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A theory of thermoelectric effects in isotropic superconductors is constructed. In the presence of a 
temperature gre.dient, a current of normaf excitations, proportional to the temperature gradient, is 
produced in the superconductor. An equal and opposite superconducting current appears in the 
volume of the bulky superconductor. This current can be observed in a superconducting 
interferometer by the difference between the order-parameter phases on superconductor end surfaces 
having different temperatures. It a closed circuit is made up of two different superconductors and a 
temperature difference is produced on their contacts, an additional magnetic flux is produced and can 
be measured in experiment. 

1. INTRODUCTION AND FORMULATION OF 
PROBLEM 

In the presence of a temperature gradient in a closed 
circuit consisting of normal conductors, a thermoelec­
tric current is produced whereas a potential difference 
(thermal emf) is produced at the terminals of an open 
circuit. The current denSity j produced in a normal 
conductor l ) by the gradient of the temperature T and by 
the electric field 

E=- V' (U+J.t/e) , (1.1) 

is 

j=-TlVT+crE, (1.2) 

where U is the electrostatic potential, I.L is the chemi­
cal potential, e is the electron charge, and a is the 
conductivity. For an open-circuited conductor (j = 0) 
this yields the thermoelectric field E: 

E=~VT, (1.3) 
cr 

where 1)/ a is the so-called differential thermoelectric 
power. In experiment one always measures the differ­
ence T) II a 1 - 1) 2/ a2 (the relative thermoelectric power) 
for two different conductors. 

As is well known, no stationary electric fields can 
exist in superconductors. In addition, no volume current 
can flow in bulky superconductors, with dimensions 
much larger than the penetration depth 15 of the mag­
netic field. These properties of superconductors should 
cause the thermoelectric effect to occur in them in a 
manner different and much more peculiar than in ordi­
nary conductors. Our purpose in this article is to study 
this effect. We start with a qualitative description, and 
then proceed to a quantitative solution of the problem. 

In a superconductor, at temperatures lower than Tc , 
there is a superconducting condensate of Cooper pairs 
res ponsible for all the distinguishing properties of the 
superconductors. In addition, it contains normal excita­
tions. They can be scattered by the phonons and by the 
impurity atoms, i.e., they behave in the same manner 
as conduction electrons in a normal metal, and differ 
from the latter only in the dispersion law. In particular, 
a temperature gradient produces a volume current of 
normal excitations 2) 

(1.4) 

where 1) denotes now the corresponding kinetic coef­
ficient of the superconductor. There is no term propor­
tional to E = -v (U + I.LI e) in this expression, since the 
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electrochemical potential in a superconductor in the 
stationary state should be constant. 

The volume current in bulky superconductors, how­
ever, should be equal to zero. This means that a volume 
superconducting current jS, i.e., a Cooper-pair conden­
sate current, should appear and cancel out the normal 
current: 

r+j'=O. (1.5) 

Thus, an impression may be gained that there is no 
thermoelectric effect at all, since in principle there 
should be no electric field in the superconductor, and 
the total volume current is also equal to zero. This 
would be the case were we not able to measure separ­
ately either of the two currents that add up to zero. In 
fact, however, the current jS can be directly. measured. 
Let us explain how this can be done. 

A superconductor is a system whose quantum proper­
ties become manifest on a macroscopic scale. The state 
of a Cooper-pair condensate is described by specifying 
the order parameter-by means of the wave function 

~(r)=IL'.(r) I e'«" , 

which characterizes the entire assembly of supercon­
ducting electrons. In the stationary state, in which we 
are interested, it depends only on the coordinate rand 
does not depend on the time. 

The density of the superconducting current is pro­
portional to the gradient of the phase cp: 

eliN. 
j'=~V<P, (1.6) 

where m is the effective mass of the free electron and 
Ns is the so-called concentration of the superconducting 
electron[21. At T = 0 it is equal to the total electron 
concentration No, and near the transition pOint Tc we 
have 

(1.7) 

Thus, a phase difference of the order parameter 3) 

t::..cp = cp 2 - cp 1 is produced at the end points of the super­
conductor section at which a temperature difference 
t::..T = T2 - TI has been produced. This phase difference 
can be measured with the aid of a quantum Josephson 
interferometer. The method of measuring the phase dif­
ference is discussed in detail in Sec. 3 below. As a re­
sult, the superconducting current jS, meaning also the 
normal-excitation current j T, is a measurable quantity. 
Thus, the simplest thermoelectric phenomenon in a 
superconductor consists in the appearance of an irre­
versible flux of normal excitations j T, proportional to 
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the temperature gradient. The thermoelectric coeffic­
ient 1/ will be calculated in Sec. 2.4) However, a direct 
observation of the phase difference in a superconducting 
interferometer is by far not the only method of investi­
gating thermoelectric effects in an isotropic supercon­
ductor. In Sec. 4 we discuss another such method, 
wherein one observes the additional magnetic flux that 
penetrates into a section of a closed circuit consisting 
of two different superconductors, the junctions of which 
are kept at different temperatures. The value of this 
flux depends on the temperature difference and can be 
measured in experiment. 

We have considered both the case of a circuit made 
up of bulky superconductors (of thickness much larger 
than the field penetration depth ~), and the opposite 
limiting case of a circuit made up of thin superconduc­
tors. What is the result of the study of the thermoelec­
tric effects in superconductors? By determining the 
value of 1), we can assess the relaxation processes in 
which normal excitations of the superconductor take 
part. In addition, once a sufficient sensiti vity is reached 
in the method, these effects can be useful for the 
registration of the inhomogeneous heating of a super­
conducting thermoelectric circuit, Finally, measure­
ment of 1/ in the superconductor can be one of the 
methods of determining the absolute thermoelectric 
power. The point is that the coefficient 1/ near Tc 
varies very little on going from the superconducting 
state to the normal state (see Sec, 2). This means that 
by determining the coefficient in the superconductor at 
a temperature somewhat lower than Tc we determine 
by the same token the value of this coefficient at a tem­
perature somewhat higher than T c' 

2. CALCULATION OF THERMOELECTRIC 
COEFFICIENT 

Our problem is to obtain an expression for the cur­
rent density in a superconductor in the presence of a 
temperature gradient and with account taken of the 
motion of the condensate. To this end it would be possi­
ble to use for the kinetic equation the solution obtained 
in the review of Abrikosov and Khalatnikov[6] or in the 
book by Gellikman and Kresin[4]. With the aid of this 
solution it is easy to calculate the normal-excitation 
current, to which it is necessary to add the supercon­
ducting current. We, however, will proceed somewhat 
differently, and use the kinetic equation we have previ­
ously introduced[7] for excitations in a superconductor, 
where account is taken of the motion of the condensate. 
With the aid of such an equation we can obtain immedi­
ately the complete expression for the current, In the 
approximation linear in 'i1 cp and 'i1 T, as we shall show, 
the total current is indeed a sum of two terms normal 
and superconducting. This method seems to u~ some­
what preferable from the methodological point of view, 
since it makes it possible to obtain in simpler fashion, 
when necessary, estimates for the higher-approximation 
corrections. 

The kinetic equation for the distribution function np 
of the normal excitations, with allowance for the mo­
tion of the condensate, takes the form [7] 

(2.1) 

fp=ep+vp.= (~.'+ III I')"'+vp,. (2.2) 

Here v = pi m, p is the quasimomentum of the electron, 
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~p = (p2 + p~ 2!2m-j.J.; \ A \ is the width of the supercon­
ducting gap; I {np} is the operator for the collis ions of 
the quasiparticles with the phonons and with the impurity 
atoms, and is of the usual form[S,7], but contains the 
energies Ep in the arguments of the ~ functions in 
place of the energies Ep. Finally, Vs = Ps 1m is the 
velocity of the superfluid motion of the condensate, the 
momentum Ps being connected with 'i1cp and with the 
vector potential A by the gauge-invariant relation 

(2.3) 

In the derivation of (2.1), the external conditions are 
assumed to be stationary. In addition, we assume the 
superconductor to be pure enough, so that the electron 
mean free path in it greatly exceeds the coherence 
length. 

We assume the temperature gradient (and the current 
jT due to it) to be small enough. This means that the 
nonequilibrium increment of the excitation distribution 
function must be small in comparison with its equili­
brium value. This condition is practically always satis­
fied in the experiments. In addition, we also assume 
that the velocity of the resultant superfluid motion is 
small enough to make unity much larger than the 
parameter 

(2.4) 

and we confine ourselves to the first nonvanishing ap­
proximation in this parameter. The condition (2.4) may 
turn out to be relatively stringent near the transition 
point T c itself. 

Equation (2.1) must be supplemented with an equation 
for the quantity \ A (r ) \. If the distribution function of 
the excitations were at equilibrium, then the corrections 
to the standard equation for \ A \ would be of second 
order in the small parameter (2.4), and this would be 
beyond the limits and accuracy of our calculation. In 
our case, the distribution function has a small non­
equilibrium increment proportional to 'i1 T (see below), 
and the additional term in the equation for \ A \ can 
contain besides pS2 also the product Ps' 'i1 T. These 
terms will also be regarded as small and discarded. As 
a result we arrive at the conclusion that, at the accuracy 
assumed by us, \ A ( r ) \ is the equilibrium value of the 
gap at the temperature T( r). 

The expression for the current density in terms of 
the quaSiparticle distribution function np, with allow­
ance for the condensate motion, is [7] 

j=2e J (2d~~)3[u.'np+V.'(1-n_p)](v+v,). 
(2.5) 

UP'=-}(1+~plep); V"=+(1-~p!ep). 
In the linear approximation in the temperature grad­

ient, we seek the solution of (2.1) in the form 

no (ep ) = [1 +exp (ep!T(r» ]-" 
(2.6) 

where no is an equilibrium function that depends on the 
local temperature T(r). Substituting (2.6) in (2.5), we 
obtain in the approximation linear in the small parame­
ter 6) proportional to ps 

j=j'+j"; 
~ a 

j'=2e J (2n~)3{v.[u.'no(ep)-v.'(1-no(ep»]+v(VP.) an:.}. 
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'T_ f d'p (I) 

J -2e (2nll) , np v. (2.9 ) 

Taking into account the relation 

[ ~ (( I~I )')'" N.(T,~)=N, i-I dxch-' x'+ 2T ] (2.10) 

we can rewrite (2.8) in the form 

i.e., it is the density of the superfluid current. Expres­
sion (2.9) is the density of the normal current, and to 
calculate it it is necessary to solve the kinetic equation 
and determine the function nW. We do so by assuming 
that the phonon scattering can be neglected in compari­
son with the impurity scattering, i.e., for a normal con­
ductor the considered temperature region would corre­
spond to the residual reSistance. 

T~ calcula.te np) ~e c~n put in (2.1) ps = 07l. The 
solutlOn of thls equatlOn In the case when scattering by 
impurities plays an important role is given in[4,6]. Sub­
stituting np) in the expression for the density of the 
normal current, we arrive at the following result for 
the coefficient 1) : 

T]=T]"G(MT), (2.11) 

G - 6 f~ y'dy 
(x)-~" ch'(yl2) , 

(2.12) 

where 1)n is the thermoelectric coefficient in the nor­
mal state. If the amplitude for scattering by impurities 
does not depend on the momentum transfer, then 

2n' eT d 
'In=g-;;;- a[Tn(~)v(~)~l~~", (2.13) 

rff = ~ + /l, 1/ ( rff) is the density of states, and Tn is the 
electron relaxation time in the normal state. We note 
that formula (2.11) is valid for any elastic scattering 
mechanism. 

At x « 1 we have 
G(x) =i-2x'/n', (2.14) 

so that at x = 0 we obtain the known expression (see, 
e.g.[ll]) for the thermoelectric power of the normal 
metal. At x » 1 we get 

(2.15) 

so that at T « Tc the thermoelectric coefficient 1) is 
exponentially small. 

Expression (2.14) for 1) differs from the formulas of 
Gellikman and Kresin[4,5]. The reason for the discrep­
ancy, in our opinion, is the following. Our initial expres­
sion for the current density is formula (2.9), whereas 
they use a formula in which v contains the quantity 
V~/E, which is equal to the excitation rate aEp/ap. That 
our expression is correct is easiest to verify in the fol­
lowing manner. It is necessary to take as the initial 
expression 

'\1 d'p 
j=e ~ f (2nll)' v<t/..ap.>, (2.16 ) 

where ai>a (apa) are the creation (annihilation) operators 
for an electron with quasimomentum p and spin ex (the 
angle brackets denote averaging over the non-equili­
brium density matrix of the system). It is then neces­
sary to go over, with the aid of the Bogolyubov trans­
formations, to the operators of the creation and annihila­
tion of the quasiparticles in the superconductor, and as 
a result we obtain formula (2.9). 
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It should also be noted that the formula given in [4, 5] 
for 1) differs from ours in order of magnitude. Namely, 
it gives a result larger than ours by roughly speaking a 
factor /lIT. Naturally, as A - 0 it does not make it 
possible to obtain the limiting transition to the normal 
metalS) . 

3. MEASUREMENT OF THERMOELECTRIC EFFECT 
WITH THE AID OF A SUPERCONDUCTING 
JOSEPHSON INTERFEROMETER 

We consider the superconducting interferometer 
shown schematically in Fig. 1. Arms I and II of the in­
terferometer are assumed to be made of difficult super­
conductors. A temperature gradient is produced in the 
region B of each of the arms, whereas the other sec­
tions of the interferometer are at a constant tempera­
ture, Tl or T z• The Josephson junctions JOI and JOIl 
are also at a temperature T z• For simplicity, assume 
first that the Josephson junctions JOI and JOIl have the 
same critical current J c (the calculation of the general 
case leads to more cumbersome calculations). Then 
the currents through arms I and II are connected with 
the phase discontinuities A<;OI and A<;OII across the 
junctions by the known relations 

(3.1) 

The expression for the current density in the volume 
of the superconductor is written, as we have seen, in 
the following gauge-invariant form: 

ellN, ( 2e) 
j=z;;;- \cp-~A 

(3.2) 
-'lVT. 

On the other hand, as is well known, the density of 
the volume current at a distance much larger than the 
penetration depth from the superconductor surface 
should be equal to zero. Integrating (3.2) along a closed 
contour in the interior of the superconductors at a dis­
tance much larger than 0 from their surfaces, we ob­
tain 

0= c.PV'l'dr-~cpI+~'l'Il- ~: c.PA dr + (6,-flll) , (3.3) 

6= 2m fT' 'l(T) dT. (3.4) 
ell N,(T) 

T, 

The first integral in the right-hand side of (3.3) is 
equal to 27Tn, where n is an integer, inasmuch as the 
change in phase of the wave function on going over the 
closed contour should be a multiple of 27T. The integral 
is ~ A . dr = 4>, where 4> is the magnetic flux linked 
with the contour. As a result, we can rewrite (3.4) in 
the form 

2nn-LlcpI+~cpll-2nlll/lllo+ (6,-61I ) =0, 

where 4>0 = 7Tl'ic/e is the magnetic-flux quantum. 

We introduce the quantity A<;o with the aid of the re­
lations 

( nlll 6I-(11) (nlll 6I-6u) () ~CPI=~CP+ ---- , Ll'l'u=LlCP- ---- +2nn. 3.5 
Ill" 2 III 0 2 

Then the current J in the external circuit in which the 
interferometer is connected can be represented in the 
form 

" (6I -6u ) 1=/,+/n=2/, cos nlll/Ill, - -2- sin ~cp. 

The maximum superconducting stationary current that 
can flow through the interferometer is therefore 

( Ill 8I-6n) 21,cos n---- . 
Ill, 2 

(3.7) 
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FIG. 1 

By measuring it we can directly assess the value of the 
thermoelectric effect in the superconductors. The mag­
nitude of the thermoelectric effect can thus be charac­
terized by the "thermoelectric angle" 8, which is de­
termined by the expression (3.4). 

If the critical currents Jcl and JcII through the 
Josephson junctions JOI and JOII are different, we ob­
tain for the maximum current through the interferome­
ter the expression 

[ ( (lJ a,-su )] 'I, 
(l,,-l,u) '+4J,rl,u cos' n ~ - -2- . 

We note that the conditions for the applicability of 
the initial relation (3.2), with the aid of which our result 
is obtained, include the requirement that the change of 
V'T be small over a distance on the order of the field 
penetration depth 0, a condition that is practically al­
ways satisfied with large margin. It is immaterial here 
whether the external field penetrates into the supercon­
ductor in accordance with the London law or the Pippard 
law. 

The thermoelectric effect in superconductors, just as 
in normal conductors, is a difference effect-it is pro­
portional to the difference 8 I - 8 II. But whereas the 
ratio 17 / a for the normal conductor depends little on the 
concentration of the impurity atoms, the coefficient 17 
itself (meaning also the thermoelectric angle 8), being 
proportional to Tn, is very sensitive to the impurity 
content. 17 can change by many orders of magnitude with 
changing impurity concentration. If it is desired to 
study the thermoelectric properties of some definite 
superconductor I, it must be chosen to be pure enough. 
The superconductor II can be dirty in this case, in order 
to satisfy the inequality 8 II« 8 I. The answer will then 
contain only the quantity 8 I. We consider henceforth 
this case (we omit the subscript I). 

We proceed to the calculation and estimate of 8. If 
the relative change of both the width of the gap and of 
the temperature along the superconductor is small, then 

a=2mfj~T/eftN" (3.8) 

Le., the expected effect is proportional to ~T = T2 - T 1, 

which is natural. It is assumed that Tn ~ 10-9 sec, 
which is apparently close to the limit of modern experi­
mental capabilities, then far from the transition tem­
perature Tc the angle 8 amounts to several degrees of 
angle at a temperature difference on the order of sev­
eral hundredths of a degree. 

Near the transition point itself, the coefficient 17 
changes little and it can be assumed that 1)c = 17(Tc). 
However, Ns(T) changes strongly in this region, and 
we shall use expression (1.7) for its value. Substituting 
it in (3.4), we get 

a = mfj,T'ln T,-T, 
eftNo T,-T, . 

(3.9 ) 

Near the transition point, the angle 8 can amount to 
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several dozen degrees at a temperature difference of 
several hundredths of a degree. It must be borne in 
mind, however, that for superconductors with relatively 
high Tc the temperature region near Tc may not cor­
respond to the residual resistivity. The phonon scatter­
ing may prevail in this temperature interval. In this 
case, formula (2.13) can no longer be used to estimate 
the coefficient 1), and we can employ, for example, esti­
mates of the coefficients 17 in a normal conductor on the 
basis of the experimental data at temperatures some­
what higher than Tc. 

4. THERMOELECTRIC EFFECT IN A CLOSED CIRCUIT 
MADE UP OF DIFFERENT SUPERCONDUCTORS 

We consider a closed thermoelectric circuit made up 
of two superconductors (Fig. 2). We investigate first the 
case when the transverse dimensions of the supercon­
ductors greatly exceeds the penetration depth O. For 
the current densities in the superconductors I and II we 
have 

. ehNd .u ( 2e) JI.U=-fjI.UVT+--- Vcp--A. 
2m,.u ftc 

(4.1) 

From this we get in the first and second superconduc­
tors, respectively, 

2e 2m, 2m,fjI VT 
V<p=-A+--j+-- , 

ftc eN'Ift eN"h 

n 2e A + 2mu . +2mufju VT ''1'=- --] -- . 
ftc eN,uh eN ,uft 

(4.2) 

Calculating the integral if> V'rpdr along the closed 
contour passing in the interior of the bulky superconduc­
tors, and equating it to 21Tn, we obtain 

(4.3) 

whence 

(4.4) 

Thus, the temperature difference produces an increment 
to the quantized magnetic flux linking with the section of 
the closed contour; this increment is proportional to the 
difference between the thermolectric angles of the two 
superconductors making up the circuit. If the magnetic 
flux in the absence of the temperature difference was 
equal to zero (i.e., at n = 0), then the effect reduces 
simply to the onset of a magnetic flux under the influence 
of the temperature difference. 

We consider now a thermoelectric circuit made up 
of two thin superconductors of equal length P, the thick­
ness of which is much less than the penetration depth o. 
We assume that the current density J is constant over 
the cross section of the conductor9 ), so that the total cur­
rent is J = j S. Here S is the cross section area, which 
we assume to be the same in both superconductors. Cal­
culating V'rp from formula (4.2) and equating g)V'rpdr to 
21Tn, we obtain 

n=.!!.+~(~+~) + SU-S'. (4.5) 
(lJo nehS No! N.ll 2n 

J=(lJC/L, (4.6) 

where L is the self-induction of the circuit. From this 
we get 

(lJ=(lJ n- (Su-8 I )/2n 
o 1+ (Pc'/e'SL) (m,/N.,+mu/N.u ) 

(4.7) 
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FIG. 2 

It should be noted, incidentally, that the angles 8 in 
the thin samples can by themselves not be as large as 
in bulky ones, inasmuch as the coefficient 7) is propor­
tional to the mean free path of the excitations, which in 
the case of a thin sample is at best of the order of the 
diameter of its cross section. The latter, as we have 
agreed, is less than the penetration depth 15. Therefore 
the largest effect should be expected at temperatures 
close to Tc , when the depth of penetration 15 is rela­
tively large, and for this reason the thickness of the 
sample can be chosen to be not too small. 

Let us explain the qualitative nature of this effect, 
for example for the case of bulky superconductors. In­
asmuch as the thermoelectric current jT = -1)VT in 
the interior of a superconductor with a temperature dif­
ference at the its terminals is cancelled out by the 
superconducting current, an additional phase difference 
8n - 81 is produced on going along a closed circuit 
passing through the interior of the superconductors. On 
the other hand, however, the total change of phase on 
going along the circuit should be equal to 21Tn, as be­
fore 0 This means that an additional magnetic flux must 
be produced by the surface currents and lead to cancel­
lation of this thermoelectric phase difference. 

We discuss in conclusion the following question. What 
is the value of the additional magnetic flux produced in 
the circuit of the Josephson quantum interferometer 
shown in Fig. 1 when a temperature difference is pro­
duced? For simplicity we consider again the case when 
the critical currents Jc of the two Josephson junctions 
are equal. The circulating current flowing through the 
interferometer and producing the additional magnetic 
flux is 

( «II eI-en) -21,sin n---- COSLl.<p. 
«110 2 

(4.8) 

If we denote by <l>e the flux produced by the external 
sources of the magnetic field, then the total flux is 

2Ll, ( «II eI-en) «II=«II,---sin n---- COSLl.<p. 
c «110 2 

(4.9 ) 

This equation determines implicitly the function <1>( <l>e), 
i.e 0, the dependence of the total magnetic flux on the 
external flux. 

If the critical current is so small that 

(4.10) 

then we have in the lowest order approximation <I> = <l>e. 
In the next higher approximation 

. 2Ll, ( «II. eI-en) «II=«II,---sin n---- COSLl.<p. 
c «110 2 

(4.11 ) 

The temperature dependence enters, as we see, only in 
the second term in the right-hand side of (4.11), which 
is a correction term that amounts, by virtue of (4.10), 
to a small fraction of the flux quantum <1>0. 

We proceed to the case when the parameter 
21TLJc / c<l>o ~ 1. If at the same time the measuring cur­
rent (3.6) is such that even at 

684 Sov. Phys.-JETP, Vol. 39, No.4, October 1974 

2nLl, 
--lcOSLl.<pI;;.:t, 

c«llo 
(4.12) 

then the dependence of <I> on <l>e and 81 - 8 n can be­
come multiply valued (see the book of Kulik and Yan­
son[lOl, p. 126), so that definite values of <l>e and 81 
- 8n can correspond to several values of the flux <1>. 
The function <I> can then experience finite discontinui­
ties, when its arguments are varied. 

Thus, the maximum current in a quantum inter­
ferometer has a simple dependence on the difference of 
the thermoelectric angles only if the inequality (4.10) is 
satisfied. Otherwise the connection between these 
quantities becomes much more complicated. 

The authors are most grateful to Y. L. Ginzburg for 
a stimulating discussion. We are also indebted to A. G. 
Aronovand G. E. Pikus for a discussion of the work and 
for valuable remarks. 

0In this paper we consider isotropic conductors. 
2)This expression for the thermoelectric current of normal excitations 

was proposed by Ginzburg [1] in a paper devoted to specific thermo­
electric effects that can exist in anisotropic or inhomogeneous super­
conductors. We do not consider effects of this type at all in the 
present paper. 

3) A brief communication concerning this effect was published earlier [3]. 
4)The coefficient 7) was calculated earlier in the book of Gerlikman and 

Kresin [4]. The results of our calculation differ from the expression 
obtained by them [4.5]. The reason for the discrepancy are discussed 
below. 

5)The conclusion that the onset of the phase difference, predicted by us 
in [3], should become manifest in the form of an additional magnetic 
flux that links the thermoelectric closed circuit was arrived at inde­
pendently also by N. V. Zavaritski'i'. 

6)This parameter, as can be easily verified with the aid of direct estimates, 
is equal to the ration PsvF/Tc at temperatures on the order of Tc. 

7)The question of when linearization of the kinetic equation is possible 
was investigated by Aronov [9]. It turned out that in the next higher 
approximation in the small parameter, proportional to Ps' the kinetic 
equation has a solution only when account is taken of the inelastic 
collisions. As a result, the small parameter that ensures the possibility 
of linearization turns out, at temperatures on the order of T c, to be 

where T ph is the characteristic time of the collisions of the excitations 
with the phonons. (The parameter PsvF/It.1 can also be of the order 
of unity in this case. Then the entire kinetic part of the problem re­
tains the same form as before, but it is necessary to modify the equa­
tion for 1t.1, as described, for example, in the book of Kulik and 
Yanson [10]). We are grateful to A. G. Aronov for communicating the 
result of this paper prior to publication. 

8)The calculations given in [4,5] for the current circulating in an aniso­
tropic superconductor and for the associated magnetic fields also yield, 
in our opinion, expressions that are IJ./T times larger than the true ex­
pressions. 

9)We assume by the same token that the volume scattering of the normal 
excitations prevail over the scattering by the roughnesses of the sur­
face of the conductor. 

IO)We assume that the entire magnetic flux is produced by the current 
flowing through the circuit. 
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