spectrum meas­
ured by Mprup by using the formulas cited above, in 
which we varied the tensor components Yij until best 
agreement was obtained (see Fig. 6, where the solid 
curve is the result of the theoretical calculations). The 
best agreement was obtained in the case Yij = rfj' i.e., 
in the case of isotropic relaxation. It is interesting to 
note that in spite of the strong relaxation the lines are 
in this case pure Lorentzians with width r + Y2 y (15A~ 
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FI G. 6. Results of theoretical 
reduction of the experimental 
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= 200o K, H = 0). 

- 10Ae Ag + 3Ag). Calculations yield for Y a value 
Y = 0.342 sec/ cm if Ae and Ag are determined uSing 
Hhf '" 590 kG as the hyperfine field for the doublet with 
Sz = ~2 and it is assumed that r '" 0.35 mm/sec[16, 17 1. 
Actually the result obtained by us means that in the 
compound NH4Fe (S04)z' 12H20 the iron-ion spin fluc­
tuations are isotropic in all directions. This is not at 
all surprising, since the nearest environment of the Fe 3+ 

ions in iron-ammonium alums has a nearly cubic sym­
metry. Moreover, we succeeded in adequately describ­
ing the spectrum within the framework of phenomeno­
logical constants of unique nature, whereas in [16] it was 
necessary to introduce two qualitatively different relax­
ation mechanisms. 

On applying a strong external magnetic field, 
Mprup(16] observed a noticeable narrowing of the line 
and a change in its shape in a direction called for by the 
predominance of the longitudinal relaxation. It is easy 
to understand this change of shape qualitatively even 
from formulas (19) and (20), but we emphasize the fol­
lowing circumstances. When an external magnetic field 
is applied, the superpropagator M (see (26)) acquires a 
pseudomagnetic term that depends on the orientation of 
the external field relative to the crystal-symmetry axes. 
Consequently, in polycrystals the problem of recon­
structing from the measured spectra the constants Yij 
and i3i, which determine the relaxation process, is very 
complicated in the presence of an external magnetic 
field. This problem calls for a special theoretical 
analysis. No such problem arises in single-crystal 
samples, and experiments with single crystals are ex­
ceedingly important for the determination of these 
fundamental relaxation constants. On the other hand, if 
there is no magnetic field, then experiments with poly­
crystals also give exactly defined information concern­
ing the relaxation process. 

5. "ANOMALOUS" SPECTRA 

A number of presently known experimental relaxation 
spectra in magnetically -ordered substances [18-23] 
exhibit a so-called "anomalous" behavior when the 
Curie point is approached. The "anomaly" is manifest 
in the fact that the sextuplet of lines usually comprising 
the iron spectrum acquires abruptly a central peak as 
TC is approached, although the well-resolved structure 
corresponding to the magnetically ordered state still 
remains. In other words, an impression is gained that 
the magnet breaks up into magnetic and paramagnetic 
phases. 

To explain this "anomalous" behavior of the spec­
trum' Levinson and Luban have suggested(12] that in ad­
dition to the rapid relaxation processes of spin-fluctua­
tion" diffusion" there occurs in magnetically ordered 
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FIG. 7. Changes experienced by hfs spectra when the "magnetic" 
and "pseudomagnetic" terms compete: a) fj II lX, b) fj 1 lx. The numbers 
at the curves stand for the ration -fjAg!lX. 

substances also a slower process wherein macroscop­
ically large regions are remagnetized at once, i.e., a 
process analogous to the relaxation of supermagnetic 
particles. It can be assumed that as TC is approached 
the rate of such a magnetization reversal increases, 
and this can be manifest in the hfs spectra as a relaxa­
tion that is inherent in pure paramagnetic substances. 
Unfortunately, it is still impossible to carry out even 
approximate calculations within the framework of this 
model, so that the extent to which the model predicted 
in [12] is valid is still unclear. 

We wish to point out in this connection that the 
general description proposed here for the hfs spectra 
covers in the limit of rapid relaxation a number of 
cases wherein the form of the spectrum recalls the 
form of the "anomalous" spectra. These spectra ap­
pear when the relaxation-rate decrease expected from 
general considerations as the Curie point is approached 
is manifest by the appearance of a large "pseudo mag­
netic" term comparable with the last term of (L) (25), 
which determines the usual magnetic hyperfine splitting. 
Figure 7 shows the hfs spectra at various ratios of the 
parameters f3j and aj '" Aij(Si)el. In the left-hand side 
of Fig. 7 are shown the spectra for the case J3 II a, and 
in the right hand side for the case J3 1 a. It is seen from 
Fig. 7 that, especially in the case {3 1 a, the resultant 
spectra are very similar to the "anomalous" ones (cf., 
e.g.,l20]). Thus, one can postulate the appearance of an 
appreciable "pseudomagnetic" term as an alternative 
explanation of the "anomalous" spectra, without going 
outside the framework of rapid relaxation processes. 

In conclUSion, the authors thank Yu. M. Kagan for 
constant interest in the work and for useful discussions. 
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